
Essenঞal Slick
Richard Dallaway and
Jonathan Ferguson

underscore

Copyright 2019 Richard Dallaway and Jonathan Ferguson.

Essenঞal Slick
Copyright 2019 Richard Dallaway and Jonathan Ferguson.

Published by Underscore Consulঞng LLP, Brighton, UK.

Copies of this, and related topics, can be found at h�ps://underscore.io/training.
Team discounts, when available, may also be found at that address. Contact the

authors at hello@underscore.io.

Underscore provides consulঞng, so[ware development, and training in Scala and
funcঞonal programming. You can find us on the web at h�ps://underscore.io and on

Twi�er at @underscoreio.

In addiঞon to wriঞng so[ware, we provide other training courses, workshops,
books, and mentoring to help you and your team create be�er so[ware and have

more fun. For more informaঞon please visit h�ps://underscore.io/training.

2

https://underscore.io
https://underscore.io/training
mailto:hello@underscore.io
https://underscore.io
https://twitter.com/underscoreio
https://underscore.io/training

CONTENTS 3

Contents

Preface 11
What is Slick? . 11
How to Contact Us . 12
Geমng help using Slick . 12
Acknowledgements . 12
Backers . 12
Convenঞons Used in This Book . 13

Typographical Convenঞons . 13
Source Code . 13
REPL Output . 14
Callout Boxes . 14

1 Basics 15
1.1 Orientaঞon . 15
1.2 Running the Examples and Exercises 16
1.3 Working Interacঞvely in the sbt Console 18
1.4 Example: A Sequel Odyssey . 19

1.4.1 Library Dependencies . 19
1.4.2 Imporঞng Library Code . 20
1.4.3 Defining our Schema . 21
1.4.4 Example Queries . 22
1.4.5 Configuring the Database 22
1.4.6 Creaঞng the Schema . 24
1.4.7 Inserঞng Data . 25
1.4.8 Selecঞng Data . 26
1.4.9 Combining Queries with For Comprehensions 28
1.4.10 Acঞons Combine . 29

1.5 Take Home Points . 30
1.6 Exercise: Bring Your Own Data . 31

4 CONTENTS

2 Selecঞng Data 33
2.1 Select All The Rows! . 33
2.2 Filtering Results: The filterMethod 34
2.3 The Query and TableQuery Types 35
2.4 Transforming Results . 37

2.4.1 The mapMethod . 38
2.4.2 exists . 40

2.5 Converঞng Queries to Acঞons . 40
2.6 Execuঞng Acঞons . 41
2.7 Column Expressions . 43

2.7.1 Equality and Inequality Methods 43
2.7.2 String Methods . 44
2.7.3 Numeric Methods . 45
2.7.4 Boolean Methods . 45
2.7.5 Date and Time Methods 46
2.7.6 Opঞon Methods and Type Equivalence 46

2.8 Controlling Queries: Sort, Take, and Drop 48
2.9 Condiঞonal Filtering . 50
2.10 Take Home Points . 52
2.11 Exercises . 53

2.11.1 Count the Messages . 53
2.11.2 Selecঞng a Message . 54
2.11.3 One Liners . 54
2.11.4 Checking the SQL . 54
2.11.5 Is HAL Real? . 54
2.11.6 Selecঞng Columns . 54
2.11.7 First Result . 55
2.11.8 Then the Rest . 55
2.11.9 The Start of Something . 55
2.11.10 Liking . 55
2.11.11 Client-Side or Server-Side? 55

3 Creaঞng and Modifying Data 57
3.1 Inserঞng Rows . 57

3.1.1 Inserঞng Single Rows . 57
3.1.2 Primary Key Allocaঞon . 58
3.1.3 Retrieving Primary Keys on Insert 60
3.1.4 Retrieving Rows on Insert 60
3.1.5 Inserঞng Specific Columns 62
3.1.6 Inserঞng Mulঞple Rows 64
3.1.7 More Control over Inserts 65

