Y

The Type Astronaut’s

Guide to Shapeless

Dave Gurnell
foreword by Miles Sabin

underscore

The Type Astronaut’s Guide to Shapeless
April 2017
Copyright 2016-17 Dave Gurnell. CC-BY-SA 3.0.
Published by Underscore Consulting LLP, Brighton, UK.

Contents

Foreword

1

Introduction

1.3 Sourcecodeandexamples

1.4 Acknowledgements

Type class derivation

Algebraic data types and generic representations

2.1 Recap: algebraicdatatypes
2.1.1 Alternativeencodings

2.2 Generic productencodings
2.2.1 Switching representations using Generic

2.3 Genericcoproducts
2.3.1 Switching encodings using Generic

24 SUMMANY . . v v o e e e e e e e e e e e e e e e e

3 Automatically deriving type class instances 21

3.1 Recap:typeclasses. 21
3.1.1 Resolvinginstances 23
3.1.2 Idiomatic type class definitions 24

3.2 Derivinginstances for products 26
3.2.1 InstancesforHLists 27
3.2.2 Instances for concrete products 28
3.2.3 So what are the downsides? 31

3.3 Deriving instances for coproducts 32
3.3.1 AligningCSVoutput 34

3.4 Deriving instances for recursivetypes 34
3.4.1 Implicitdivergence 35
342 Lazy e 36

3.5 Debugging implicit resolution 37
3.5.1 Debugging using implicitly 38
3.5.2 Debuggingusingreify 39

3.6 Summary e e e e e e 39

4 Working with types and implicits 41

4.1 Dependenttypes, 41

4.2 Dependently typed functions 43

4.3 Chaining dependent functions 47

44 SUMMAIY . . o o o e e e e e e e e e e e e e e e 49

5 Accessing names during implicit derivation

6

5.1
52

5.3

54
5.5

Literaltypes
Type tagging and phantomtypes
5.2.1 Records and LabelledGeneric
Deriving product instances with LabelledGeneric
5.3.1 InstancesforHLists
5.3.2 Instances for concrete products
Deriving coproduct instances with LabelledGeneric

Summary ... e e e e e e e

Shapeless ops

Working with HLists and Coproducts

6.1
6.2
6.3

6.4

6.5

Simpleopsexamples
Creating a custom op (the “lemma” pattern)
Case study: case class migrations
6.3.1 Thetypeclass
6.3.2 Step1.Removingfields.
6.3.3 Step 2. Reorderingfields
6.3.4 Step 3. Addingnewfields
Recordops
6.4.1 Selectingfields
6.4.2 Updating and removingfields
6.4.3 ConvertingtoaregularMap
644 Otheroperations

Summary ... e e e e e e e e

51
51
54
57
58
60
62
63
65

67

7 Functional operations on HLists

7.1 Motivation: mappingoveranHList.

7.2 Polymorphicfunctions

721 HowPolyworks

722 Polysyntax

7.3 Mapping and flatMapping usingPoly

7.4 FoldingusingPoly

7.5 Defining type classesusingPoly

7.6 Summary

8 Counting with types

8.1 Representing numbersastypes

8.2 Length of generic representations

8.3 Case study: random valuegenerator

8.3.1 Simplerandomvalues

8.3.2 Randomproducts.

8.3.3 Randomcoproducts

8.4 Other operations involvingNat

8.5 Summary

Prepare for launch!

85
85
86
86
88
91
93
93
95

97
97
98
100
101
102
102
105
105

107

Foreword

Back at the beginning of 2011, when | first started doing the experiments in
generic programming that would eventually turn into shapeless, | had no idea
that five years later it would have evolved into such a widely used library. |
am profoundly grateful to the people who have trusted me and added shape-
less as a dependency to their own projects: the vote of confidence that this
represents is a huge motivator for any open source project. | am also hugely
grateful to the many people who have contributed to shapeless over the years:
eighty one at the time of writing. Without their help shapeless would be a far
less interesting and useful library.

These positives notwithstanding, shapeless has suffered from one of the com-
mon failings of open source projects: a lack of comprehensive, accurate and
accessible documentation. The responsibility for this lies squarely at my door:
despite acknowledging the lack | have never been able to find the time to do
anything about it. To some extent shapeless has been saved from this by Travis
Brown'’s heroic Stack Overflow performance and also by the many people who
have given talks about and run workshops on shapeless (in particular I'd like
to highlight Sam Halliday’s “Shapeless for Mortals” workshop).

But Dave Gurnell has changed all that: we now have this wonderful book
length treatment of shapeless’s most important application: type class deriva-
tion via generic programming. In doing this he has pulled together fragments
of folklore and documentation, has picked my brain, and turned the impene-
trable tangle into something which is clear, concise and very practical. With
any luck he will be able to make good on my regular claims that at its core
shapeless is a very simple library embodying a set of very simple concepts.

Thanks Dave, you've done us all a great service.

Miles Sabin
Creator of shapeless

Chapter 1

Introduction

This book is a guide to using shapeless, a library for generic programming in
Scala. Shapeless is a large library, so rather than cover everything it has to
offer we will concentrate on a few compelling use cases and use them to build
a picture of the tools and patterns available.

Before we start, let’s talk about what generic programming is and why shape-
less is so exciting to Scala developers.

1.1 What is generic programming?

Types are helpful because they are specific: they show us how different pieces
of code fit together, help us prevent bugs, and guide us toward solutions when
we code.

Sometimes, however, types are too specific. There are situations where we
want to exploit similarities between types to avoid repetition. For example,
consider the following definitions:

case class Employee(name: String, number: Int, manager: Boolean)

case class IceCream(name: String, numCherries: Int, inCone: Boolean)

https://github.com/milessabin/shapeless

4 CHAPTER 1. INTRODUCTION

These two case classes represent different kinds of data but they have clear
similarities: they both contain three fields of the same types. Suppose we
want to implement a generic operation such as serializing to a CSV file. De-
spite the similarity between the two types, we have to write two separate
serialization methods:

def employeeCsv(e: Employee): List[String] =
List(e.name, e.number.toString, e.manager.toString)

def iceCreamCsv(c: IceCream): List[String] =
List(c.name, c.numCherries.toString, c.inCone.toString)

Generic programming is about overcoming differences like these. Shapeless
makes it convenient to convert specific types into generic ones that we can
manipulate with common code.

For example, we can use the code below to convert employees and ice creams
to values of the same type. Don’t worry if you don'’t follow this example yet—
we'll get to grips with the various concepts later on:

import shapeless.

val genericEmployee = Generic[Employee].to(Employee("Dave", 123, false
))
// genericEmployee: String :: Int :: Boolean :: shapeless.HNil = Dave
: 123 :: false :: HNil

val genericIceCream = Generic[IceCream].to(IceCream("Sundae", 1, false
))

// genericIceCream: String :: Int :: Boolean :: shapeless.HNil =
Sundae :: 1 :: false :: HNil

Both values are now of the same type. They are both heterogeneous lists
(HLists for short) containing a String, an Int, and a Boolean. We'll look at
HLists and the important role they play soon. For now the point is that we
can serialize each value with the same function:

1.2. ABOUT THIS BOOK 5

def genericCsv(gen: String :: Int :: Boolean :: HNil): List[String] =
List(gen(0), gen(l).toString, gen(2).toString)

genericCsv(genericEmployee)
// res2: List[String] = List(Dave, 123, false)

genericCsv(genericIceCream)
// res3: List[String] = List(Sundae, 1, false)

This example is basic but it hints at the essence of generic programming. We
reformulate problems so we can solve them using generic building blocks, and
write small kernels of code that work with a wide variety of types. Generic pro-
gramming with shapeless allows us to eliminate huge amounts of boilerplate,
making Scala applications easier to read, write, and maintain.

Does that sound compelling? Thought so. Let's jump in!

1.2 About this book

This book is divided into two parts.

In Part | we introduce type class derivation, which allows us to create type class
instances for any algebraic data type using only a handful of generic rules. Part
| consists of four chapters:

o In Chapter 2 we introduce generic representations. We also introduce
shapeless’ Generic type class, which can produce a generic encoding
for any case class or sealed trait.

o In Chapter 3 we use Generic to derive instances of a custom type class.
We create an example type class to encode Scala data as Comma Sep-
arated Values (CSV), but the techniques we cover can be extended to
many situations. We also introduce shapeless’ Lazy type, which lets us
handle recursive data like lists and trees.

e In Chapter 4 we introduce the theory and programming patterns we
need to generalise the techniques from earlier chapters. Specifically we

6 CHAPTER 1. INTRODUCTION

look at dependent types, dependently typed functions, and type level
programming. This allows us to access more advanced applications of
shapeless.

e In Chapter 5 we introduce LabelledGeneric, a variant of Generic
that exposes field and type names as part of its generic representations.
We also introduce additional theory: literal types, singleton types, phan-
tom types, and type tagging. We demonstrate LabelledGeneric by
creating a JSON encoder that preserves field and type names in its out-
put.

In Part Il we introduce the “ops type classes” provided in the shapeless.ops
package. Ops type classes form an extensive library of tools for manipulating
generic representations. Rather than discuss every op in detail, we provide a
theoretical primer in three chapters:

e |n Chapter 6 we discuss the general layout of the ops type classes and
provide an example that strings several simple ops together to form a
powerful “case class migration” tool.

o In Chapter 7 we introduce polymorphic functions, also known as Polys,
and show how they are used in ops type classes for mapping, flat map-
ping, and folding over generic representations.

e Finally, in Chapter 8 we introduce the Nat type that shapeless uses
to represent natural numbers at the type level. We introduce several
related ops type classes, and use Nat to develop our own version of
Scalacheck’s Arbitrary.

1.3 Source code and examples

This book is open source. You can find the Markdown source on Github. The
book receives constant updates from the community so be sure to check the
Github repo for the most up-to-date version.

https://github.com/underscoreio/shapeless-guide

1.3. SOURCE CODE AND EXAMPLES 7

We also maintain a copy of the book on the Underscore web site. If you grab
a copy of the book from there we will notify you whenever we release an
update.

There are complete implementations of the major examples in an accompany-
ing repo. See the README for installation details. We assume shapeless 2.3.2
and either Typelevel Scala 2.11.8+ or Lightbend Scala 2.11.9+ / 2.12.1+.

Most of the examples in this book are compiled and executed using version
2.12.1 of the Typelevel Scala compiler. Among other niceties this version of
Scala introduces infix type printing, which cleans up the console output on the
REPL:

val repr = "Hello" :: 123 :: true :: HNil
// repr: String :: Int :: Boolean :: shapeless.HNil = Hello :: 123 ::
true :: HNil

If you are using an older version of Scala you might end up with prefix type
printing like this:

val repr = "Hello" :: 123 :: true :: HNil
// repr: shapeless.::[String,shapeless.::[Int,shapeless.::[Boolean,
shapeless.HNil]]] = "Hello" :: 123 :: true :: HNil

Don't panic! Aside from the printed form of the result (infix versus prefix syn-
tax), these types are the same. If you find the prefix types difficult to read, we
recommend upgrading to a newer version of Scala. Simply add the following
to your build. sbt, substituting in contemporary version numbers as appro-
priate:

scalaOrganization := "org.typelevel"
scalaVersion = "2.12.1"

The scalaOrganization setting is only supported in SBT 0.13.13 or
later. You can specify an SBT version by writing the following in projec-
t/build.properties (create the file if it isn’t there in your project):

sbt.version=0.13.13

https://underscore.io/books/shapeless-guide
https://github.com/underscoreio/shapeless-guide-code
https://github.com/underscoreio/shapeless-guide-code

8 CHAPTER 1. INTRODUCTION
1.4 Acknowledgements

Thanks to Miles Sabin, Richard Dallaway, Noel Welsh, and Travis Brown, for
their invaluable contributions to this guide.

Special thanks to Sam Halliday for this excellent workshop Shapeless for Mor-
tals, which provided the initial inspiration and skeleton, and to Rob Norris and
his fellow contributors for the awesome Tut, which keeps our examples com-
piling correctly.

Finally, thanks to everyone who has contributed on Github. Here is an alpha-
betical list of contributors:

Aaron S. Hawley, Aleksandr Vinokurov, Aristotelis Dossas, Chris Birchall, Dani
Rey, Dennis Hunziker, ErunamoJAZZ, Evgeny Veretennikov, Jasper Moeys,
Kevin Wright, Itbs, Matt Kohl, Maximilien Riehl, Mike Limansky, Philippus Baal-
man, Piotr Gotebiewski, Richard Dallaway, ronanM, s3niOr, Tony Lottsm and
Yoshimura Yuu

A separately maintained French translation of this book is also available on
Github. Thanks to etienne and fellow contributors for producing and main-
taining it!

If you spot an error or potential improvement, please raise an issue or submit
a PR on the Github page.

http://fommil.com/scalax15/
http://fommil.com/scalax15/
https://github.com/tpolecat/tut
https://github.com/crakjie/shapeless-guide
https://github.com/crakjie/shapeless-guide
https://github.com/underscoreio/shapeless-guide

Part |

Type class derivation

Chapter 2

Algebraic data types and generic
representations

The main idea behind generic programming is to solve problems for a wide
variety of types by writing a small amount of generic code. Shapeless provides
two sets of tools to this end:

1. aset of generic data types that can be inspected, traversed, and manip-
ulated at the type level;

2. automatic mapping between algebraic data types (ADTs) (encoded in
Scala as case classes and sealed traits) and these generic representa-
tions.

In this chapter we will start with a recap of the theory of algebraic data types
and why they might be familiar to Scala developers. Then we will look at
generic representations used by shapeless and discuss how they map on to
concrete ADTs. Finally, we will introduce a type class called Generic that pro-
vides automatic mapping back and forth between ADTs and generic represen-
tations. We will finish with some simple examples using Generic to convert
values from one type to another.

11

12 CHAPTER 2. ALGEBRAIC DATA TYPES AND GENERIC REPRESENTATIONS
2.1 Recap: algebraic data types

Algebraic data types (ADTs)" are a functional programming concept with a fancy
name but a very simple meaning. They are an idiomatic way of representing
data using “ands” and “ors”. For example:

e ashape is a rectangle or a circle
e arectangle has a width and a height
e acircle has a radius

In ADT terminology, “and” types such as rectangle and circle are called prod-
ucts and “or” types such as shape are called coproducts. In Scala we typically
represent products using case classes and coproducts using sealed traits:

sealed trait Shape

final case class Rectangle(width: Double, height: Double) extends
Shape

final case class Circle(radius: Double) extends Shape

val rect: Shape
val circ: Shape

Rectangle(3.0, 4.0)
Circle(1.0)

The beauty of ADTs is that they are completely type safe. The compiler has
complete knowledge of the algebras® we define, so it can help us write com-
plete, correctly typed methods involving our types:

def area(shape: Shape): Double =
shape match {
case Rectangle(w, h) =>w * h
case Circle(r) => math.Pi * r * r

area(rect)
// resl: Double = 12.0

*Not to be confused with “abstract data types”, which are a different tool from computer
science that has little bearing on the discussion here.

*The word “algebra” meaning: the symbols we define, such as rectangle and circle; and the
rules for manipulating those symbols, encoded as methods.

2.1. RECAP: ALGEBRAIC DATA TYPES 13

area(circ)
// res2: Double = 3.141592653589793

2.1.1 Alternative encodings

Sealed traits and case classes are undoubtedly the most convenient encoding
of ADTs in Scala. However, they aren’t the only encoding. For example, the
Scala standard library provides generic products in the form of Tuples and
a generic coproduct in the form of Either. We could have chosen these to
encode our Shape:

type Rectangle2 = (Double, Double)
type Circle2 = Double
type Shape2 = Either[Rectangle2, Circle2]

val rect2: Shape2 = Left((3.0, 4.0))
val circ2: Shape2 = Right(1.0)

While this encoding is less readable than the case class encoding above, it does
have some of the same desirable properties. We can still write completely type
safe operations involving Shape2:

def area2(shape: Shape2): Double =
shape match {
case Left((w, h)) =>w * h
case Right(r) => math.Pi * r * r

}

area2(rect2)
// res4: Double

I
=
N
(<}

area2(circ2)
// res5: Double = 3.141592653589793

Importantly, Shape2 is a more generic encoding than Shape®. Any code that op-
erates on a pair of Doubles will be able to operate on a Rectangle2 and vice

*We're using “generic” in an informal way here, rather than the conventional meaning of “a
type with a type parameter”.

14 CHAPTER 2. ALGEBRAIC DATA TYPES AND GENERIC REPRESENTATIONS

versa. As Scala developers we tend to prefer semantic types like Rectangle
and Circle to generic ones like Rectangle2 and Circle2 precisely because
of their specialised nature. However, in some cases generality is desirable. For
example, if we're serializing data to disk, we don’t care about the difference
between a pair of Doubles and a Rectangle2. We just write two numbers
and we're done.

Shapeless gives us the best of both worlds: we can use friendly semantic types
by default and switch to generic representations when we want interoperabil-
ity (more on this later). However, instead of using Tuples and Either, shape-
less uses its own data types to represent generic products and coproducts.
We'll introduce these types in the next sections.

2.2 Generic product encodings

In the previous section we introduced tuples as a generic representation of
products. Unfortunately, Scala’s built-in tuples have a couple of disadvantages
that make them unsuitable for shapeless’ purposes:

1. Each size of tuple has a different, unrelated type, making it difficult to
write code that abstracts over sizes.

2. There is no type for zero-length tuples, which are important for rep-
resenting products with zero fields. We could arguably use Unit, but
we ideally want all generic representations to have a sensible common
supertype. The least upper bound of Unit and Tuple2 is Any so a com-
bination of the two is impractical.

For these reasons, shapeless uses a different generic encoding for product
types called heterogeneous lists or HLists®.

An HList is either the empty list HNil, or a pair ::[H, T] where H is an
arbitrary type and T is another HList. Because every :: hasitsown Hand T,
the type of each element is encoded separately in the type of the overall list:

*Product is perhaps a better name for HList, but the standard library unfortunately already
has a type scala.Product.

2.2. GENERIC PRODUCT ENCODINGS 15

import shapeless.{HList, ::, HNil}

val product: String :: Int :: Boolean :: HNil =
"Sunday" :: 1 :: false :: HNil

The type and value of the HList above mirror one another. Both represent
three members: a String, an Int, and a Boolean. We can retrieve the head
and tail and the types of the elements are preserved:

val first = product.head
// first: String = Sunday

val second = product.tail.head
// second: Int =1

val rest = product.tail.tail
// rest: Boolean :: shapeless.HNil = false :: HNil

The compiler knows the exact length of each HList, so it becomes a compila-
tion error to take the head or tail of an empty list:

product.tail.tail.tail.head

// <console>:15: error: could not find implicit value for parameter c:
shapeless.ops.hlist.IsHCons[shapeless.HNil]

// product.tail.tail.tail.head

// ~

We can manipulate and transform HLists in addition to being able to inspect
and traverse them. For example, we can prepend an element with the ::
method. Again, notice how the type of the result reflects the number and
types of its elements:

val newProduct = 42L :: product
Shapeless also provides tools for performing more complex operations such as

mapping, filtering, and concatenating lists. We'll discuss these in more detail
in Part Il.

16 CHAPTER 2. ALGEBRAIC DATA TYPES AND GENERIC REPRESENTATIONS

The behaviour we get from HLists isn’'t magic. We could have achieved all of
this functionality using (A, B) andUnit as alternativesto : : and HNil. How-
ever, there is an advantage in keeping our representation types separate from
the semantic types used in our applications. HList provides this separation.

2.2.1 Switching representations using Generic

Shapeless provides a type class called Generic that allows us to switch back
and forth between a concrete ADT and its generic representation. Some
behind-the-scenes macro magic allows us to summon instances of Generic
without boilerplate:

import shapeless.Generic
case class IceCream(name: String, numCherries: Int, inCone: Boolean)

val iceCreamGen = Generic[IceCream]
// iceCreamGen: shapeless.Generic[IceCream]{type Repr = String :: Int
:: Boolean :: shapeless.HNil} = anon$macro$4$1@6b9323fe

Note that the instance of Generic has a type member Repr containing the
type of its generic representation. In this case iceCreamGen.Repris String

Int :: Boolean :: HNil. Instances of Generic have two methods:
one for converting to the Repr type and one for converting from it:

val iceCream = IceCream("Sundae", 1, false)
// iceCream: IceCream = IceCream(Sundae, 1, false)

val repr = iceCreamGen.to(iceCream)
// repr: iceCreamGen.Repr = Sundae :: 1 :: false :: HNil

val iceCream2 = iceCreamGen.from(repr)
// iceCream2: IceCream = IceCream(Sundae, 1, false)

If two ADTs have the same Repr, we can convert back and forth between them
using their Generics:

2.2. GENERIC PRODUCT ENCODINGS 17

case class Employee(name: String, number: Int, manager: Boolean)

// Create an employee from an ice cream:
val employee = Generic[Employee].from(Generic[IceCream].to(iceCream))
// employee: Employee = Employee(Sundae, 1, false)

Other product types

It's worth noting that Scala tuples are actually case classes, so Generic
works with them just fine:

val tupleGen = Generic[(String, Int, Boolean)]

tupleGen.to(("Hello", 123, true))
// res4: tupleGen.Repr = Hello :: 123 :: true :: HNil

tupleGen.from("Hello" :: 123 :: true :: HNil)
// res5: (String, Int, Boolean) = (Hello, 123, true)

It also works with case classes of more than 22 fields:

case class BigData(
a:Int,b:Int,c:Int,d:Int,e:Int,f:Int,g:Int,h:Int,i:Int,j:Int,
k:Int,l:Int,m:Int,n:Int,0:Int,p:Int,q:Int,r:Int,s:Int,t:Int,
u:Int,v:Int,w:Int)

Generic[BigData].from(Generic[BigData].to(BigData(
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)))
// res6: BigData = BigData
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)

In versions 2.10 and earlier, Scala had a limit of 22 fields for case classes.
This limit was nominally fixed in 2.11, but using HLists will help avoid
the remaining limitations of 22 fields in Scala.

http://underscore.io/blog/posts/2016/10/11/twenty-two.html

18 CHAPTER 2. ALGEBRAIC DATA TYPES AND GENERIC REPRESENTATIONS

2.3 Generic coproducts

Now we know how shapeless encodes product types. What about coprod-
ucts? We looked at Either earlier but that suffers from similar drawbacks to
tuples. Again, shapeless provides its own encoding that is similar to HList:

import shapeless.{Coproduct, :+:, CNil, Inl, Inr}

case class Red()
case class Amber()
case class Green()

type Light = Red :+: Amber :+: Green :+: CNil

In general coproducts take the form A :+: B :+: C :+: CNil meaning “A
or B or C”, where :+: can be loosely interpreted as Either. The overall type
of a coproduct encodes all the possible types in the disjunction, but each con-
crete instance contains a value for just one of the possibilities. :+: has two
subtypes, Inl and Inr, that correspond loosely to Left and Right. We create
instances of a coproduct by nesting Inl and Inr constructors:

val red: Light = Inl(Red())
// red: Light = Inl(Red())

val green: Light = Inr(Inr(Inl(Green())))
// green: Light = Inr(Inr(Inl(Green())))

Every coproduct type is terminated with CNil, which is an empty type with no
values, similar to Nothing. We can't instantiate CNil or build a Coproduct
purely from instances of Inr. We always have exactly one Inl in a value.

Again, it's worth stating that Coproducts aren’t particularly special. The func-
tionality above can be achieved using Either and Nothing in place of :+:
and CNil. There are technical difficulties with using Nothing, but we could
have used any other uninhabited or arbitrary singleton type in place of CNil.

2.4. SUMMARY 19

2.3.1 Switching encodings using Generic

Coproduct types are difficult to parse on first glance. However, we can see
how they fit into the larger picture of generic encodings. In addition to un-
derstanding case classes and case objects, shapeless’ Generic type class also
understands sealed traits and abstract classes:

import shapeless.Generic

sealed trait Shape

final case class Rectangle(width: Double, height: Double) extends
Shape

final case class Circle(radius: Double) extends Shape

val gen = Generic[Shape]
// gen: shapeless.Generic[Shape]{type Repr = Rectangle :+: Circle :+:
shapeless.CNil} = anon$macro$1$1@la28fc61l

The Repr of the Generic for Shape is a Coproduct of the subtypes of the
sealed trait: Rectangle :+: Circle :+: CNil. We can use the to and
from methods of the generic to map back and forth between Shape and
gen.Repr:

gen.to(Rectangle(3.0, 4.0))
// res3: gen.Repr = Inl(Rectangle(3.0,4.0))

gen.to(Circle(1.0))
// resd: gen.Repr = Inr(Inl(Circle(1.0)))

2.4 Summary

In this chapter we discussed the generic representations shapeless provides
for algebraic data types in Scala: HLists for product types and Coproducts
for coproduct types. We also introduced the Generic type class to map back
and forth between concrete ADTs and their generic representations. We
haven't yet discussed why generic encodings are so attractive. The one use

20 CHAPTER 2. ALGEBRAIC DATA TYPES AND GENERIC REPRESENTATIONS

case we did cover—converting between ADTs—is fun but not tremendously
useful.

The real power of HLists and Coproducts comes from their recursive struc-
ture. We can write code to traverse representations and calculate values from
their constituent elements. In the next chapter we will look at our first real use
case: automatically deriving type class instances.

Chapter 3

Automatically deriving type class
instances

In the last chapter we saw how the Generic type class allowed us to
convert any instance of an ADT to a generic encoding made of HLists
and Coproducts. In this chapter we will look at our first serious use case:
automatic derivation of type class instances.

3.1 Recap: type classes

Before we get into the depths of instance derivation, let’s quickly recap on the
important aspects of type classes.

Type classes are a programming pattern borrowed from Haskell (the word
“class” has nothing to do with classes in object oriented programming). We
encode them in Scala using traits and implicits. A type class is a parameterised
trait representing some sort of general functionality that we would like to ap-
ply to a wide range of types:

// Turn a value of type A into a row of cells in a CSV file:
trait CsvEncoder[A] {

21

22 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

def encode(value: A): List[String]
}

We implement our type class with instances for each type we care about. If we
want the instances to automatically be in scope we can place them in the type
class' companion object. Otherwise we can place them in a separate library
object for the user to import manually:

// Custom data type:
case class Employee(name: String, number: Int, manager: Boolean)

// CsvEncoder instance for the custom data type:
implicit val employeeEncoder: CsvEncoder[Employee] =
new CsvEncoder[Employee] {
def encode(e: Employee): List[String] =
List(

e.name,

e.number.toString,

if(e.manager) "yes" else "no"

We mark each instance with the keyword implicit, and define one or more
entry point methods that accept an implicit parameter of the corresponding
type:

def writeCsv[A](values: List[A])(implicit enc: CsvEncoder[A]): String

values.map(value => enc.encode(value).mkString(",")).mkString("\n")

We'll test writeCsv with some test data:

val employees: List[Employee] = List(
Employee("Bill", 1, true),
Employee("Peter", 2, false),
Employee("Milton", 3, false)

When we call writeCsyv, the compiler calculates the value of the type param-
eter and searches for an implicit CsvEncoder of the corresponding type:

3.1. RECAP: TYPE CLASSES 23

writeCsv(employees)
// resd: String =
// Bill,1,yes

// Peter,2,no

// Milton,3,no

We can use writeCsv with any data type we like, provided we have a corre-
sponding implicit CsvEncoder in scope:

case class IceCream(name: String, numCherries: Int, inCone: Boolean)

implicit val iceCreamEncoder: CsvEncoder[IceCream] =
new CsvEncoder[IceCream] {
def encode(i: IceCream): List[String] =
List(
i.name,
i.numCherries.toString,
if(i.inCone) "yes" else "no

val iceCreams: List[IceCream] = List(
IceCream("Sundae", 1, false),
IceCream("Cornetto", 0, true),
IceCream("Banana Split", 0, false)

writeCsv(iceCreams)
// res7: String =

// Sundae,1,no

// Cornetto,0,yes

// Banana Split,0,no

3.1.1 Resolving instances

Type classes are very flexible but they require us to define instances for every
type we care about. Fortunately, the Scala compiler has a few tricks up its
sleeve to resolve instances for us given sets of user-defined rules. For example,
we can write arule that creates a CsvEncoder for (A, B) given CsvEncoders
for A and B:

24 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

implicit def pairEncoder[A, B](
implicit
aEncoder: CsvEncoder[A],
bEncoder: CsvEncoder[B]
): CsvEncoder[(A, B)] =
new CsvEncoder[(A, B)] {
def encode(pair: (A, B)): List[String] = {
val (a, b) = pair
aEncoder.encode(a) ++ bEncoder.encode(b)
}
}

When all the parameters to an implicit def are themselves marked
as implicit, the compiler can use it as a resolution rule to create in-
stances from other instances. For example, if we call writeCsv and pass
in a List[(Employee, IceCream)], the compiler is able to combine
pairEncoder, employeeEncoder, and iceCreamEncoder to produce the
required CsvEncoder[(Employee, IceCream)]:

writeCsv(employees zip iceCreams)
// res8: String =

// Bill,1,yes,Sundae,1,no

// Peter,2,no,Cornetto,0,yes

// Milton,3,no0,Banana Split,0,no

Given a set of rules encoded as implicit vals and implicit defs, the
compiler is capable of searching for combinations to give it the required in-
stances. This behaviour, known as “implicit resolution”, is what makes the
type class pattern so powerful in Scala.

Even with this power, the compiler can't pull apart our case classes and sealed
traits. We are required to define instances for ADTs by hand. Shapeless’
generic representations change all of this, allowing us to derive instances for
any ADT for free.

3.1.2 Idiomatic type class definitions

The commonly accepted idiomatic style for type class definitions includes a
companion object containing some standard methods:

3.1. RECAP: TYPE CLASSES 25

object CsvEncoder {
// "Summoner" method
def apply[A]l(implicit enc: CsvEncoder[A]): CsvEncoder[A] =
enc

// "Constructor" method
def instance[A](func: A => List[String]): CsvEncoder[A] =
new CsvEncoder[A] {
def encode(value: A): List[String] =
func(value)

// Globally visible type class instances
}

The apply method, known as a “summoner” or “materializer”, allows us to
summon a type class instance given a target type:

CsvEncoder[IceCream]
// res9: CsvEncoder[IceCream] = $anon$1@5940acba

In simple cases the summoner does the same job as the implicitly method
defined in scala.Predef:

implicitly[CsvEncoder[IceCream]]
// resl0®: CsvEncoder[IceCream] = $anon$1@5940ac6a

However, as we will see in Section 4.2, when working with shapeless we en-
counter situations where implicitly doesn’t infer types correctly. We can
always define the summoner method to do the right thing, so it's worth writ-
ing one for every type class we create. We can also use a special method from
shapeless called “the” (more on this later):

import shapeless.

the[CsvEncoder[IceCream]]
// resll: CsvEncoder[IceCream] = $anon$1@5940ac6a

The instance method, sometimes named pure, provides a terse syntax for

26 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

creating new type class instances, reducing the boilerplate of anonymous class
syntax:

implicit val booleanEncoder: CsvEncoder[Boolean] =
new CsvEncoder[Boolean] {
def encode(b: Boolean): List[String] =
if(b) List("yes") else List("no")

down to something much shorter:

implicit val booleanEncoder: CsvEncoder[Boolean] =
instance(b => if(b) List("yes") else List("no"))

Unfortunately, several limitations of typesetting code in a book prevent us
writing long singletons containing lots of methods and instances. We there-
fore tend to describe definitions outside of their context in the companion
object. Bear this in mind as you read and check the accompanying repo linked
in Section 1.3 for complete worked examples.

3.2 Deriving instances for products

In this section we're going to use shapeless to derive type class instances for
product types (i.e. case classes). We'll use two intuitions:

1. If we have type class instances for the head and tail of an HList, we
can derive an instance for the whole HList.

2. If we have a case class A, a Generic[A], and a type class instance for
the generic’s Repr, we can combine them to create an instance for A.