CONTENTS 5

3.2 Deleঞng Rows . 66
3.3 Updaঞng Rows . 67

3.3.1 Updaঞng a Single Field . 68
3.3.2 Updaঞng Mulঞple Fields 69
3.3.3 Updaঞng with a Computed Value 70

3.4 Take Home Points . 71
3.5 Exercises . 72

3.5.1 Get to the Specifics . 72
3.5.2 Bulk All the Inserts . 73
3.5.3 No Apologies . 73
3.5.4 Update Using a For Comprehension 73
3.5.5 Selecঞve Memory . 74

4 Combining Acঞons 75
4.1 Combinators Summary . 75
4.2 Combinators in Detail . 76

4.2.1 andThen (or >>) . 76
4.2.2 DBIO.seq . 77
4.2.3 map . 77
4.2.4 DBIO.successful and DBIO.failed 79
4.2.5 flatMap . 80
4.2.6 DBIO.sequence . 82
4.2.7 DBIO.fold . 83
4.2.8 zip . 84
4.2.9 andFinally and cleanUp 85
4.2.10 asTry . 86

4.3 Logging Queries and Results . 86
4.4 Transacঞons . 88
4.5 Take Home Points . 89
4.6 Exercises . 89

4.6.1 And Then what? . 89
4.6.2 First! . 90
4.6.3 There Can be Only One 90
4.6.4 Let’s be Reasonable . 91
4.6.5 Filtering . 92
4.6.6 Unfolding . 92

5 Data Modelling 95
5.1 Applicaঞon Structure . 95

5.1.1 Abstracঞng over Databases 96
5.1.2 Scaling to Larger Codebases 97

6 CONTENTS

5.2 Representaঞons for Rows . 98
5.2.1 Projecঞons, ProvenShapes, mapTo, and <> 98
5.2.2 Tuples versus Case Classes 101
5.2.3 Heterogeneous Lists . 102

5.3 Table and Column Representaঞon 108
5.3.1 Nullable Columns . 108
5.3.2 Primary Keys . 110
5.3.3 Compound Primary Keys 111
5.3.4 Indices . 113
5.3.5 Foreign Keys . 114
5.3.6 Column Opঞons . 118

5.4 Custom Column Mappings . 119
5.4.1 Value Classes . 122
5.4.2 Modelling Sum Types . 125

5.5 Take Home Points . 128
5.6 Exercises . 129

5.6.1 Filtering Opঞonal Columns 129
5.6.2 Matching or Undecided . 130
5.6.3 Enforcement . 131
5.6.4 Mapping Enumeraঞons . 131
5.6.5 Alternaঞve Enumeraঞons 131
5.6.6 Custom Boolean . 132
5.6.7 Turning a Row into Many Case Classes 132

6 Joins and Aggregates 133
6.1 Two Kinds of Join . 133
6.2 Chapter Schema . 133
6.3 Monadic Joins . 135
6.4 Applicaঞve Joins . 137

6.4.1 More Tables, Longer Joins 138
6.4.2 Inner Join . 141
6.4.3 Le[Join . 143
6.4.4 Right Join . 146
6.4.5 Full Outer Join . 146
6.4.6 Cross Joins . 147

6.5 Zip Joins . 148
6.6 Joins Summary . 150
6.7 Seen Any Strange Queries? . 150
6.8 Aggregaঞon . 151

6.8.1 Funcঞons . 151
6.8.2 Grouping . 152

CONTENTS 7

6.9 Take Home Points . 157
6.10 Exercises . 157

6.10.1 Name of the Sender . 158
6.10.2 Messages of the Sender 158
6.10.3 Having Many Messages 158
6.10.4 Collecঞng Results . 159

7 Plain SQL 161
7.1 Selects . 162

7.1.1 Select with Custom Types 165
7.1.2 Case Classes . 166

7.2 Updates . 167
7.2.1 Updaঞng with Custom Types 168

7.3 Typed Checked Plain SQL . 169
7.3.1 Compile Time Database Connecঞons 170
7.3.2 Type Checked Plain SQL 171

7.4 Take Home Points . 172
7.5 Exercises . 173

7.5.1 Plain Selects . 174
7.5.2 Conversion . 174
7.5.3 Subsঞtuঞon . 175
7.5.4 First and Last . 175
7.5.5 Plain Change . 176
7.5.6 Robert Tables . 176

A Using Different Database Products 179
A.1 Changes . 179
A.2 PostgreSQL . 180

A.2.1 Create a Database . 180
A.2.2 Update build.sbt Dependencies 180
A.2.3 Update JDBC References 181
A.2.4 Update Slick Profile . 181

A.3 MySQL . 181
A.3.1 Create a Database . 181
A.3.2 Update build.sbt Dependencies 182
A.3.3 Update JDBC References 182
A.3.4 Update Slick DriverProfile 182

B Soluঞons to Exercises 185
B.1 Basics . 185

B.1.1 Soluঞon to: Bring Your Own Data 185

8 CONTENTS

B.1.2 Soluঞon to: Bring Your Own Data Part 2 186
B.2 Selecঞng Data . 187

B.2.1 Soluঞon to: Count the Messages 187
B.2.2 Soluঞon to: Selecঞng a Message 188
B.2.3 Soluঞon to: One Liners 188
B.2.4 Soluঞon to: Checking the SQL 188
B.2.5 Soluঞon to: Is HAL Real? 188
B.2.6 Soluঞon to: Selecঞng Columns 189
B.2.7 Soluঞon to: First Result 189
B.2.8 Soluঞon to: Then the Rest 190
B.2.9 Soluঞon to: The Start of Something 190
B.2.10 Soluঞon to: Liking . 191
B.2.11 Soluঞon to: Client-Side or Server-Side? 191

B.3 Creaঞng and Modifying Data . 192
B.3.1 Soluঞon to: Get to the Specifics 192
B.3.2 Soluঞon to: Bulk All the Inserts 193
B.3.3 Soluঞon to: No Apologies 194
B.3.4 Soluঞon to: Update Using a For Comprehension 194
B.3.5 Soluঞon to: Selecঞve Memory 194

B.4 Combining Acঞons . 195
B.4.1 Soluঞon to: And Then what? 195
B.4.2 Soluঞon to: First! . 195
B.4.3 Soluঞon to: There Can be Only One 196
B.4.4 Soluঞon to: Let’s be Reasonable 197
B.4.5 Soluঞon to: Filtering . 198
B.4.6 Soluঞon to: Unfolding . 198

B.5 Data Modelling . 199
B.5.1 Soluঞon to: Filtering Opঞonal Columns 199
B.5.2 Soluঞon to: Matching or Undecided 200
B.5.3 Soluঞon to: Enforcement 200
B.5.4 Soluঞon to: Mapping Enumeraঞons 200
B.5.5 Soluঞon to: Alternaঞve Enumeraঞons 201
B.5.6 Soluঞon to: Custom Boolean 201
B.5.7 Soluঞon to: Turning a Row into Many Case Classes 202

B.6 Joins and Aggregates . 204
B.6.1 Soluঞon to: Name of the Sender 204
B.6.2 Soluঞon to: Messages of the Sender 205
B.6.3 Soluঞon to: Having Many Messages 205
B.6.4 Soluঞon to: Collecঞng Results 206

B.7 Plain SQL . 207

CONTENTS 9

B.7.1 Soluঞon to: Plain Selects 207
B.7.2 Soluঞon to: Conversion 208
B.7.3 Soluঞon to: Subsঞtuঞon 208
B.7.4 Soluঞon to: First and Last 209
B.7.5 Soluঞon to: Plain Change 209
B.7.6 Soluঞon to: Robert Tables 210

10 CONTENTS

Preface

What is Slick?

Slick is a Scala library for working with relaঞonal databases. That means it allows you
to model a schema, run queries, insert data, and update data.

Using Slick, you can write queries in Scala, giving you typed-checked database access.
The style of queries makes working with a database similar to working with regular
Scala collecঞons.