Take CsvEncoder and IceCream as examples:

e IceCream has a generic Repr of type String :: Int :: Boolean
: HNil.

3.2. DERIVING INSTANCES FOR PRODUCTS 27

e The Repr is made up of a String, an Int, a Boolean, and an HNil. If
we have CsvEncoders for these types, we can create an encoder for
the whole thing.

o If we can derive a CsvEncoder for the Repr, we can create one for
IceCream.

3.2.1 Instances for HLists

Let's start by defining an instance constructor and CsvEncoders for String,
Int, and Boolean:

def createEncoder[A](func: A => List[String]): CsvEncoder[A] =
new CsvEncoder[A] {
def encode(value: A): List[String] = func(value)

}

implicit val stringEncoder: CsvEncoder[String] =
createEncoder(str => List(str))

implicit val intEncoder: CsvEncoder[Int] =
createEncoder(num => List(num.toString))

implicit val booleanEncoder: CsvEncoder[Boolean] =
createEncoder(bool => List(if(bool) "yes" else "no"))

We can combine these building blocks to create an encoder for our HList.
We'll use two rules: one for HNil and one for : : as shown below:

import shapeless.{HList, ::, HNil}

implicit val hnilEncoder: CsvEncoder[HNil] =
createEncoder (hnil => Nil)

implicit def hlistEncoder[H, T <: HList](
implicit
hEncoder: CsvEncoder[H],
tEncoder: CsvEncoder[T]

): CsvEncoder[H :: T] =

28 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

createEncoder {
case h :: t =>
hEncoder.encode(h) ++ tEncoder.encode(t)

Taken together, these five instances allow us to summon CsvEncoders for any
HList involving Strings, Ints, and Booleans:

val reprEncoder: CsvEncoder[String :: Int :: Boolean :: HNil] =
implicitly
reprEncoder.encode("abc" :: 123 :: true :: HNil)

// res9: List[String] = List(abc, 123, yes)

3.2.2 Instances for concrete products

We can combine our derivation rules for HLists with an instance of Generic
to produce a CsvEncoder for IceCream:

import shapeless.Generic

implicit val iceCreamEncoder: CsvEncoder[IceCream] = {
val gen = Generic[IceCream]
val enc = CsvEncoder[gen.Repr]
createEncoder(iceCream => enc.encode(gen.to(iceCream)))

}

and use it as follows:

writeCsv(iceCreams)
// resll: String =
// Sundae,1,no

// Cornetto,0,yes

// Banana Split,0,no

This solution is specific to IceCream. ldeally we'd like to have a single rule
that handles all case classes that have a Generic and a matching CsvEncoder.
Let’s work through the derivation step by step. Here's a first cut:

3.2. DERIVING INSTANCES FOR PRODUCTS 29

implicit def genericEncoder[A](
implicit
gen: Generic[Al],
enc: CsvEncoder[??7]
): CsvEncoder[A] = createEncoder(a => enc.encode(gen.to(a)))

The first problem we have is selecting a type to put in place of the ?7??. We
want to write the Repr type associated with gen, but we can’t do this:

implicit def genericEncoder[A](
implicit
gen: Generic[Al],
enc: CsvEncoder[gen.Repr]
): CsvEncoder[A] =
createEncoder(a => enc.encode(gen.to(a)))
// <console>:24: error: illegal dependent method type: parameter may
only be referenced in a subsequent parameter section
// gen: Generic[A],
// ~

The problem here is a scoping issue: we can't refer to a type member of one
parameter from another parameter in the same block. The trick to solving this
is to introduce a new type parameter to our method and refer to it in each of
the associated value parameters:

implicit def genericEncoder[A, R](

implicit

gen: Generic[A] { type Repr =R },

enc: CsvEncoder[R]

: CsvEncoder[A] =

createEncoder(a => enc.encode(gen.to(a)))

-

We'll cover this coding style in more detail in the next chapter. Suffice to say,
this definition now compiles and works as expected and we can use it with
any case class as expected. Intuitively, this definition says:

Given a type A and an HList type R, an implicit Generic to map A
to R, and a CsvEncoder for R, create a CsvEncoder for A.

30 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

We now have a complete system that handles any case class. The compiler
expands a call like:

writeCsv(iceCreams)

to use our family of derivation rules:

writeCsv(iceCreams) (
genericEncoder(
Generic[IceCream],
hlistEncoder(stringEncoder,
hlistEncoder(intEncoder,
hlistEncoder(booleanEncoder, hnilEncoder)))))

)

and can infer the correct expansions for many different product types. I'm
sure you'll agree, it's nice not to have to write this code by hand!

Aux type aliases

Type refinements like Generic[A] { type Repr = L } are verbose
and difficult to read, so shapeless provides a type alias Generic.Aux to
rephrase the type member as a type parameter:

package shapeless

object Generic {
type Aux[A, R] = Generic[A] { type Repr = R }
}

Using this alias we get a much more readable definition:

implicit def genericEncoder[A, R](

implicit

gen: Generic.Aux[A, R],

env: CsvEncoder[R]

: CsvEncoder[A] =

createEncoder(a => env.encode(gen.to(a)))

3.2. DERIVING INSTANCES FOR PRODUCTS 31

Note that the Aux type isn’'t changing any semantics—it’s just making
things easier to read. This “Aux pattern” is used frequently in the shape-
less codebase.

3.2.3 So what are the downsides?

If all of the above seems pretty magical, allow us to provide one significant
dose of reality. If things go wrong, the compiler isn’t great at telling us why.

There are two main reasons the code above might fail to compile. The first is
when the compiler can’t find an instance of Generic. For example, here we
try to call writeCsv with a non-case class:

class Foo(bar: String, baz: Int)

writeCsv(List(new Foo("abc", 123)))

// <console>:26: error: could not find implicit value for parameter
encoder: CsvEncoder[Foo]

// writeCsv(List(new Foo("abc", 123)))

// ~

In this case the error message is relatively easy to understand. If shapeless
can't calculate a Generic it means that the type in question isn’t an ADT—
somewhere in the algebra there is a type that isn’t a case class or a sealed
abstract type.

The other potential source of failure is when the compiler can’t calculate a
CsvEncoder for our HList. This normally happens because we don’t have an
encoder for one of the fields in our ADT. For example, we haven't yet defined
a CsvEncoder for java.util.Date, so the following code fails:

import java.util.Date
case class Booking(room: String, date: Date)
writeCsv(List(Booking("Lecture hall", new Date())))

// <console>:28: error: could not find implicit value for parameter
encoder: CsvEncoder[Booking]

32 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

// writeCsv(List(Booking("Lecture hall", new Date())))
// ~

The message we get here isn’t very helpful. All the compiler knows is it tried
a lot of combinations of implicits and couldn’t make them work. It has no idea
which combination came closest to the desired result, so it can’t tell us where
the source(s) of failure lie.

There’s not much good news here. We have to find the source of the error
ourselves by a process of elimination. We'll discuss debugging techniques in
Section 3.5. For now, the main redeeming feature is that implicit resolution
always fails at compile time. There’s little chance that we will end up with code
that fails during execution.

3.3 Deriving instances for coproducts

In the last section we created a set of rules to automatically derive a
CsvEncoder for any product type. In this section we will apply the same
patterns to coproducts. Let’s return to our shape ADT as an example:

sealed trait Shape

final case class Rectangle(width: Double, height: Double) extends
Shape

final case class Circle(radius: Double) extends Shape

The generic representation for Shape isRectangle :+: Circle :+: CNil.
In Section 3.2.2 we defined product encoders for Rectangle and Circle.
Now, to write generic CsvEncoders for :+: and CNil, we can use the same
principles we used for HLists:

import shapeless.{Coproduct, :+:, CNil, Inl, Inr}

implicit val cnilEncoder: CsvEncoder[CNil] =
createEncoder(cnil => throw new Exception("Inconceivable!"))

implicit def coproductEncoder[H, T <: Coproduct](
implicit

3.3. DERIVING INSTANCES FOR COPRODUCTS 33

hEncoder: CsvEncoder[H],

tEncoder: CsvEncoder[T]

: CsvEncoder[H :+: T] = createEncoder {
case Inl(h) => hEncoder.encode(h)

case Inr(t) => tEncoder.encode(t)

-

There are two key points of note:

1. Because Coproducts are disjunctions of types, the encoder for : +: has
to choose whether to encode a left or right value. We pattern match on
the two subtypes of :+:, which are Inl for left and Inr for right.

2. Alarmingly, the encoder for CNil throws an exception! Don'’t panic,
though. Remember that we can’t create values of type CNil, so the
throw expression is dead code. It’s ok to fail abruptly here because we
will never reach this point.

If we place these definitions alongside our product encoders from Section 3.2,
we should be able to serialize a list of shapes. Let’s give it a try:

val shapes: List[Shape] = List(
Rectangle(3.0, 4.0),
Circle(1.0)

writeCsv(shapes)

// <console>:26: error: could not find implicit value for parameter
encoder: CsvEncoder[Shape]

// writeCsv(shapes)

// ~

Oh no, it failed! The error message is unhelpful as we discussed earlier. The
reason for the failure is we don't have a CsvEncoder instance for Double:

implicit val doubleEncoder: CsvEncoder[Double] =
createEncoder(d => List(d.toString))

With this definition in place, everything works as expected:

34 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

writeCsv(shapes)
// res7: String =
// 3.0,4.0

// 1.0

SI-7046 and you

There is a Scala compiler bug called SI-7046 that can cause coproduct
generic resolution to fail. The bug causes certain parts of the macro
API, on which shapeless depends, to be sensitive to the order of the
definitions in our source code. Problems can often be worked around
by reordering code and renaming files, but such workarounds tend to
be volatile and unreliable.

If you are using Lightbend Scala 2.11.8 or earlier and coproduct resolu-
tion fails for you, consider upgrading to Lightbend Scala 2.11.9 or Type-
level Scala 2.11.8. SI-7046 is fixed in each of these releases.

3.3.1 Aligning CSV output

Our CSV encoder isn't very practical in its current form. It allows fields from
Rectangle and Circle to occupy the same columns in the output. To fix this
problem we need to modify the definition of CsvEncoder to incorporate the
width of the data type and space the output accordingly. The examples repo
linked in Section 1.3 contains a complete implementation of CsvEncoder that
addresses this problem.

3.4 Deriving instances for recursive types

Let's try something more ambitious—a binary tree:

sealed trait Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
case class Leaf[A](value: A) extends Tree[A]

https://issues.scala-lang.org/browse/SI-7046

3.4. DERIVING INSTANCES FOR RECURSIVE TYPES 35

Theoretically we should already have all of the definitions in place to summon
a CSV writer for this definition. However, calls to writeCsv fail to compile:

CsvEncoder[Tree[Int]]

// <console>:23: error: could not find implicit value for parameter
enc: CsvEncoder[Tree[Int]]

// CsvEncoder[Tree[Int]]

// ~

The problem is that our type is recursive. The compiler senses an infinite loop
applying our implicits and gives up.

3.4.1 Implicit divergence

Implicit resolution is a search process. The compiler uses heuristics to deter-
mine whether it is “converging” on a solution. If the heuristics don't yield
favorable results for a particular branch of search, the compiler assumes the
branch is not converging and moves onto another.

One heuristic is specifically designed to avoid infinite loops. If the compiler
sees the same target type twice in a particular branch of search, it gives up
and moves on. We can see this happening if we look at the expansion for
CsvEncoder[Tree[Int]] The implicit resolution process goes through the
following types:

CsvEncoder[Tree[Int]] // 1
CsvEncoder[Branch[Int] :+: Leaf[Int] :+: CNil] // 2
CsvEncoder[Branch[Int]] // 3
CsvEncoder[Tree[Int] :: Tree[Int] :: HNil] // 4
CsvEncoder[Tree[Int]] // 5 uh oh

We see Tree[A] twice in lines 1 and 5, so the compiler moves onto another
branch of search. The eventual consequence is that it fails to find a suitable
implicit.

In fact, the situation is worse than this. If the compiler sees the same type
constructor twice and the complexity of the type parameters is increasing, it
assumes that branch of search is “diverging”. This is a problem for shapeless

36 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

because types like : : [H, T]and :+:[H, T] canappear several times as the
compiler expands different generic representations. This causes the compiler
to give up prematurely even though it would eventually find a solution if it
persisted with the same expansion. Consider the following types:

case class Bar(baz: Int, qux: String)
case class Foo(bar: Bar)

The expansion for Foo looks like this:

CsvEncoder[Fool // 1
CsvEncoder[Bar :: HNil] // 2
CsvEncoder[Bar] // 3

CsvEncoder[Int :: String :: HNil] // 4 uh oh

The compiler attempts to resolve a CsvEncoder[::[H, T]] twice in this
branch of search, on lines 2 and 4. The type parameter for T is more complex
on line 4 than on line 2, so the compiler assumes (incorrectly in this case) that
the branch of search is diverging. It moves onto another branch and, again,
the result is failure to generate a suitable instance.

3.4.2 Lazy

Implicit divergence would be a show-stopper for libraries like shapeless. For-
tunately, shapeless provides a type called Lazy as a workaround. Lazy does
two things:

1. it suppresses implicit divergence at compile time by guarding against
the aforementioned over-defensive convergence heuristics;

2. it defers evaluation of the implicit parameter at runtime, permitting the
derivation of self-referential implicits.

We use Lazy by wrapping it around specific implicit parameters. As a rule of
thumb, it is always a good idea to wrap the “head” parameter of any HList or
Coproduct rule and the Repr parameter of any Generic rule in Lazy:

3.5. DEBUGGING IMPLICIT RESOLUTION 37

implicit def hlistEncoder[H, T <: HList](
implicit
hEncoder: Lazy[CsvEncoder[H]], // wrap in Lazy
tEncoder: CsvEncoder[T]
: CsvEncoder[H :: T] = createEncoder {
case h :: t =>
hEncoder.value.encode(h) ++ tEncoder.encode(t)

-

implicit def coproductEncoder[H, T <: Coproduct](
implicit

hEncoder: Lazy[CsvEncoder[H]], // wrap in Lazy
tEncoder: CsvEncoder[T]

: CsvEncoder[H :+: T] = createEncoder {

case Inl(h) => hEncoder.value.encode(h)

case Inr(t) => tEncoder.encode(t)

-

implicit def genericEncoder[A, R](
implicit
gen: Generic.Aux[A, R],
rEncoder: Lazy[CsvEncoder[R]] // wrap in Lazy
): CsvEncoder[A] = createEncoder { value =>
rEncoder.value.encode(gen.to(value))

This prevents the compiler giving up prematurely, and enables the solution to
work on complex/recursive types like Tree:

CsvEncoder([Tree[Int]]
// res2: CsvEncoder[Tree[Int]] = $anon$1@2199acal

3.5 Debugging implicit resolution

Failures in implicit resolution can be confusing and frustrating. Here are a
couple of techniques to use when implicits go bad.

38 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

3.5.1 Debugging using implicitly

What can we do when the compiler simply fails to find an implicit value? The
failure could be caused by the resolution of any one of the implicits in use. For
example:

case class Foo(bar: Int, baz: Float)

CsvEncoder[Foo]

// <console>:29: error: could not find implicit value for parameter
enc: CsvEncoder[Foo]

// CsvEncoder[Foo]

// ~

The reason for the failure is that we haven't defined a CsvEncoder for Float.
However, this may not be obvious in application code. We can work through
the expected expansion sequence to find the source of the error, inserting calls
to CsvEncoder.apply or implicitly above the error to see if they compile.
We start with the generic representation of Foo:

CsvEncoder[Int :: Float :: HNil]

// <console>:27: error: could not find implicit value for parameter
enc: CsvEncoder[Int :: Float :: shapeless.HNil]

// CsvEncoder[Int :: Float :: HNil]

// ~

This fails so we know we have to search deeper in the expansion. The next
step is to try the components of the HList:

CsvEncoder[Int]

CsvEncoder[Float]

// <console>:27: error: could not find implicit value for parameter
enc: CsvEncoder[Float]

// CsvEncoder[Float]

// ~

Int passes but Float fails. CsvEncoder[Float] is aleaf in our tree of expan-
sions, so we know to start by implementing this missing instance. If adding the

3.6. SUMMARY 39

instance doesn'’t fix the problem we repeat the process to find the next point
of failure.

3.5.2 Debugging using reify

The reify method from scala.reflect takes a Scala expression as a pa-
rameter and returns an AST object representing the expression tree, complete
with type annotations:

import scala.reflect.runtime.universe.

println(reify(CsvEncoder[Int]))
// Expr[CsvEncoder[Int]]($read.$iw.$iw.$iw.$iw.CsvEncoder.apply[Int](
$read. $iw. $iw. $iw.$iw.intEncoder))

The types inferred during implicit resolution can give us hints about problems.
After implicit resolution, any remaining existential types such as A or T provide
a sign that something has gone wrong. Similarly, “top” and “bottom” types such
as Any and Nothing are evidence of failure.

3.6 Summary

In this chapter we discussed how to use Generic, HLists, and Coproducts
to automatically derive type class instances. We also covered the Lazy type as
a means of handling complex/recursive types. Taking all of this into account,
we can write a common skeleton for deriving type class instances as follows.

First, define the type class:

trait MyTC[A]

Define primitive instances:

40 CHAPTER 3. AUTOMATICALLY DERIVING TYPE CLASS INSTANCES

implicit def intInstance: MyTC[Int] = ?7??
implicit def stringInstance: MyTC[String] = ?7?7?
implicit def booleanInstance: MyTC[Boolean] = ???

Define instances for HList:

import shapeless.
implicit def hnilInstance: MyTC[HNil] = ???

implicit def hlistInstance[H, T <: HList](
implicit
hInstance: Lazy[MyTC[H]], // wrap in Lazy
tInstance: MyTC[T]

): MyTC[H :: T] = 2?27

If required, define instances for Coproduct:

implicit def cnilInstance: MyTC[CNil] = ???

implicit def coproductInstance[H, T <: Coproduct](
implicit
hInstance: Lazy[MyTC[H]], // wrap in Lazy
tInstance: MyTC[T]

): MyTC[H :+: T] = ???

Finally, define an instance for Generic:

implicit def genericInstance[A, RI(
implicit
generic: Generic.Aux[A, R],
rInstance: Lazy[MyTC[R]] // wrap in Lazy
): MyTC[A] = ??7?

In the next chapter we'll cover some useful theory and programming patterns
to help write code in this style. In Chapter 5 we will revisit type class derivation
using a variant of Generic that allows us to inspect field and type names in
our ADTs.

Chapter 4

Working with types and implicits

In the last chapter we saw one of the most compelling use cases for shapeless:
automatically deriving type class instances. There are plenty of even more
powerful examples coming later. However, before we move on, we should
take time to discuss some theory we've skipped over and establish a set of
patterns for writing and debugging type- and implicit-heavy code.

4.1 Dependent types

Last chapter we spent a lot of time using Generic, the type class for mapping
ADT types to generic representations. However, we haven't yet discussed
an important bit of theory that underpins Generic and much of shapeless:
dependent types.

To illustrate this, let’s take a closer look at Generic. Here's a simplified version
of the definition:

trait Generic[A] {
type Repr
def to(value: A): Repr
def from(value: Repr): A
1

41

42 CHAPTER 4. WORKING WITH TYPES AND IMPLICITS

Instances of Generic reference two other types: a type parameter A and a
type member Repr. Suppose we implement a method getRepr as follows.
What type will we get back?

import shapeless.Generic

def getRepr[A](value: A)(implicit gen: Generic[A]) =
gen.to(value)

The answer is it depends on the instance we get for gen. In expanding the call
to getRepr, the compiler will search for a Generic[A] and the result type will
be whatever Repr is defined in that instance:

case class Vec(x: Int, y: Int)
case class Rect(origin: Vec, size: Vec)

getRepr(Vec(1l, 2))
// resl: Int :: Int :: shapeless.HNil = 1 :: 2 :: HNil

getRepr(Rect(Vec(0, 0), Vec(5, 5)))
// res2: Vec :: Vec :: shapeless.HNil = Vec(0,0) :: Vec(5,5) :: HNil

What we're seeing here is called dependent typing: the result type of getRepr
depends on its value parameters via their type members. Suppose we had
specified Repr as type parameter on Generic instead of a type member:

trait Generic2[A, Repr]

def getRepr2[A, R](value: A)(implicit generic: Generic2[A, R]): R =
?7?

We would have had to pass the desired value of Repr to getRepr as a type
parameter, effectively making getRepr useless. The intuitive take-away from
this is that type parameters are useful as “inputs” and type members are useful
as “outputs”.

4.2. DEPENDENTLY TYPED FUNCTIONS 43
4.2 Dependently typed functions

Shapeless uses dependent types all over the place: in Generic, in Witness
(which we will see in the next chapter), and in a host of other “ops” type classes
that we will survey in Part Il of this guide.

For example, shapeless provides a type class called Last that returns the last
element in an HList. Here's a simplified version of its definition:

package shapeless.ops.hlist

trait Last[L <: HList] {
type Out
def apply(in: L): Out
}

We can summon instances of Last to inspect HLists in our code. In the two
examples below note that the Out types are dependent on the HList types
we started with:

import shapeless.{HList, ::, HNil}

import shapeless.ops.hlist.Last

val lastl = Last[String :: Int :: HNil]

// lastl: shapeless.ops.hlist.Last[String :: Int :: shapeless.HNill]{
type Out = Int} = shapeless.ops.hlist$Last$$anon$34@12389dd9

val last2 = Last[Int :: String :: HNil]

// last2: shapeless.ops.hlist.Last[Int :: String :: shapeless.HNil]{
type Out = String} = shapeless.ops.hlist$Last$$anon$34@6ch2b0Och

Once we have summoned instances of Last, we can use them at the value
level via their apply methods:

lastl("foo" :: 123 :: HNil)
// resl: lastl.Out = 123

last2(321 :: "bar" :: HNil)

44 CHAPTER 4. WORKING WITH TYPES AND IMPLICITS

// res2: last2.0ut = bar

We get two forms of protection against errors. The implicits defined for Last
ensure we can only summon instances if the input HList has at least one
element:

Last[HNil]

// <console>:15: error: Implicit not found: shapeless.Ops.Last[
shapeless.HNil]. shapeless.HNil is empty, so there is no last
element.

// Last[HNil]

// ~

In addition, the type parameters on the instances of Last check whether we
pass in the expected type of HList:

last1(321 :: "bar" :: HNil)

// <console>:16: error: type mismatch;

// found : Int :: String :: shapeless.HNil
// required: String :: Int :: shapeless.HNil
// last1(321 :: "bar" :: HNil)

// ~

As a further example, let’s implement our own type class, called Second, that
returns the second element in an HList:

trait Second[L <: HList] {
type Out
def apply(value: L): Out
}

object Second {
type Aux[L <: HList, 0] = Second[L] { type Out =0 }

def apply[L <: HList](implicit inst: Second[L]): Aux[L, inst.Out] =
inst

This code uses the idiomatic layout described in Section 3.1.2. We define
the Aux type in the companion object beside the standard apply method for
summoning instances.

4.2. DEPENDENTLY TYPED FUNCTIONS 45

Summoner methods versus “implicitly” versus “the”

Note that the return type on apply is Aux[L, 0], notSecond[L]. This
is important. Using Aux ensures the apply method does not erase the
type members on summoned instances. If we define the return type as
Second[L], the Out type member will be erased from the return type
and the type class will not work correctly.

The implicitly method from scala.Predef has this behaviour. Com-
pare the type of an instance of Last summoned with implicitly:

implicitly[Last[String :: Int :: HNil]]
// res6: shapeless.ops.hlist.Last[String :: Int :: shapeless.
HNil] = shapeless.ops.hlist$Last$$anon$34@651110a2

to the type of an instance summoned with Last.apply:

Last[String :: Int :: HNil]

// res7: shapeless.ops.hlist.Last[String :: Int :: shapeless.
HNil]{type Out = Int} = shapeless.ops.
hlist$Last$$anon$34@571bb8f6

The type summoned by implicitly has no Out type member. For this
reason, we should avoid implicitly when working with dependently
typed functions. We can either use custom summoner methods, or we
can use shapeless’ replacement method, the:

import shapeless.

the[Last[String :: Int :: HNil]]

// res8: shapeless.ops.hlist.Last[String :: Int :: shapeless.
HNil]{type Out = Int} = shapeless.ops.
hlist$Last$$anon$34@1cd22a69

We only need a single instance, defined for HLists of at least two elements:

46 CHAPTER 4. WORKING WITH TYPES AND IMPLICITS

import Second.

implicit def hlistSecond[A, B, Rest <: HList]: Aux[A :: B :: Rest, B]

new Second[A :: B :: Rest] {
type Out = B
def apply(value: A :: B :: Rest): B =
value.tail.head

We can summon instances using Second.apply:

val secondl = Second[String :: Boolean :: Int :: HNil]
// secondl: Second[String :: Boolean :: Int :: shapeless.HNil]{type
Out = Boolean} = $anon$1@668168cd

val second2 = Second[String :: Int :: Boolean :: HNil]
// second2: Second[String :: Int :: Boolean :: shapeless.HNil]{type
Out = Int} = $anon$1l@2ddf467d

Summoning is subject to similar constraints as Last. If we try to summon
an instance for an incompatible HList, resolution fails and we get a compile
error:

Second[String :: HNil]

// <console>:26: error: could not find implicit value for parameter
inst: Second[String :: shapeless.HNil]

// Second[String :: HNil]

// ~

Summoned instances come with an apply method that operates on the rele-
vant type of HList at the value level:

secondl("foo" :: true :: 123 :: HNil)
// resll: secondl.Out = true

second2("bar" :: 321 :: false :: HNil)
// resl2: second2.0ut 321

secondl("baz" :: HNil)

4.3. CHAINING DEPENDENT FUNCTIONS 47

// <console>:27: error: type mismatch;

// found : String :: shapeless.HNil

// required: String :: Boolean :: Int :: shapeless.HNil
// secondl("baz" :: HNil)

// ~

4.3 Chaining dependent functions

Dependently typed functions provide a means of calculating one type from
another. We can chain dependently typed functions to perform calculations
involving multiple steps. For example, we should be able to use a Generic to
calculate a Repr for a case class, and use a Last to calculate the type of the
last element. Let’s try coding this:

def lastField[A](input: A)(
implicit
gen: Generic[Al],
last: Last[gen.Repr]
): last.Out = last.apply(gen.to(input))
// <console>:28: error: illegal dependent method type: parameter may
only be referenced in a subsequent parameter section
// gen: Generic[A],
// ~

Unfortunately our code doesn’t compile. This is the same problem we had in
Section 3.2.2 with our definition of genericEncoder. We worked around the
problem by lifting the free type variable out as a type parameter:

def lastField[A, Repr <: HList](input: A)(
implicit
gen: Generic.Aux[A, Repr],
last: Last[Repr]

): last.Out = last.apply(gen.to(input))

lastField(Rect(Vec(1, 2), Vec(3, 4)))
// resld: Vec = Vec(3,4)

As a general rule, we always write code in this style. By encoding all the free
variables as type parameters, we enable the compiler to unify them with ap-

48 CHAPTER 4. WORKING WITH TYPES AND IMPLICITS

propriate types. This goes for more subtle constraints as well. For example,
suppose we wanted to summon a Generic for a case class of exactly one field.
We might be tempted to write this:

def getWrappedValue[A, H](input: A)(
implicit
gen: Generic.Aux[A, H :: HNil]

): H = gen.to(input).head

The result here is more insidious. The method definition compiles but the
compiler can never find implicits at the call site:

case class Wrapper(value: Int)

getWrappedValue(Wrapper(42))

// <console>:30: error: could not find implicit value for parameter
gen: shapeless.Generic.Aux[Wrapper,H :: shapeless.HNil]

// getWrappedValue(Wrapper(42))

// ~

The error message hints at the problem. The clue is in the appearance of the
type H. This is the name of a type parameter in the method: it shouldn’t be
appearing in the type the compiler is trying to unify. The problem is that the
gen parameter is over-constrained: the compiler can’t find a Repr and ensure
its length at the same time. The type Nothing also often provides a clue,
appearing when the compiler fails to unify covariant type parameters.

The solution to our problem above is to separate implicit resolution into steps:

1. find a Generic with a suitable Repr for A,
2. provide the Repr that has a head type H.

Here's a revised version of the method using =: = to constrain Repr:

def getWrappedValue[A, Repr <: HList, Head, Tail <: HList](input: A)(
implicit
gen: Generic.Aux[A, Repr],
ev: (Head :: Tail) =:= Repr

4.4. SUMMARY 49

): Head = gen.to(input).head

// <console>:30: error: could not find implicit value for parameter c:
shapeless.ops.hlist.IsHCons[gen.Repr]

//): Head = gen.to(input).head

// ~

This doesn’t compile because the head method in the method body requires
an implicit parameter of type IsHCons. This is a much simpler error message
to fix—we just need to learn a tool from shapeless’ toolbox. IsHCons is a
shapeless type class that splits an HList into a Head and Tail. We can use
IsHCons instead of =:=:

import shapeless.ops.hlist.IsHCons

def getWrappedValue[A, Repr <: HList, Head](in: A)(
implicit
gen: Generic.Aux[A, Repr],
isHCons: IsHCons.Aux[Repr, Head, HNil]

): Head = gen.to(in).head

This fixes the bug. Both the method definition and the call site now compile
as expected:

getWrappedValue(Wrapper(42))
// resl7: Int = 42

The take home point here isn’'t that we solved the problem using IsHCons.
Shapeless provides a lot of tools like this (see Chapters 6 to 8), and we can
supplement them where necessary with our own type classes. The important
point is to understand the process we use to write code that compiles and is
capable of finding solutions. We'll finish off this section with a step-by-step
guide summarising our findings so far.

4.4 Summary

When coding with shapeless, we are often trying to find a target type that
depends on values in our code. This relationship is called dependent typing.

50 CHAPTER 4. WORKING WITH TYPES AND IMPLICITS

Problems involving dependent types can be conveniently expressed using im-
plicit search, allowing the compiler to resolve intermediate and target types
given a starting point at the call site.

We often have to use multiple steps to calculate a result (e.g. using a Generic
to get a Repr, then using another type class to get to another type). When we
do this, there are a few rules we can follow to ensure our code compiles and
works as expected:

1. We should extract every intermediate type out to a type parameter.
Many type parameters won't be used in the result, but the compiler
needs them to know which types it has to unify.

2. The compiler resolves implicits from left to right, backtracking if it can’t
find a working combination. We should write implicits in the order we
need them, using one or more type variables to connect them to previ-
ous implicits.

3. The compiler can only solve for one constraint at a time, so we mustn’t
over-constrain any single implicit.

4. We should state the return type explicitly, specifying any type param-
eters and type members that may be needed elsewhere. Type mem-
bers are often important, so we should use Aux types to preserve them
where appropriate. If we don't state them in the return type, they won't
be available to the compiler for further implicit resolution.

5. The Aux type alias pattern is useful for keeping code readable. We
should look out for Aux aliases when using tools from the shapeless
toolbox, and implement Aux aliases on our own dependently typed
functions.

When we find a useful chain of dependently typed operations we can capture
them as a single type class. This is sometimes called the “lemma” pattern (a
term borrowed from mathematical proofs). We'll see an example of this pat-
tern in Section 6.2.

Chapter 5

Accessing names during implicit
derivation

Often, the type class instances we define need access to more than just types.
In this chapter we will look at a variant of Generic called LabelledGeneric
that gives us access to field names and type names.

To begin with we have some theory to cover. LabelledGeneric uses some
clever techniques to expose name information at the type level. To understand
these techniques we must discuss literal types, singleton types, phantom types,
and type tagging.

5.1 Literal types

A Scala value may have multiple types. For example, the string "hello" has
at least three types: String, AnyRef, and Any™:

'String also has a bunch of other types like Serializable and Comparable but let’s ig-
nore those for now.