We’ve seen that developers using Slick for the first ঞme o[en need help geমng the
most from it. For example, you need to know a few key concepts, such as:

• queries: which compose using combinators such as map, flatMap, and filter;

• acࢼons: the things you can run against a database, which themselves compose;
and

• futures: which are the result of acঞons, and also support a set of combinators.

We’ve produced Essenࢼal Slick as a guide for those whowant to get started using Slick.
This material is aimed at beginner-to-intermediate Scala developers. You need:

• a working knowledge of Scala (we recommend Essenঞal Scala or an equivalent
book);

• experience with relaঞonal databases (familiarity with concepts such as rows,
columns, joins, indexes, SQL);

• an installed JDK 8 or later, along with a programmer’s text editor or IDE; and

11

https://scala-slick.org/
https://underscore.io/training/courses/essential-scala

12 CONTENTS

• the sbt build tool.

Thematerial presented focuses on Slick version 3.3. Examples useH2 as the relaঞonal
database.

How to Contact Us

You can provide feedback on this text via:

• issues and pull requests on the source repository for this text;

• our Gi�er channel; or

• email to hello@underscore.io using the subject line of “Essenঞal Slick”.

Geমng help using Slick

If you have quesঞons about using Slick, ask a quesঞon on the Slick Gi�er channel or
use the “slick” tag at Stackoverflow.

Acknowledgements

Many thanks to the following people for their contribuঞons to this book: Renato Cav-
alcanঞ, Dave Gurnell, Kevin Meredith, Joseph Oমnger, Yann Simon, Trevor Sibanda,
Ma�hias Braun, Konstanঞne Gadyrka, Sabrina.

And of course huge thanks to the Slick team for creaঞng such a cool piece of so[ware.

Backers

We’d also like to extend special thanks to our backers—fine people who helped fund
the development of the book by buying a copy before we released it as open source.
This book wouldn’t exist without you:

@moliware, Aaron remick, Aguinaldo Possa�o, Akash Suresh, alfogator, Antonio
Pacheco, ashugupt, Bar Shirtcliff, barabum, Brandon Hudgeons, Brian M. Clapper,

https://scala-sbt.org
https://www.h2database.com
https://github.com/underscoreio/essential-slick/issues
https://github.com/underscoreio/essential-slick/pulls
https://github.com/underscoreio/essential-slick/
https://gitter.im/underscoreio/scala
mailto:hello@underscore.io?subject=Essential%20Slick
https://gitter.im/slick/slick
https://stackoverflow.com/questions/tagged/slick
https://twitter.com/renatocaval
https://twitter.com/renatocaval
https://twitter.com/davegurnell
https://twitter.com/Gentmen
https://github.com/jottinger
https://github.com/yanns
https://github.com/trevorsibanda

CONTENTS 13

Brian Schlining, Calvin Fernandes, Ceschiaম (@6qat), Chris Llanwarne, Craig Tataryn,
Daniel Billsus, David Sinclair, Dennis Vriend, Dimitrios Liapis, Dirk Forier, Doug Clin-
ton, Elvis5566, Enrique Rodríguez, Fabian, Ganesh Chand, Geoffrey Gilmore, George
Ball, Graeme Ludwig, Harish Hurchurn, Igo Brilhante, Igor Lengvarsky, Ivano Pagano,
James Shade, Jamoliddin Daliev, Jeff Gentry, Jeremy Smith, Jonathan Steinhart,
Jules Ivanic, Karl-Aksel Puulmann, Keith Mannock, kipperjim, Kristof Jozsa, Mari-
anudo (Mariano Navas), Marঞn Kneissl, DASGIP GmbH, Ma�hew Edwards, Ma�hew
Pflueger, Ma�hias Braun, Ma�hias Trüb, Me in the book!, Miguel A. Baldi Hörlle, nani-
tous, NavidMohaghegh, Nicolas F. Rouque�e, Nicolas Sitbon, NikitaMoshensky, P7h,
Pascal Rodriguez, Pawel Wlodarski from JUG Lodz, prasadm80@gmail.com, Puneet,
Puneet Jhajj Bains, Remco Bos, Richard Opsal, Richard Searle, Robert Cheetham,
Azavea, Robin Taylor (@badgermind), Ruslan Kharitonov, Sander Zuidema, Sarav
Ramaswamy, Seoh Char, SJ Yoon, Sören Brunk, Spockz, Stein Fletcher, Thibault
Fouache, Thomas Toye, Tobias Lutz, Tom Hobbs (Arxality Ltd), Tony Murphy, Vladimir
Bacvanski, Wojciech Langiewicz, Zurab Kakabadze.