51

52 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

"hello" : String
// res@: String = hello

"hello" : AnyRef
// resl: AnyRef = hello

"hello" : Any
// res2: Any = hello

Interestingly, "hello" also has another type: a “singleton type” that belongs
exclusively to that one value. This is similar to the singleton type we get when
we define a companion object:

object Foo

Foo
// res3: Foo.type = Foo$@5c32f469

The type Foo. type is the type of Foo, and Foo is the only value with that type.

Singleton types applied to literal values are called literal types. These have ex-
isted in Scala for a long time, but we don’t normally interact with them because
the default behaviour of the compiler is to “widen” literals to their nearest non-
singleton type. For example, these two expressions are essentially equivalent:

"hello"
// resd: String = hello

("hello" : String)

// res5: String = hello

Shapeless provides a few tools for working with literal types. First, there is
a narrow macro that converts a literal expression to a singleton-typed literal
expression:

import shapeless.syntax.singleton._

5.1. LITERAL TYPES 53

var X = 42.narrow
// x: Int(42) = 42

Note the type of x here: Int(42) is a literal type. It is a subtype of Int that
only contains the value 42. If we attempt to assign a different number to x,
we get a compile error:

X = 43

// <console>:16: error: type mismatch:
// found : Int(43)

// required: Int(42)

// X = 43

// ~

However, x is still an Int according to normal subtyping rules. If we operate
on x we get a regular type of result:

X + 1
// res6: Int = 43

We can use narrow on any literal in Scala:

1.narrow
// res7: Int(l) =1

true.narrow
// res8: Boolean(true) = true

"hello".narrow
// res9: String("hello") = hello

// and so on...

However, we can't use it on compound expressions:

math.sqrt(4).narrow

// <console>:17: error: Expression scala.math. package' .sqrt(4.0) does
not evaluate to a constant or a stable reference value

// math.sqrt(4.0).narrow

54

//
//
//
//

CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

~

<console>:17: error: value narrow is not a member of Double
math.sqrt(4.0).narrow

~

Literal types in Scala

Until recently, Scala had no syntax for writing literal types. The types
were there in the compiler but we couldn’t express them directly in code.
However, as of Typelevel Scala 2.11.8 we have direct syntax support for
literal types which can be enabled via the -Yliteral-types compiler
option.

Lightbend Scala 2.13.0 will also gain literal types by default (with no
compiler option needed or available) and allows you to write declara-
tions like the following:

val theAnswer: 42 = 42
// theAnswer: 42 = 42

The type 42 is the same as the type Int(42) we saw in printed output
earlier. You'll still see Int(42) in output for legacy reasons, but the
canonical syntax going forward is 42.

5.2 Type tagging and phantom types

Shapeless uses literal types to model the names of fields in case classes. It
does this by “tagging” the types of the fields with the literal types of their
names. Before we see how shapeless does this, we'll do it ourselves to show
that there’s no magic (well... minimal magic, at any rate). Suppose we have a

number:

val number = 42

This number is an Int in two worlds: at runtime, where it has an actual value
and methods that we can call, and at compile-time, where the compiler uses

5.2. TYPE TAGGING AND PHANTOM TYPES 55

the type to calculate which pieces of code work together and to search for
implicits.

We can modify the type of number at compile time without modifying its run-
time behaviour by “tagging” it with a “phantom type”. Phantom types are types
with no run-time semantics, like this:

trait Cherries

We can tag number using asInstance0f. We end up with a value that is both
an Int and a Cherries at compile-time, and an Int at run-time:

val numCherries = number.asInstanceOf[Int with Cherries]
// numCherries: Int with Cherries = 42

Shapeless uses this trick to tag fields and subtypes in an ADT with the single-
ton types of their names. If you find using asInstanceOf uncomfortable then
don’t worry: shapeless provides two tagging syntaxes to avoid such unsavori-
ness.

The first syntax, ->>, tags the expression on the right of the arrow with the
singleton type of the literal expression on the left:

import shapeless.labelled.{KeyTag, FieldType}
import shapeless.syntax.singleton.

val someNumber = 123

val numCherries = "numCherries" ->> someNumber
// numCherries: Int with shapeless.labelled.KeyTag[String("numCherries
"),Int] = 123

Here we are tagging someNumber with the following phantom type:

KeyTag["numCherries", Int]

The tag encodes both the name and type of the field, the combination of which
is useful when searching for entries in a Repr using implicit resolution.

56 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

The second syntax takes the tag as a type rather than a literal value. This
is useful when we know what tag to use but don'’t have the ability to write
specific literals in our code:

import shapeless.labelled.field

field[Cherries] (123)
// resll: shapeless.labelled.FieldType[Cherries,Int] = 123

FieldType is a type alias that simplifies extracting the tag and base types
from a tagged type:

type FieldType[K, V] = V with KeyTag[K, V]

As we'll see in a moment, shapeless uses this mechanism to tag fields and
subtypes with their names in our source code.

Tags exist purely at compile time and have no runtime representation. How
do we convert them to values we can use at runtime? Shapeless provides
a type class called Witness for this purpose® If we combine Witness and
FieldType, we get something very compelling—the ability to extract the field
name from a tagged field:

import shapeless.Witness

val numCherries = "numCherries" ->> 123
// numCherries: Int with shapeless.labelled.KeyTag[String("numCherries
"),Int] = 123

// Get the tag from a tagged value:
def getFieldName[K, V](value: FieldType[K, VI)
(implicit witness: Witness.Aux[K]): K =
witness.value

getFieldName (numCherries)
// resl3: String = numCherries

// Get the untagged type of a tagged value:

*The term “witness” is borrowed from mathematical proofs.

https://en.wikipedia.org/wiki/Witness_(mathematics)

5.2. TYPE TAGGING AND PHANTOM TYPES 57

def getFieldValue[K, V](value: FieldType[K, V]): V =
value

getFieldValue(numCherries)
// resl5: Int = 123

If we build an HList of tagged elements, we get a data structure that has
some of the properties of a Map. We can reference fields by tag, manipulate
and replace them, and maintain all of the type and naming information along
the way. Shapeless calls these structures “records”.

5.2.1 Records and LabelledGeneric

Records are HLists of tagged elements:

import shapeless.{HList, ::, HNil}

val garfield = ("cat" ->> "Garfield") :: ("orange" ->> true) :: HNil

// garfield: String with shapeless.labelled.KeyTag[String("cat"),
String] :: Boolean with shapeless.labelled.KeyTag[String("orange
"),Boolean] :: shapeless.HNil = Garfield :: true :: HNil

For clarity, the type of garfield is as follows:

// FieldType["cat", String]
// FieldType["orange", Boolean] ::
// HNil

We don't need to go into depth regarding records here; suffice to say
that records are the generic representation used by LabelledGeneric.
LabelledGeneric tags each item in a product or coproduct with the cor-
responding field or type name from the concrete ADT (although the names
are represented as Symbols, not Strings). Shapeless provides a suite of
Map-like operations on records, some of which we'll cover in Section 6.4. For
now, though, let’s derive some type classes using LabelledGeneric.

58 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION
5.3 Deriving product instances with LabelledGeneric

We'll use a running example of JSON encoding toillustrate LabelledGeneric.
WEe'll define a JsonEncoder type class that converts values to a JSON AST.
This is the approach taken by Argonaut, Circe, Play JSON, Spray JSON, and
many other Scala JSON libraries.

First we'll define our JSON data type:

sealed trait JsonValue

case class JsonObject(fields: List[(String, JsonValue)]) extends
JsonValue

case class JsonArray(items: List[JsonValue]) extends JsonValue

case class JsonString(value: String) extends JsonValue

case class JsonNumber(value: Double) extends JsonValue

case class JsonBoolean(value: Boolean) extends JsonValue

case object JsonNull extends JsonValue

then the type class for encoding values as JSON:

trait JsonEncoder[A] {
def encode(value: A): JsonValue

object JsonEncoder {
def apply[A]l(implicit enc: JsonEncoder[A]): JsonEncoder[A] = enc
}

then a few primitive instances:

def createEncoder[A](func: A => JsonValue): JsonEncoder[A] =
new JsonEncoder[A] {
def encode(value: A): JsonValue = func(value)

implicit val stringEncoder: JsonEncoder[String]
createEncoder(str => JsonString(str))

implicit val doubleEncoder: JsonEncoder[Double]
createEncoder(num => JsonNumber(num))

5.3. DERIVING PRODUCT INSTANCES WITH LABELLEDGENERIC 59

implicit val intEncoder: JsonEncoder[Int] =
createEncoder (num => JsonNumber (num))

implicit val booleanEncoder: JsonEncoder[Boolean] =
createEncoder(bool => JsonBoolean(bool))

and a few instance combinators:

implicit def listEncoder[A]
(implicit enc: JsonEncoder[A]): JsonEncoder[List[A]] =
createEncoder(list => JsonArray(list.map(enc.encode)))

implicit def optionEncoder[A]

(implicit enc: JsonEncoder[A]): JsonEncoder[Option[A]] =
createEncoder(opt => opt.map(enc.encode).getOrElse(JsonNull))

Ideally, when we encode ADTs as JSON, we would like to use the correct field
names in the output JSON:

case class IceCream(name: String, numCherries: Int, inCone: Boolean)
val iceCream = IceCream("Sundae", 1, false)

// Ideally we'd like to produce something like this:
val iceCreamJson: JsonValue =

JsonObject(List(
"name" -> JsonString("Sundae"),
"numCherries" -> JsonNumber(1)
"inCone" -> JsonBoolean(false)

))

This is where LabelledGeneric comes in. Let's summon an instance for
IceCream and see what kind of representation it produces:

import shapeless.LabelledGeneric

val gen = LabelledGeneric[IceCream].to(iceCream)
// gen: String with shapeless.labelled.KeyTag[Symbol with shapeless.
tag.Tagged[String("name")],String] :: Int with shapeless.labelled

60 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

.KeyTag[Symbol with shapeless.tag.Tagged[String("numCherries")],
Int] :: Boolean with shapeless.labelled.KeyTag[Symbol with
shapeless.tag.Tagged[String("inCone")],Boolean] :: shapeless.HNil
= Sundae :: 1 :: false :: HNil

For clarity, the full type of the HList is:

// String with KeyTag[Symbol with Tagged["name"], String]

// Int with KeyTag[Symbol with Tagged["numCherries"], Int]
// Boolean with KeyTag[Symbol with Tagged["inCone"], Boolean]
// HNil

The type here is slightly more complex than we have seen. Instead of repre-
senting the field names with literal string types, shapeless is representing them
with symbols tagged with literal string types. The details of the implementa-
tion aren’t particularly important: we can still use Witness and FieldType to
extract the tags, but they come out as Symbols instead of Strings®.

5.3.1 Instances for HLists

Let's define JsonEncoder instances for HNil and : :. Our encoders are going
to generate and manipulate JsonObjects, so we'll introduce a new type of
encoder to make that easier:

trait JsonObjectEncoder[A] extends JsonEncoder[A] {
def encode(value: A): JsonObject

}

def createObjectEncoder[A](fn: A => JsonObject): JsonObjectEncoder[A]

new JsonObjectEncoder[A] {
def encode(value: A): JsonObject =
fn(value)

The definition for HNil is then straightforward:

*Future versions of shapeless may switch to using Strings as tags.

5.3. DERIVING PRODUCT INSTANCES WITH LABELLEDGENERIC 61

import shapeless.{HList, ::, HNil, Lazy}

implicit val hnilEncoder: JsonObjectEncoder[HNil] =
createObjectEncoder(hnil => JsonObject(Nil))

The definition of hlistEncoder involves a few moving parts so we'll go
through it piece by piece. We'll start with the definition we might expect if
we were using regular Generic:

implicit def hlistObjectEncoder[H, T <: HList](
implicit
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]

): JsonEncoder[H :: T] = ?7??

LabelledGeneric will give us an HList of tagged types, so let’s start by in-
troducing a new type variable for the key type:

import shapeless.Witness
import shapeless.labelled.FieldType

implicit def hlistObjectEncoder[K, H, T <: HList](
implicit
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]

): JsonObjectEncoder[FieldType[K, H] :: T] = ???

In the body of our method we're going to need the value associated with K.
WEe'll add an implicit Witness to do this for us:

implicit def hlistObjectEncoder[K, H, T <: HList](
implicit
witness: Witness.Aux[K],
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]
): JsonObjectEncoder[FieldTypel[K, H] :: T] = {
val fieldName = witness.value

62 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

?77?

We can access the value of K using witness.value, but the compiler has no
way of knowing what type of tag we're going to get. LabelledGeneric uses
Symbols for tags, so we'll put a type bound on K and use symbol.name to
convert it to a String:

implicit def hlistObjectEncoder[K <: Symbol, H, T <: HList](
implicit
witness: Witness.Aux[K],
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]
): JsonObjectEncoder[FieldType[K, H] :: T] = {
val fieldName: String = witness.value.name
?77?

The rest of the definition uses the principles we covered in Chapter 3:

implicit def hlistObjectEncoder[K <: Symbol, H, T <: HList](
implicit
witness: Witness.Aux[K],
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]

): JsonObjectEncoder[FieldType[K, H] :: T] = {
val fieldName: String = witness.value.name
createObjectEncoder { hlist =>

val head = hEncoder.value.encode(hlist.head)

val tail = tEncoder.encode(hlist.tail)

JsonObject((fieldName, head) :: tail.fields)
}

5.3.2 Instances for concrete products

Finally let’s turn to our generic instance. This is identical to the definitions
we've seen before, except that we're using LabelledGeneric instead of
Generic:

5.4. DERIVING COPRODUCT INSTANCES WITH LABELLEDGENERIC 63

import shapeless.LabelledGeneric

implicit def genericObjectEncoder[A, H](
implicit
generic: LabelledGeneric.Aux[A, HI,
hEncoder: Lazy[JsonObjectEncoder[H]]
): JsonEncoder[A] =
createObjectEncoder { value =>
hEncoder.value.encode(generic.to(value))

}

And that’s all we need! With these definitions in place we can serialize in-
stances of any case class and retain the field names in the resulting JSON:

JsonEncoder[IceCream].encode(iceCream)
// resld: JsonValue = JsonObject(List((name,JsonString(Sundae)), (
numCherries,JsonNumber(1.0)), (inCone,JsonBoolean(false))))

5.4 Deriving coproduct instances with LabelledGeneric

Applying LabelledGeneric with Coproducts involves a mixture of the con-
cepts we've covered already. Let’s start by examining a Coproduct type de-
rived by LabelledGeneric. We'll re-visit our Shape ADT from Chapter 3:

import shapeless.LabelledGeneric

sealed trait Shape

final case class Rectangle(width: Double, height: Double) extends
Shape

final case class Circle(radius: Double) extends Shape

LabelledGeneric[Shape].to(Circle(1.0))

// res5: Rectangle with shapeless.labelled.KeyTag[Symbol with
shapeless.tag.Tagged[String("Rectangle")],Rectangle] :+: Circle
with shapeless.labelled.KeyTag[Symbol with shapeless.tag.Tagged|
String("Circle")],Circle] :+: shapeless.CNil = Inr(Inl(Circle
(1.0)))

Here is that Coproduct type in a more readable format:

64 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

// Rectangle with KeyTag[Symbol with Tagged["Rectangle"], Rectangle]
3ars

// Circle with KeyTag[Symbol with Tagged["Circle"], Circle]
T

// CNil

As you can see, the result is a Coproduct of the subtypes of Shape,
each tagged with the type name. We can use this information to write
JsonEncoders for :+: and CNil:

import shapeless.{Coproduct, :+:, CNil, Inl, Inr, Witness, Lazy}
import shapeless.labelled.FieldType

implicit val cnilObjectEncoder: JsonObjectEncoder[CNil] =
createObjectEncoder(cnil => throw new Exception("Inconceivable!"))

implicit def coproductObjectEncoder[K <: Symbol, H, T <: Coproduct](
implicit
witness: Witness.Aux[K],
hEncoder: Lazy[JsonEncoder[H]],
tEncoder: JsonObjectEncoder[T]
: JsonObjectEncoder[FieldType[K, H] :+: T] = {
val typeName = witness.value.name
createObjectEncoder {

case Inl(h) =>

JsonObject(List(typeName -> hEncoder.value.encode(h)))

-

case Inr(t) =>
tEncoder.encode(t)

coproductEncoder follows the same pattern as hlistEncoder. We have
three type parameters: K for the type name, H for the value at the head of the
HList, and T for the value at the tail. We use FieldType and :+: intheresult
type to declare the relationships between the three, and we use aWitness to
access the runtime value of the type name. The result is an object containing
a single key/value pair, the key being the type name and the value the result:

5.5. SUMMARY 65

val shape: Shape = Circle(1.0)

JsonEncoder[Shape].encode(shape)
// res8: JsonValue = JsonObject(List((Circle,JsonObject(List((radius,
JsonNumber(1.0)))))))

Other encodings are possible with a little more work. We can add a "type"
field to the output, for example, or even allow the user to configure the format.
Sam Halliday’s spray-json-shapeless is an excellent example of a codebase that
is approachable while providing a great deal of flexibility.

5.5 Summary

In this chapter we discussed LabelledGeneric, a variant of Generic that
exposes type and field names in its generic representations.

The names exposed by LabelledGeneric are encoded as type-level tags so
we can target them during implicit resolution. We started the chapter dis-
cussing literal types and the way shapeless uses them in its tags. We also dis-
cussed the Witness type class, which is used to reify literal types as values.

Finally, we combined LabelledGeneric, literal types, and Witness to build
a JsonEcoder library that includes sensible names in its output.

The key take home point from this chapter is that none of this code uses run-
time reflection. Everything is implemented with types, implicits, and a small
set of macros that are internal to shapeless. The code we're generating is con-
sequently very fast and reliable at runtime.

https://github.com/milessabin/spray-json-shapeless

66 CHAPTER 5. ACCESSING NAMES DURING IMPLICIT DERIVATION

Part i

Shapeless ops

67

Chapter 6

Working with HLists and
Coproducts

In Part | we discussed methods for deriving type class instances for algebraic
data types. We can use type class derivation to augment almost any type class,
although in more complex cases we may have to write a lot of supporting code
for manipulating HLists and Coproducts.

In Part Il we'll look at the shapeless.ops package, which provides a set of
helpful tools that we can use as building blocks. Each op comes in two parts:
a type class that we can use during implicit resolution, and extension methods
that we can call on HList and Coproduct.

There are three general sets of ops, available from three packages:
e shapeless.ops.hlist defines type classes for HLists. These

can be used directly via extension methods on HList, defined in
shapeless.syntax.hlist.

e shapeless.ops.coproduct defines type classes for Coproducts.
These can be used directly via extension methods on Coproduct,
defined in shapeless.syntax.coproduct.

e shapeless.ops.record defines type classes for shapeless records
(HLists containing tagged elements—Section 5.2). These can be used

69

70 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

via extension methods on HList, imported from shapeless.record,
and defined in shapeless.syntax. record.

We don’t have room in this book to cover all of the available ops. Fortunately,
in most cases the code is understandable and well documented. Rather than
provide an exhaustive guide, we will touch on the major theoretical and struc-
tural points and show you how to extract further information from the shape-
less codebase.

6.1 Simple ops examples

HList has init and last extension methods based on two type classes:
shapeless.ops.hlist.Init and shapeless.ops.hlist.Last. While
init drops the last element of an HList, last drops all except the last one.
Coproduct has similar methods and type classes. These serve as perfect
examples of the ops pattern. Here are simplified definitions of the extension
methods:

package shapeless
package syntax

implicit class HListOps[L <: HList](l : L) {
def last(implicit last: Last[L]): last.Out = last.apply(l)
def init(implicit init: Init[L]): init.Out = init.apply(1l)
}

The return type of each method is determined by a dependent type on the im-
plicit parameter. The instances for each type class provide the actual mapping.
Here's the skeleton definition of Last as an example:

trait Last[L <: HList] {
type Out
def apply(in: L): Out
}

object Last {

6.2. CREATING A CUSTOM OP (THE “LEMMA” PATTERN) 71

type Aux[L <: HList, 0] = Last[L] { type Out =0 }
implicit def pair[H]: Aux[H :: HNil, H] = ???
implicit def list[H, T <: HList]

(implicit last: Last[T]): Aux[H :: T, last.Out] = ??7?

We can make a couple of interesting observations about this implementation.
First, we can typically implement ops type classes with a small number of in-
stances (just two in this case). We can therefore package all of the required
instances in the companion object of the type class, allowing us to call the cor-
responding extension methods without any imports from shapeless.ops:

import shapeless.

("Hello" :: 123 :: true ::

// res@: Boolean = true

("Hello" :: 123 :: true ::
// resl: String :: Int ::

HNil).last

HNil).init
shapeless.HNil = Hello :: 123 :: HNil

Second, the type class is only defined for HLists with at least one element.
This gives us a degree of static checking. If we try to call last on an empty
HList, we get a compile error:

HNil.last

// <console>:16: error: Implicit not found: shapeless.Ops.Last[
shapeless.HNil.type]. shapeless.HNil.type is empty, so there is

no last element.
// HNil.last
// ~

6.2 Creating a custom op (the “lemma” pattern)

If we find a particular sequence of ops useful, we can package them up and
re-provide them as another ops type class. This is an example of the “lemma”
pattern, a term we introduced in Section 4.4.

72 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

Let's work through the creation of our own op as an exercise. We'll combine
the power of Last and Init to create a Penultimate type class that retrieves
the second-to-last element in an HList. Here's the type class definition, com-
plete with Aux type alias and apply method:

import shapeless.

trait Penultimate[L] {
type Out
def apply(l: L): Out
}

object Penultimate {
type Aux[L, 0] = Penultimate[L] { type Out =0 }

def apply[L](implicit p: Penultimate[L]): Aux[L, p.Out] = p
}

Again, notice that the apply method has a return type of Aux[L, 0] instead
of Penultimate[L]. This ensures type members are visible on summoned
instances as discussed in the callout in Section 4.2.

We only need to define one instance of Penultimate, combining Init and
Last using the techniques covered in Section 4.3:

import shapeless.ops.hlist

implicit def hlistPenultimate[L <: HList, M <: HList, 0](
implicit
init: hlist.Init.Aux[L, M],
last: hlist.Last.Aux[M, 0]
): Penultimate.Aux[L, 0] =
new Penultimate[L] {
type Out = 0
def apply(l: L): 0 =
last.apply(init.apply(l))

We can use Penultimate as follows:

6.2. CREATING A CUSTOM OP (THE “LEMMA” PATTERN) 73

type BiglList = String :: Int :: Boolean :: Double :: HNil
val biglList: BigList = "foo" :: 123 :: true :: 456.0 :: HNil

Penultimate[BigList].apply(bigList)
// res4: Boolean = true

Summoning an instance of Penultimate requires the compiler to summon
instances for Last and Init, so we inherit the same level of type checking on
short HLists:

type TinyList = String :: HNil
val tinyList = "bar" :: HNil

Penultimate[TinyList].apply(tinyList)

// <console>:21: error: could not find implicit value for parameter p:
Penultimate[TinyList]

// Penultimate[TinyList].apply(tinyList)

// ~

We can make things more convenient for end users by defining an extension
method on HList:

implicit class PenultimateOps[A](a: A) {
def penultimate(implicit inst: Penultimate[A]): inst.Out =
inst.apply(a)

bigList.penultimate
// res7: Boolean = true

We can also provide Penultimate for all product types by providing an in-
stance based on Generic:

implicit def genericPenultimate[A, R, 0](
implicit
generic: Generic.Aux[A, R],
penultimate: Penultimate.Aux[R, 0]

): Penultimate.Aux[A, 0] =

74 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

new Penultimate[A] {
type Out =0
def apply(a: A): 0 =
penultimate.apply(generic.to(a))

case class IceCream(name: String, numCherries: Int, inCone: Boolean)

IceCream("Sundae", 1, false).penultimate
// res9: Int =1

The important point here is that, by defining Penultimate as another type
class, we have created a reusable tool that we can apply elsewhere. Shapeless
provides many ops for many purposes, but it's easy to add our own to the
toolbox.

6.3 Case study: case class migrations

The power of ops type classes fully crystallizes when we chain them together
as building blocks for our own code. We'll finish this chapter with a compelling
example: a type class for performing “migrations” (aka “evolutions”) on case
classes'. For example, if version 1 of our app contains the following case class:

case class IceCreamVl(name: String, numCherries: Int, inCone: Boolean)

our migration library should enable certain mechanical “upgrades” for free:

// Remove fields:
case class IceCreamV2a(name: String, inCone: Boolean)

// Reorder fields:
case class IceCreamV2b(name: String, inCone: Boolean, numCherries: Int
)

// Insert fields (provided we can determine a default value):

'The term is stolen from “database migrations"—SQL scripts that automate upgrades to a
database schema.

6.3. CASE STUDY: CASE CLASS MIGRATIONS 75

case class IceCreamV2c(
name: String, inCone: Boolean, numCherries: Int, numWaffles: Int)

Ideally we'd like to be able to write code like this:

IceCreamV1l("Sundae", 1, false).migrateTo[IceCreamV2a]

The type class should take care of the migration without additional boilerplate.

6.3.1 The type class

The Migration type class represents a transformation from a source to a des-
tination type. Both of these are going to be “input” types in our derivation, so
we model both as type parameters. We don’t need an Aux type alias because
there are no type members to expose:

trait Migration[A, B] {
def apply(a: A): B
}

WEe'll also introduce an extension method to make examples easier to read:

implicit class MigrationOps[Al(a: A) {
def migrateTo[B](implicit migration: Migration[A, B]): B =
migration.apply(a)

6.3.2 Step 1. Removing fields

Let's build up the solution piece by piece, starting with field removal. We can
do this in several steps:

1. convert A to its generic representation;
2. filter the HList from step 1—only retain fields that are also in B;
3. convert the output of step 2 to B.

76 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

We can implement steps 1 and 3 with Generic or LabelledGeneric, and
step 2 with an op called Intersection. LabelledGeneric seems a sensible
choice because we need to identify fields by name:

import shapeless.
import shapeless.ops.hlist

implicit def genericMigration[A, B, ARepr <: HList, BRepr <: HList](
implicit
aGen : LabelledGeneric.Aux[A, AReprl],
bGen : LabelledGeneric.Aux[B, BReprl],
inter : hlist.Intersection.Aux[ARepr, BRepr, BRepr]

): Migration[A, B] = new Migration[A, B] {
def apply(a: A): B =

bGen.from(inter.apply(aGen.to(a)))

Take a moment to locate Intersection in the shapeless codebase. Its Aux
type alias takes three parameters: two input HLists and one output for the
intersection type. In the example above we are specifying ARepr and BRepr as
the input types and BRepr as the output type. This means implicit resolution
will only succeed if B has an exact subset of the fields of A, specified with the
exact same names in the same order:

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2a]
// res6: IceCreamV2a = IceCreamV2a(Sundae,true)

We get a compile error if we try to use Migration with non-conforming types:

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2b]

// <console>:23: error: could not find implicit value for parameter
migration: Migration[IceCreamV1,IceCreamV2b]

// IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2b]

// ~

6.3.3 Step 2. Reordering fields

We need to lean on another ops type class to add support for reordering. The
Align op lets us reorder the fields in one HList to match the order they ap-

https://github.com/milessabin/shapeless/blob/shapeless-2.3.2/core/src/main/scala/shapeless/ops/hlists.scala#L1297-L1352
https://github.com/milessabin/shapeless/blob/shapeless-2.3.2/core/src/main/scala/shapeless/ops/hlists.scala#L1973-L1997

6.3. CASE STUDY: CASE CLASS MIGRATIONS

77

pear in another HList. We can redefine our instance using Align as follows:

implicit def genericMigration[
A, B,
ARepr <: HList, BRepr <: HList,
Unaligned <: HList

1(

implicit

aGen : LabelledGeneric.Aux[A, AReprl],

bGen : LabelledGeneric.Aux[B, BReprl],

inter : hlist.Intersection.Aux[ARepr, BRepr, Unaligned],
align : hlist.Align[Unaligned, BRepr]

): Migration[A, B] = new Migration[A, B] {
def apply(a: A): B =
bGen.from(align.apply(inter.apply(aGen.to(a))))

We introduce a new type parameter called Unaligned to represent the in-
tersection of ARepr and BRepr before alignment, and use Align to convert
Unaligned to BRepr. With this modified definition of Migration we can

both remove and reorder fields:

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2a]
// res8: IceCreamV2a = IceCreamV2a(Sundae,true)

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2b]
// res9: IceCreamV2b = IceCreamV2b(Sundae,true,1)

However, if we try to add fields we still get a failure:

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2c]

// <console>:25: error: could not find implicit value for parameter
migration: Migration[IceCreamV1l,IceCreamV2c]

// IceCreamV1("Sundae", 1, true).migrateTo[IceCreamV2c]

// ~

6.3.4 Step 3. Adding new fields

We need a mechanism for calculating default values to support the addition
of new fields. Shapeless doesn’t provide a type class for this, but Cats does in

78 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

the form of a Monoid. Here's a simplified definition:

package cats

trait Monoid[A] {

def empty: A

def combine(x: A, y: A): A
}

Monoid defines two operations: empty for creating a “zero” value and
combine for “adding” two values. We only need empty in our code, but it will
be trivial to define combine as well.

Cats provides instances of Monoid for all the primitive types we care about
(Int, Double, Boolean, and String). We can define instances for HNil and
: 1 using the techniques from Chapter 5:

import cats.Monoid
import cats.instances.all._
import shapeless.labelled.{field, FieldType}

def createMonoid[A](zero: A)(add: (A, A) => A): Monoid[A] =
new Monoid[A] {
def empty = zero
def combine(x: A, y: A): A = add(x, y)
}

implicit val hnilMonoid: Monoid[HNil] =
createMonoid [HNil] (HNil) ((x, y) => HNil)

implicit def emptyHList[K <: Symbol, H, T <: HList](
implicit
hMonoid: Lazy[Monoid[H]],
tMonoid: Monoid[T]
: Monoid[FieldType[K, H] :: T] =
createMonoid(field[K] (hMonoid.value.empty) :: tMonoid.empty) {
(x, y) =>
field[K] (hMonoid.value.combine(x.head, y.head))
tMonoid.combine(x.tail, y.tail)

-

6.3. CASE STUDY: CASE CLASS MIGRATIONS 79

We need to combine Monoid? with a couple of other ops to complete our final
implementation of Migration. Here’s the full list of steps:

use LabelledGeneric to convert A to its generic representation;

use Intersection to calculate an HList of fields common to A and B;
calculate the types of fields that appear in B but not in A;

use Monoid to calculate a default value of the type from step 3;
append the common fields from step 2 to the new field from step 4;
use Align to reorder the fields from step 5 in the same order as B;
use LabelledGeneric to convert the output of step 6 to B.

Nouhowbdhe

We've already seen how to implement steps 1, 2, 4, 6, and 7. We can imple-
ment step 3 using an op called Diff thatis very similar to Intersection, and
step 5 using another op called Prepend. Here's the complete solution:

implicit def genericMigration]

A, B, ARepr <: HList, BRepr <: HList,

Common <: HList, Added <: HList, Unaligned <: HList
1(

implicit

aGen : LabelledGeneric.Aux[A, AReprl],

bGen : LabelledGeneric.Aux[B, BReprl],

inter : hlist.Intersection.Aux[ARepr, BRepr, Common],
diff : hlist.Diff.Aux[BRepr, Common, Added],

monoid : Monoid[Added],
prepend : hlist.Prepend.Aux[Added, Common, Unaligned],
align : hlist.Align[Unaligned, BRepr]
: Migration[A, B] =
new Migration[A, B] {
def apply(a: A): B =
bGen.from(align(prepend(monoid.empty, inter(aGen.to(a)))))

-

Note that this code doesn't use every type class at the value level. We use
Diff to calculate the Added data type, but we don’t actually need diff.apply
at run time. Instead we use our Monoid to summon an instance of Added.