Convenঞons Used in This Book

This book contains a lot of technical informaঞon and program code. We use the fol-
lowing typographical convenঞons to reduce ambiguity and highlight important con-
cepts:

Typographical Convenঞons

New terms and phrases are introduced in italics. A[er their iniঞal introducঞon they
are wri�en in normal roman font.

Terms from program code, filenames, and file contents, are wri�en in monospace

font.

References to external resources are wri�en as hyperlinks. References to API doc-
umentaঞon are wri�en using a combinaঞon of hyperlinks and monospace font, for
example: scala.Option.

Source Code

Source code blocks are wri�en as follows. Syntax is highlighted appropriately where
applicable:

https://underscore.io
https://www.scala-lang.org/api/current/scala/Option.html

14 CONTENTS

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

REPL Output

We use Scala comments to show REPL output. For example:

2 * 13

// res0: Int = 26

If you’re following along with the REPL, and copy and paste from the book we hope
this will be useful. It means if you accidentally copymore than you intended, the REPL
will ignore the commented output.

We use the mdoc to compile the majority of code in this text. The REPL output is
wrapped by LaTeX. This can be tricky to read, especially with long type signatures. So
in some places we also duplicate and reformat the output. But the best way is to try
the code out in the REPL for yourself.

Callout Boxes

We use three types of callout box to highlight parঞcular content:

Tip callouts indicate handy summaries, recipes, or best pracঞces.

Advanced callouts provide addiঞonal informaঞon on corner cases or underly-
ing mechanisms. Feel free to skip these on your first read-through—come back
to them later for extra informaঞon.

Warning callouts indicate common pi�alls and gotchas. Make sure you read
these to avoid problems, and comeback to them if you’re having trouble geমng
your code to run.

https://scalameta.org/mdoc/

Chapter 1

Basics

1.1 Orientaঞon

Slick is a Scala library for accessing relaঞonal databases using an interface similar to
the Scala collecঞons library. You can treat queries like collecঞons, transforming and
combining themwithmethods like map, flatMap, and filter before sending them to
the database to fetch results. This is how we’ll be working with Slick for the majority
of this text.

Standard Slick queries are wri�en in plain Scala. These are type safe expressions that
benefit from compile ঞme error checking. They also compose, allowing us to build
complex queries from simple fragments before running them against the database. If
wriঞng queries in Scala isn’t your style, you’ll be pleased to know that Slick also allows
you to write plain SQL queries.

In addiঞon to querying, Slick helps you with all the usual trappings of relaঞonal
database, including connecঞng to a database, creaঞng a schema, seমng up trans-
acঞons, and so on. You can even drop down below Slick to deal with JDBC (Java
Database Connecঞvity) directly, if that’s something you’re familiar with and find you
need.

This book provides a compact, no-nonsense guide to everything you need to know to
use Slick in a commercial seমng:

• Chapter 1 provides an abbreviated overview of the library as a whole, demon-
straঞng the fundamentals of data modelling, connecঞng to the database, and
running queries.

15

16 CHAPTER 1. BASICS

• Chapter 2 covers basic select queries, introducing Slick’s query language and
delving into some of the details of type inference and type checking.

• Chapter 3 covers queries for inserঞng, updaঞng, and deleঞng data.
• Chapter 4 discusses data modelling, including defining custom column and ta-
ble types.

• Chapter 5 looks at acঞons and how you combine mulঞple acঞons together.
• Chapter 6 explores advanced select queries, including joins and aggregates.
• Chapter 7 provides a brief overview of Plain SQL queries—a useful tool when
you need fine control over the SQL sent to your database.