Pun intended

80 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

With this final version of the type class instance in place we can use
Migration for all the use cases we set out at the beginning of the case study:

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2a]
// resld: IceCreamV2a = IceCreamV2a(Sundae,true)

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2b]
// resl5: IceCreamV2b = IceCreamV2b(Sundae,true,1l)

IceCreamV1l("Sundae", 1, true).migrateTo[IceCreamV2c]
// resl6: IceCreamV2c = IceCreamV2c(Sundae,true,1,0)

It's amazing what we can create with ops type classes. Migration has a single
implicit def with a single line of value-level implementation. It allows us
to automate migrations between any pair of case classes, in roughly the same
amount of code we'd write to handle a single pair of types using the standard
library. Such is the power of shapeless!

6.4 Record ops

We've spent some time in this chapter looking at type classes from
the shapeless.ops.hlist and shapeless.ops.coproduct pack-
ages. We mustn’t leave without mentioning a third important package:
shapeless.ops.record.

Shapeless’ “record ops” provide Map-like operations on HLists of tagged ele-
ments. Here are a handful of examples involving ice creams:

import shapeless.
case class IceCream(name: String, numCherries: Int, inCone: Boolean)

val sundae = LabelledGeneric[IceCream].

to(IceCream("Sundae", 1, false))

// sundae: String with shapeless.labelled.KeyTag[Symbol with shapeless
.tag.Tagged[String("name")],String] :: Int with shapeless.
labelled.KeyTag[Symbol with shapeless.tag.Tagged[String("
numCherries")],Int] :: Boolean with shapeless.labelled.KeyTag[

6.4. RECORD OPS 81

Symbol with shapeless.tag.Tagged[String("inCone")],Boolean]
shapeless.HNil = Sundae :: 1 :: false :: HNil

Unlike the HList and Coproduct ops we have seen already, record ops syntax
requires an explicit import from shapeless. record:

import shapeless.record.

6.4.1 Selecting fields

The get extension method and its corresponding Selector type class allow
us to fetch a field by tag:

sundae.get('name)
// resl: String = Sundae

sundae.get('numCherries)
// res2: Int =1

Attempting to access an undefined field causes a compile error as we might
expect:

sundae.get('nomCherries)

// <console>:20: error: No field Symbol with shapeless.tag.Tagged[
String("nomCherries")] in record String with shapeless.labelled.
KeyTag[Symbol with shapeless.tag.Tagged[String("name")],Stringl

: Int with shapeless.labelled.KeyTag[Symbol with shapeless.tag.

Tagged[String("numCherries")],Int] :: Boolean with shapeless.
labelled.KeyTag[Symbol with shapeless.tag.Tagged[String("inCone")
1,Boolean] :: shapeless.HNil

// sundae.get('nomCherries)

// ~

6.4.2 Updating and removing fields

The updated method and Updater type class allow us to modify fields by key.
The remove method and Remover type class allow us to delete fields by key:

82 CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

sundae.updated('numCherries, 3)

// resd: String with shapeless.labelled.KeyTag[Symbol with shapeless.
tag.Tagged[String("name")],String] :: Int with shapeless.labelled
.KeyTag[Symbol with shapeless.tag.Tagged[String("numCherries")],
Int] :: Boolean with shapeless.labelled.KeyTag[Symbol with
shapeless.tag.Tagged[String("inCone")],Boolean] :: shapeless.HNil

= Sundae :: 3 :: false :: HNil

sundae. remove('inCone)

// res5: (Boolean, String with shapeless.labelled.KeyTag[Symbol with
shapeless.tag.Tagged[String("name")],String] :: Int with
shapeless.labelled.KeyTag[Symbol with shapeless.tag.Tagged[String
("numCherries")],Int] :: shapeless.HNil) = (false,Sundae :: 1 ::
HNil)

The updateWith method and Modifier type class allow us to modify a field
with an update function:

sundae.updateWith('name) ("MASSIVE " +)

// res6: String with shapeless.labelled.KeyTag[Symbol with shapeless.
tag.Tagged[String("name")],String] :: Int with shapeless.labelled
.KeyTag[Symbol with shapeless.tag.Tagged[String("numCherries")],
Int] :: Boolean with shapeless.labelled.KeyTag[Symbol with
shapeless.tag.Tagged[String("inCone")],Boolean] :: shapeless.HNil

= MASSIVE Sundae :: 1 :: false :: HNil

6.4.3 Converting to a regular Map
The toMap method and ToMap type class allow us to convert a record to a Map:

sundae.toMap

// res7: Map[Symbol with shapeless.tag.Tagged[>: String("inCone")
with String("numCherries") with String("name") <: String],Any] =
Map('inCone -> false, 'numCherries -> 1, 'name -> Sundae)

6.4.4 Other operations

There are other record ops that we don’t have room to cover here. We can
rename fields, merge records, map over their values, and much more. See the

6.5. SUMMARY 83

source code of shapeless.ops.record and shapeless.syntax.record
for more information.

6.5 Summary

In this chapter we explored a few of the type classes that are provided in the
shapeless.ops package. We looked at Last and Init as two simple exam-
ples of the ops pattern, and built our own Penultimate and Migration type
classes by chaining together existing building blocks.

Many of the ops type classes share a similar pattern to the ops we've seen here.
The easiest way to learn them is to look at the source code in shapeless.ops
and shapeless.syntax.

In the next chapters we will look at two suites of ops type classes that require
further theoretical discussion. Chapter 7 discusses functional operations such
as map and flatMap on HLists, and Chapter 8 discusses how to implement
type classes that require type level representations of numbers. This knowl-
edge will help us gain a more complete understanding of the variety of type
classes from shapeless.ops.

84

CHAPTER 6. WORKING WITH HLISTS AND COPRODUCTS

Chapter 7

Functional operations on HLists

“Regular” Scala programs make heavy use of functional operations like map and
flatMap. A question arises: can we perform similar operations on HLists?
The answer is “yes”, although we have to do things a little differently than in
regular Scala. Unsurprisingly the mechanisms we use are type class based and
there are a suite of ops type classes to help us out.

Before we delve in to the type classes themselves, we need to discuss how
shapeless represents polymorphic functions suitable for mapping over hetero-
geneous data structures.

7.1 Motivation: mapping over an HList

We'll motivate the discussion of polymorphic functions by looking at the map
method. Figure 7.1 shows a type chart for mapping over a regular list. We
start with a List[A], supply a function A => B, and end up with a List[B].

The heterogeneous element typesin an HList cause this model to break down.
Scala functions have fixed input and output types, so the result of our map will
have to have the same element type in every position.

Ideally we'd like a map operation like the one shown in Figure 7.2, where the
function inspects the type of each input and uses it to determine the type of

85

86 CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

(ORIOLIARS +

List[A = List[B]

Figure 7.1: Mapping over a regular list (“monomorphic” map)

QO Q: ﬁ%
O » 3¢ 3%

A :: B :: C :: HNil Poly D :: E :: F :: HNil

Figure 7.2: Mapping over a heterogeneous list (“polymorphic” map)

each output. This gives us a closed, composable transformation that retains
the heterogeneous nature of the HList.

Unfortunately we can’t use Scala functions to implement this kind of operation.
We need some new infrastructure.

7.2 Polymorphic functions

Shapeless provides a type called Poly for representing polymorphic functions,
where the result type depends on the parameter types. Here is a simplified
explanation of how it works. Note that the next section doesn’t contain real
shapeless code—we’re eliding much of the flexibility and ease of use that
comes with real shapeless Polys to create a simplified API for illustrative
purposes.

7.2.1 How Poly works

At its core, a Poly is an object with a generic apply method. In addition to
its regular parameter of type A, Poly accepts an implicit parameter of type

7.2. POLYMORPHIC FUNCTIONS 87

Case[A]:

// This is not real shapeless code.
// It's just for demonstration.

trait Case[P, A] {

type Result

def apply(a: A): Result
}

trait Poly {
def apply[Al(arg: A)(implicit cse: Case[this.type, A]): cse.Result =
cse.apply(arg)

When we define an actual Poly, we provide instances of Case for each param-
eter type we care about. These implement the actual function body:

// This is not real shapeless code.
// It's just for demonstration.

object myPoly extends Poly {
implicit def intCase =
new Case[this.type, Int] {
type Result = Double
def apply(num: Int): Double
}

num / 2.0

implicit def stringCase =
new Case[this.type, String] {
type Result = Int
def apply(str: String): Int = str.length
)

When we call myPoly.apply, the compiler searches for the relevant implicit
Case and inserts it as usual:

myPoly.apply(123)
// res8: Double = 61.5

88 CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

There is some subtle scoping behaviour here that allows the compiler to locate
instances of Case without any additional imports. Case has an extra type
parameter P referencing the singleton type of the Poly. The implicit scope
for Case[P, A] includes the companion objects for Case, P, and A. We've
assigned P to be myPoly. type and the companion object for myPoly. type
is myPoly itself. In other words, Cases defined in the body of the Poly are
always in scope no matter where the call site is.

7.2.2 Poly syntax

The code above isn't real shapeless code. Fortunately, shapeless makes Polys
much simpler to define. Here's our myPoly function rewritten in proper syn-
tax:

import shapeless.

object myPoly extends Polyl {
implicit val intCase: Case.Aux[Int, Double] =
at(num => num / 2.0)

implicit val stringCase: Case.Aux[String, Int] =
at(str => str.length)

There are a few key differences with our earlier toy syntax:

1. We're extending a trait called Poly1 instead of Poly. Shapeless has a
Poly type and a set of subtypes, Polyl through Poly22, supporting
different arities of polymorphic function.

2. The Case.Aux types doesn't seem to reference the singleton type of
the Poly. Case.Aux is actually a type alias defined within the body of
Polyl. The singleton type is there—we just don'’t see it.

3. We're using a helper method, at, to define cases. This acts as an in-
stance constructor method as discussed in Section 3.1.2), which elimi-
nates a lot of boilerplate.

7.2. POLYMORPHIC FUNCTIONS 89

Syntactic differences aside, the shapeless version of myPoly is functionally
identical to our toy version. We can call it with an Int or String parameter
and get back a result of the corresponding return type:

myPoly.apply(123)
// resl0: myPoly.intCase.Result = 61.5

myPoly.apply("hello")
// resll: myPoly.stringCase.Result = 5

Shapeless also supports Polys with more than one parameter. Here is a binary
example:

object multiply extends Poly2 {
implicit val intIntCase: Case.Aux[Int, Int, Int] =
at((a, b) => a * b)

implicit val intStrCase: Case.Aux[Int, String, String] =
at((a, b) == Db * a)

multiply(3, 4)
// resl2: multiply.intIntCase.Result = 12

multiply(3, "4")
// resl3: multiply.intStrCase.Result = 444

Because Cases are just implicit values, we can define cases based on type
classes and do all of the advanced implicit resolution covered in previous chap-
ters. Here's a simple example that totals numbers in different contexts:

import scala.math.Numeric

object total extends Polyl {
implicit def base[A](implicit num: Numeric[A]):
Case.Aux[A, Double] =
at(num.toDouble)

implicit def option[A](implicit num: Numeric[A]):
Case.Aux[Option[A], Double] =

90 CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

at(opt => opt.map(num.toDouble).getOrElse(0.0))

implicit def list[A](implicit num: Numeric[A]):
Case.Aux[List[A], Double] =
at(list => num.toDouble(list.sum))

total(10)
// resl5: Double = 10.0

total(Option(20.0))
// resl6: Double = 20.0

total(List (1L, 2L, 3L))
// resl7: Double = 6.0

Idiosyncrasies of type inference

Poly pushes Scala’s type inference out of its comfort zone. We can
easily confuse the compiler by asking it to do too much inference at
once. For example, the following code compiles ok:

val a = myPoly.apply(123)

val b: Double = a

However, combining the two lines causes a compilation error:

val a: Double = myPoly.apply(123)
// <console>:17: error: type mismatch;

// found : Int(123)

// required: myPoly.ProductCase.Aux[shapeless.HNil,?]
// (which expands to) shapeless.poly.Case[myPoly.type,
shapeless.HNil]{type Result = ?}

// val a: Double

//

= myPoly.apply(123)

A

If we add a type annotation, the code compiles again:

7.3. MAPPING AND FLATMAPPING USING POLY 91

val a: Double = myPoly.apply[Int](123)
// a: Double = 61.5

This behaviour is confusing and annoying. Unfortunately there are no
concrete rules to follow to avoid problems. The only general guideline is
to try not to over-constrain the compiler, solve one constraint at a time,
and give it a hint when it gets stuck.

7.3 Mapping and flatMapping using Poly

Shapeless provides a suite of functional operations based on Poly, each im-
plemented as an ops type class. Let’s look at map and flatMap as examples.
Here's map:

import shapeless.

object sizeOf extends Polyl {
implicit val intCase: Case.Aux[Int, Int] =
at(identity)

implicit val stringCase: Case.Aux[String, Int] =
at(_.length)

implicit val booleanCase: Case.Aux[Boolean, Int] =
at(bool => if(bool) 1 else 0)
}

(10 :: "hello" :: true :: HNil).map(sizeOf)
// resl: Int :: Int :: Int :: shapeless.HNil = 10 :: 5 :: 1 :: HNil

Note that the elements in the resulting HList have types matching the Cases
in size0f. We can use map with any Poly that provides Cases for every
member of our starting HList. If the compiler can't find a Case for a particular
member, we get a compile error:

92 CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

(1.5 :: HNil).map(sizeOf)

// <console>:17: error: could not find implicit value for parameter
mapper: shapeless.ops.hlist.Mapper[sizeOf.type,Double ::
shapeless.HNil]

// (1.5 :: HNil).map(sizeOf)

// ~

We can also flatMap over an HList, as long as every corresponding case in
our Poly returns another HList:

object valueAndSizeOf extends Polyl {
implicit val intCase: Case.Aux[Int, Int :: Int :: HNil] =
at(num => num :: num :: HNil)

implicit val stringCase: Case.Aux[String, String :: Int :: HNil] =
at(str => str :: str.length :: HNil)

implicit val booleanCase: Case.Aux[Boolean, Boolean :: Int :: HNil]

at(bool => bool :: (if(bool) 1 else 0) :: HNil)

(10 :: "hello" :: true :: HNil).flatMap(valueAndSizeOf)
// res3: Int :: Int :: String :: Int :: Boolean :: Int :: shapeless.
HNil = 10 :: 10 :: hello :: 5 :: true :: 1 :: HNil

Again, we get a compilation error if there is a missing case or one of the cases
doesn’t return an HList:

// Using the wrong Poly with flatMap:

(10 :: "hello" :: true :: HNil).flatMap(sizeOf)

// <console>:18: error: could not find implicit value for parameter
mapper: shapeless.ops.hlist.FlatMapper[sizeOf.type,Int :: String
:: Boolean :: shapeless.HNil]

// (10 :: "hello" :: true :: HNil).flatMap(sizeOf)

// ~

map and flatMap are based on type classes called Mapper and FlatMapper
respectively. We'll see an example that makes direct use of Mapper in Section
7.5.

7.4. FOLDING USING POLY 93
7.4 Folding using Poly

In addition to map and flatMap, shapeless also provides foldLeft and
foldRight operations based on Poly2:

import shapeless.

object sum extends Poly2 {
implicit val intIntCase: Case.Aux[Int, Int, Int] =
at((a, b) => a + b)

implicit val intStringCase: Case.Aux[Int, String, Int] =
at((a, b) => a + b.length)
}

(10 :: "hello" :: 100 :: HNil).foldLeft(0) (sum)
// res7: Int = 115

We can also reducelLeft, reduceRight, foldMap, and so on. Each operation
has its own associated type class. We'll leave it as an exercise to the reader to
investigate the available operations.

7.5 Defining type classes using Poly

We can use Poly and type classes like Mapper and FlatMapper as building
blocks for our own type classes. As an example let’s build a type class for
mapping from one case class to another:

trait ProductMapper[A, B, P1 {
def apply(a: A): B
}

We can create an instance of ProductMapper using Mapper and a pair of
Generics:

94 CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

import shapeless.
import shapeless.ops.hlist

implicit def genericProductMapper[

A, B,

P <: Poly,

ARepr <: HList,

BRepr <: HList
1(
implicit
aGen: Generic.Aux[A, AReprl],
bGen: Generic.Aux[B, BRepr],
mapper: hlist.Mapper.Aux[P, ARepr, BRepr]
: ProductMapper[A, B, P] =
new ProductMapper[A, B, P] {

def apply(a: A): B =

bGen. from(mapper.apply(aGen.to(a)))

-

Interestingly, although we define a type P for our Poly, we don't reference any
values of type P anywhere in our code. The Mapper type class uses implicit
resolution to find Cases, so the compiler only needs to know the singleton
type of P to locate the relevant instances.