Slick isn’t an ORM

If you’re familiar with other database libraries such as Hibernate or Acঞve
Record, you might expect Slick to be an Object-Relaࢼonal Mapping (ORM) tool.
It is not, and it’s best not to think of Slick in this way.

ORMs a�empt to map object oriented data models onto relaঞonal database
backends. By contrast, Slick provides a more database-like set of tools such
as queries, rows and columns. We’re not going to argue the pros and cons of
ORMs here, but if this is an area that interests you, take a look at the Coming
from ORM to Slick arঞcle in the Slick manual.

If you aren’t familiar with ORMs, congratulaঞons. You already have one less
thing to worry about!

1.2 Running the Examples and Exercises

The aim of this first chapter is to provide a high-level overview of the core concepts
involved in Slick, and get you up and running with a simple end-to-end example. You
can grab this example now by cloning the Git repo of exercises for this book:

bash$ git clone git@github.com:underscoreio/essential-slick-code.git

Cloning into 'essential-slick-code'...

bash$ cd essential-slick-code

bash$ ls -1

README.md

chapter-01

chapter-02

https://hibernate.org
https://guides.rubyonrails.org/active_record_basics.html
https://guides.rubyonrails.org/active_record_basics.html
https://scala-slick.org/doc/3.3.3/orm-to-slick.html
https://scala-slick.org/doc/3.3.3/orm-to-slick.html

1.2. RUNNING THE EXAMPLES AND EXERCISES 17

chapter-03

chapter-04

chapter-05

chapter-06

chapter-07

Each chapter of the book is associated with a separate sbt project that provides a
combinaঞon of examples and exercises. We’ve bundled everything you need to run
sbt in the directory for each chapter.

We’ll be using a running example of a chat applicaঞon similar to Slack, Gi�er, or IRC.
The app will grow and evolve as we proceed through the book. By the end it will have
users, messages, and rooms, all modelled using tables, relaঞonships, and queries.

For now, we will start with a simple conversaঞon between two famous celebriঞes.
Change to the chapter-01 directory now, use the sbt command to start sbt, and
compile and run the example to see what happens:

bash$ cd chapter-01

bash$ sbt

sbt log messages...

> compile

More sbt log messages...

> run

Creating database table

Inserting test data

Selecting all messages:

Message("Dave","Hello, HAL. Do you read me, HAL?",1)

Message("HAL","Affirmative, Dave. I read you.",2)

Message("Dave","Open the pod bay doors, HAL.",3)

Message("HAL","I'm sorry, Dave. I'm afraid I can't do that.",4)

Selecting only messages from HAL:

Message("HAL","Affirmative, Dave. I read you.",2)

Message("HAL","I'm sorry, Dave. I'm afraid I can't do that.",4)

If you get output similar to the above, congratulaঞons! You’re all set up and ready
to run with the examples and exercises throughout the rest of this book. If you en-

18 CHAPTER 1. BASICS

counter any errors, let us know on our Gi�er channel and we’ll do what we can to
help out.

New to sbt?

The first ঞme you run sbt, it will download a lot of library dependencies from
the Internet and cache them on your hard drive. This means two things:

• you need a working Internet connecঞon to get started; and
• the first compile command you issue could take a while to complete.

If you haven’t used sbt before, you may find the sbt Geমng Started Guide
useful.

1.3 Working Interacঞvely in the sbt Console

Slick queries run asynchronously as Future values. These are fiddly to work with in
the Scala REPL, but we do want you to be able to explore Slick via the REPL. So to
get you up to speed quickly, the example projects define an execmethod and import
the base requirements to run examples from the console.

You can see this by starঞng sbt and then running the console command. Which will
give output similar to:

> console

[info] Starting scala interpreter...

[info]

Welcome to Scala 2.12.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112).