Let’s create an extension method to make ProductMapper easier to use. We
only want the user to specify the type of B at the call site, so we use some
indirection to allow the compiler to infer the type of the Poly from a value
parameter:

implicit class ProductMapperOps[Al(a: A) {
class Builder[B] {
def apply[P <: Polyl(poly: P)
(implicit pm: ProductMapper[A, B, P]): B =
pm.apply(a)
}

def mapTo[B]: Builder[B] = new Builder[B]
}

Here's an example of the method’s use:

7.6. SUMMARY 95

object conversions extends Polyl {
implicit val intCase: Case.Aux[Int, Boolean] = at(_ > 0)
implicit val boolCase: Case.Aux[Boolean, Int] at(if(_) 1 else 0)
implicit val strCase: Case.Aux[String, String] at(identity)

}

case class IceCreaml(name: String, numCherries: Int, inCone: Boolean)
case class IceCream2(name: String, hasCherries: Boolean, numCones: Int

)

IceCreaml("Sundae", 1, false).mapTo[IceCream2](conversions)
// res2: IceCream2 = IceCream2(Sundae,true,0)

The mapTo syntax looks like a single method call, but is actually two calls: one
call to mapTo to fix the B type parameter, and one call to Builder.apply
to specify the Poly. Some of shapeless’ built-in ops extension methods use
similar tricks to provide the user with convenient syntax.

7.6 Summary

In this chapter we discussed polymorphic functions whose return types vary
based on the types of their parameters. We saw how shapeless’ Poly type is
defined, and how it is used to implement functional operations such as map,
flatMap, foldLeft, and foldRight.

Each operation is implemented as an extension method on HList, based on
a corresponding type class: Mapper, FlatMapper, LeftFolder, and so on.
We can use these type classes, Poly, and the techniques from Section 4.3 to
create our own type classes involving sequences of sophisticated transforma-
tions.

96

CHAPTER 7. FUNCTIONAL OPERATIONS ON HLISTS

Chapter 8

Counting with types

From time to time we need to count things at the type level. For example, we
may need to know the length of an HList or the number of terms we have
expanded so far in a computation. We can represent numbers as values easily
enough, but if we want to influence implicit resolution we need to represent
them at the type level. This chapter covers the theory behind counting with
types, and provides some compelling use cases for type class derivation.

8.1 Representing numbers as types

Shapeless uses “Church encoding” to represent natural numbers at the type
level. It provides a type Nat with two subtypes: 0 representing zero, and
Succ[N] representing N+1:

import shapeless.{Nat, Succ}

type Zero = Nat. 0O
type One = Succ[Zero]
type Two = Succ[One]
// etc...

Shapeless provides aliases for the first 22 Nats as Nat. N:

97

98 CHAPTER 8. COUNTING WITH TYPES

Nat. 1
Nat. 2
Nat. 3
1] @ECo oo

Nat has no runtime semantics. We have to use the ToInt type class to convert
a Nat to a runtime Int:

import shapeless.ops.nat.ToInt
val toInt = ToInt[Two]

toInt.apply()
// res7: Int = 2

The Nat.toInt method provides a convenient shorthand for calling
toInt.apply(). It accepts the instance of ToInt as an implicit parameter:

Nat.toInt[Nat. 3]
// res8: Int = 3

8.2 Length of generic representations

One use case for Nat is determining the lengths of HLists and Coproducts.
Shapeless provides the shapeless.ops.hlist.Lengthand shapeless.ops.coproduct
type classes for this:

import shapeless.
import shapeless.ops.{hlist, coproduct, nat}

val hlistLength = hlist.Length[String :: Int :: Boolean :: HNil]

// hlistLength: shapeless.ops.hlist.Length[String :: Int :: Boolean ::
shapeless.HNil]{type Out = shapeless.Succ[shapeless.Succ|
shapeless.Succ[shapeless. 0]]1]} = shapeless.ops.
hlist$Length$$anon$3@55cfe482

val coproductLength = coproduct.Length[Double :+: Char :+: CNil]

8.2. LENGTH OF GENERIC REPRESENTATIONS 99

// coproductlLength: shapeless.ops.coproduct.Length[Double :+: Char :+:
shapeless.CNil]l{type Out = shapeless.Succ[shapeless.Succ|
shapeless. 0]]} = shapeless.ops.
coproduct$Length$$anon$29@5e23a2f7

Instances of Length have a type member Out that represents the length as a
Nat:

Nat.toInt[hlistlLength.Out]
// res0: Int = 3

Nat.toInt[coproductlLength.Out]
// resl: Int = 2

Let’s use this in a concrete example. We'll create a SizeOf type class that
counts the number of fields in a case class and exposes it as a simple Int:

trait SizeOf[A] {
def value: Int

def sizeOf[A](implicit size: SizeOf[A]): Int = size.value

To create an instance of SizeOf we need three things:

1. a Generic to calculate the corresponding HList type;
2. alLength to calculate the length of the HList as a Nat;
3. aToInt to convert the Nat to an Int.

Here's a working implementation written in the style described in Chapter 4:

implicit def genericSizeOf[A, L <: HList, N <: Nat](
implicit
generic: Generic.Aux[A, L],
size: hlist.Length.Aux[L, NI,
sizeToInt: nat.ToInt[N]
: SizeOf[A] =
new SizeOf[A] {
val value = sizeToInt.apply()

-

100 CHAPTER 8. COUNTING WITH TYPES

We can test our code as follows:
case class IceCream(name: String, numCherries: Int, inCone: Boolean)

sizeOf[IceCream]
// res3: Int =3

8.3 Case study: random value generator

Property-based testing libraries like ScalaCheck use type classes to generate
random data for unit tests. For example, ScalaCheck provides the Arbitrary
type class that we can use as follows:

import org.scalacheck.

for(i <- 1 to 3) println(Arbitrary.arbitrary[Int].sample)
// Some(1l)

// Some(1813066787)

// Some(1637191929)

for(i <- 1 to 3) println(Arbitrary.arbitrary[(Boolean, Byte)].sample)
// Some((true,127))

// Some((false,83))

// Some((false,-128))

ScalaCheck provides built-in instances of Arbitrary for a wide range of stan-
dard Scala types. However, creating instances of Arbitrary for user ADTs is
still a time-consuming manual process. This makes shapeless integration via
libraries like scalacheck-shapeless very attractive.

In this section we will create a simple Random type class to generate random
values of user-defined ADTs. We will show how Length and Nat form a crucial
part of the implementation. As usual we start with the definition of the type
class itself:

https://scalacheck.org
https://github.com/alexarchambault/scalacheck-shapeless

8.3. CASE STUDY: RANDOM VALUE GENERATOR 101

trait Random[A] {
def get: A
}

def random[A] (implicit r: Random[A]): A = r.get

8.3.1 Simple random values

Let's start with some basic instances of Random:

// Instance constructor:
def createRandom[A](func: () => A): Random[A] =
new Random[A] {
def get = func()
}

// Random numbers from 0@ to 9:
implicit val intRandom: Random[Int] =
createRandom(() => scala.util.Random.nextInt(10))

// Random characters from A to Z:
implicit val charRandom: Random[Char] =
createRandom(() => ('A'.toInt + scala.util.Random.nextInt(26)).
toChar)

// Random booleans:
implicit val booleanRandom: Random[Boolean] =
createRandom(() => scala.util.Random.nextBoolean)

We can use these simple generators via the random method as follows:

for(i <- 1 to 3) println(random[Int])
// 0
// 8
// 9

for(i <- 1 to 3) println(random[Char])
/7N
// N
//]

102 CHAPTER 8. COUNTING WITH TYPES

8.3.2 Random products

We can create random values for products using the Generic and HList tech-
niques from Chapter 3:

import shapeless.

implicit def genericRandom[A, R](
implicit
gen: Generic.Aux[A, R],
random: Lazy[Random[R]]
): Random[A] =
createRandom(() => gen.from(random.value.get))

implicit val hnilRandom: Random[HNil] =
createRandom(() => HNil)

implicit def hlistRandom[H, T <: HList](

implicit

hRandom: Lazy[Random[H]],

tRandom: Random[T]

: Random[H :: T] =

createRandom(() => hRandom.value.get :: tRandom.get)

-

This gets us as far as summoning random instances for case classes:

case class Cell(col: Char, row: Int)

for(i <- 1 to 5) println(random[Cell])
// Cell(H,1)
// Cell(D,4
// Cell(
// Cell(
// Cell(

)
D,7)
V,2)
R,4)

8.3.3 Random coproducts
This is where we start hitting problems. Generating a random instance of a

coproduct involves choosing a random subtype. Let’s start with a naive imple-
mentation:

8.3. CASE STUDY: RANDOM VALUE GENERATOR 103

implicit val cnilRandom: Random[CNil] =
createRandom(() => throw new Exception("Inconceivable!"))

implicit def coproductRandom[H, T <: Coproduct](
implicit
hRandom: Lazy[Random[H]],
tRandom: Random[T]
): Random[H :+: T] =
createRandom { () =>
val chooseH = scala.util.Random.nextDouble < 0.5
if(chooseH) Inl(hRandom.value.get) else Inr(tRandom.get)
}

There problems with this implementation lie in the 50/50 choice in calculating
chooseH. This creates an uneven probability distribution. For example, con-
sider the following type:

sealed trait Light

case object Red extends Light
case object Amber extends Light
case object Green extends Light

The Repr for Light isRed :+: Amber :+: Green :+: CNil. An instance
of Random for this type will choose Red 50% of the time and Amber :+:
Green :+: CNil 50% of the time. A correct distribution would be 33% Red
and 67% Amber :+: Green :+: CNil.

And that’s not all. If we look at the overall probability distribution we see
something even more alarming:

Red is chosen 1/2 of the time
Amber is chosen 1/4 of the time
Green is chosen 1/8 of the time
CNilis chosen 1/16 of the time

Our coproduct instances will throw exceptions 6.75% of the time!

104 CHAPTER 8. COUNTING WITH TYPES

for(i <- 1 to 100) random[Light]
// java.lang.Exception: Inconceivable!
//

To fix this problem we have to alter the probability of choosing H over T. The
correct behaviour should be to choose H 1/n of the time, where n is the length
of the coproduct. This ensures an even probability distribution across the sub-
types of the coproduct. It also ensures we choose the head of a single-subtype
Coproduct 100% of the time, which means we never call cnilProduct.get.
Here's an updated implementation:

import shapeless.ops.coproduct
import shapeless.ops.nat.ToInt

implicit def coproductRandom[H, T <: Coproduct, L <: Nat](
implicit
hRandom: Lazy[Random[H]],
tRandom: Random[T],
tLength: coproduct.Length.Aux[T, L],
tLengthAsInt: ToInt[L]
: Random[H :+: T] = {
createRandom { () =>
val length = 1 + tLengthAsInt()
val chooseH = scala.util.Random.nextDouble < (1.0 / length)
if(chooseH) Inl(hRandom.value.get) else Inr(tRandom.get)

-

}

With these modifications we can generate random values of any product or
coproduct:

for(i <- 1 to 5) println(random[Light])
// Green

// Red

// Red

// Red

// Green

Generating test data for ScalaCheck normally requires a great deal of boil-
erplate. Random value generation is a compelling use case for shapeless of

8.4. OTHER OPERATIONS INVOLVING NAT 105

which Nat forms an essential component.

8.4 Other operations involving Nat

Shapeless provides a suite of other operations based on Nat. The apply meth-
ods on HList and Coproduct can accept Nats as value or type parameters:

import shapeless.
val hlist = 123 :: "foo" :: true :: 'x' :: HNil

hlist.apply[Nat. 1]
// resl: String = foo

hlist.apply(Nat. 3)
// res2: Char = x

There are also operations such as take, drop, slice, and updatedAt:

hlist.take(Nat. 3).drop(Nat. 1)
// res3: String :: Boolean :: shapeless.HNil = foo :: true :: HNil

hlist.updatedAt(Nat. 1, "bar").updatedAt(Nat. 2, "baz")
// resd: Int :: String :: String :: Char :: shapeless.HNil = 123 ::
bar :: baz :: x :: HNil

These operations and their associated type classes are useful for manipulating
individual elements within a product or coproduct.

8.5 Summary

In this chapter we discussed how shapeless represents natural numbers and
how we can use them in type classes. We saw some predefined ops type
classes that let us do things like calculate lengths and access elements by index,
and created our own type classes that use Nat in other ways.

106 CHAPTER 8. COUNTING WITH TYPES

Between Nat, Poly, and the variety of types we have seen in the last few
chapters, we have seen just a small fraction of the toolbox provided in
shapeless.ops. There are many other ops type classes that provide a
comprehensive foundation on which to build our own code. However, the
theory laid out here is enough to understand the majority of ops needed
to derive our own type classes. The source code in the shapeless.ops
packages should now be approachable enough to pick up other useful ops.

Prepare for launch!

With Part II's look at shapeless.ops we have arrived at the end of this guide.
We hope you found it useful for understanding this fascinating and powerful
library, and wish you all the best on your future journeys as a type astronaut.

As functional programmers we value abstraction above all else. Concepts
like functors and monads arise from years of programming research: writing
code, spotting patterns, and making abstractions to remove redundancy.
Shapeless raises the bar for abstraction in Scala. Tools like Generic and
LabelledGeneric provide an interface for abstracting over data types that
were previously frustratingly unique and distinct.

There have traditionally been two barriers to entry for aspiring new shapeless
users. The first is the wealth of theoretical knowledge and implementation
detail required to understand the patterns we need. Hopefully this guide has
helped in this regard.

The second barrier is the fear and uncertainty surrounding a library that is seen
as “academic” or “advanced”. We can overcome this by sharing knowledge—
use cases, pros and cons, implementation strategies, and so on—to widen the
understanding of this valuable tool. So please share this book with a friend...
and let’s scrap some boilerplate together!

107

	Foreword
	Introduction
	What is generic programming?
	About this book
	Source code and examples
	Acknowledgements

	I Type class derivation
	Algebraic data types and generic representations
	Recap: algebraic data types
	Alternative encodings

	Generic product encodings
	Switching representations using Generic

	Generic coproducts
	Switching encodings using Generic

	Summary

	Automatically deriving type class instances
	Recap: type classes
	Resolving instances
	Idiomatic type class definitions

	Deriving instances for products
	Instances for HLists
	Instances for concrete products
	So what are the downsides?

	Deriving instances for coproducts
	Aligning CSV output

	Deriving instances for recursive types
	Implicit divergence
	Lazy

	Debugging implicit resolution
	Debugging using implicitly
	Debugging using reify

	Summary

	Working with types and implicits
	Dependent types
	Dependently typed functions
	Chaining dependent functions
	Summary

	Accessing names during implicit derivation
	Literal types
	Type tagging and phantom types
	Records and LabelledGeneric

	Deriving product instances with LabelledGeneric
	Instances for HLists
	Instances for concrete products

	Deriving coproduct instances with LabelledGeneric
	Summary

	II Shapeless ops
	Working with HLists and Coproducts
	Simple ops examples
	Creating a custom op (the lemma pattern)
	Case study: case class migrations
	The type class
	Step 1. Removing fields
	Step 2. Reordering fields
	Step 3. Adding new fields

	Record ops
	Selecting fields
	Updating and removing fields
	Converting to a regular Map
	Other operations

	Summary

	Functional operations on HLists
	Motivation: mapping over an HList
	Polymorphic functions
	How Poly works
	Poly syntax

	Mapping and flatMapping using Poly
	Folding using Poly
	Defining type classes using Poly
	Summary

	Counting with types
	Representing numbers as types
	Length of generic representations
	Case study: random value generator
	Simple random values
	Random products
	Random coproducts

	Other operations involving Nat
	Summary

	Prepare for launch!