Type in expressions for evaluation. Or try :help.

scala> import slick.jdbc.H2Profile.api._

import Example._

import scala.concurrent.duration._

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.JdbcBackend$DatabaseDef@

ac9a820

exec: [T](program: slick.jdbc.H2Profile.api.DBIO[T])T

res0: Option[Int] = Some(4)

scala>

Our exec helper runs a query and waits for the output. There is a complete explana-
ঞon of exec and these imports later in the chapter. For now, here’s a small example

https://gitter.im/underscoreio/scala
https://www.scala-sbt.org/1.x/docs/Getting-Started.html

1.4. EXAMPLE: A SEQUEL ODYSSEY 19

which fetches all the message rows:

exec(messages.result)

// res1: Seq[Example.MessageTable#TableElementType] =

// Vector(Message(Dave,Hello, HAL. Do you read me, HAL?,1),

// Message(HAL,Affirmative, Dave. I read you.,2),

// Message(Dave,Open the pod bay doors, HAL.,3),

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4))

But we’re geমng ahead of ourselves. We’ll work through building up queries and
running them, and using exec, as we work through this chapter. If the above works
for you, great—you have a development environment set up and ready to go.

1.4 Example: A Sequel Odyssey

The test applicaঞon we saw above creates an in-memory database using H2, creates
a single table, populates it with test data, and then runs some example queries. The
rest of this secঞon will walk you through the code and provide an overview of things
to come. We’ll reproduce the essenঞal parts of the code in the text, but you can follow
along in the codebase for the exercises as well.

Choice of Database

All of the examples in this book use the H2 database. H2 is wri�en in Java
and runs in-process beside our applicaঞon code. We’ve picked H2 because it
allows us to forego any system administraঞon and skip to wriঞng Scala.

You might prefer to useMySQL, PostgreSQL, or some other database—and you
can. In Appendix A we point you at the changes you’ll need to make to work
with other databases. However, we recommend sঞcking with H2 for at least
this first chapter so you can build confidence using Slick without running into
database-specific complicaঞons.

1.4.1 Library Dependencies

Before diving into Scala code, let’s look at the sbt configuraঞon. You’ll find this in
build.sbt in the example:

https://www.h2database.com
https://www.h2database.com

20 CHAPTER 1. BASICS

name := "essential-slick-chapter-01"

version := "1.0.0"

scalaVersion := "2.13.3"

libraryDependencies ++= Seq(

"com.typesafe.slick" %% "slick" % "3.3.3",

"com.h2database" % "h2" % "1.4.200",

"ch.qos.logback" % "logback-classic" % "1.2.3"

)

This file declares the minimum library dependencies for a Slick project:

• Slick itself;

• the H2 database; and

• a logging library.

If we were using a separate database likeMySQL or PostgreSQL, we would subsঞtute
the H2 dependency for the JDBC driver for that database.

1.4.2 Imporঞng Library Code

Database management systems are not created equal. Different systems support dif-
ferent data types, different dialects of SQL, and different querying capabiliঞes. To
model these capabiliঞes in a way that can be checked at compile ঞme, Slick provides
most of its API via a database-specific profile. For example, we access most of the
Slick API for H2 via the following import:

import slick.jdbc.H2Profile.api._

Slick makes heavy use of implicit conversions and extension methods, so we gener-
ally need to include this import anywhere where we’re working with queries or the
database. Chapter 5 looks how you can keep a specific database profile out of your
code unঞl necessary.

1.4. EXAMPLE: A SEQUEL ODYSSEY 21

1.4.3 Defining our Schema

Our first job is to tell Slick what tables we have in our database and how to map them
onto Scala values and types. The most common representaঞon of data in Scala is a
case class, so we start by defining a Message class represenঞng a row in our single
example table:

case class Message(

sender: String,

content: String,

id: Long = 0L)

Next we define a Table object, which corresponds to our database table and tells
Slick how to map back and forth between database data and instances of our case
class:

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

MessageTable defines three columns: id, sender, and content. It defines the
names and types of these columns, and any constraints on them at the database level.
For example, id is a column of Long values, which is also an auto-incremenঞng pri-
mary key.

The * method provides a default projecࢼon that maps between columns in the table
and instances of our case class. Slick’s mapTo macro creates a two-way mapping be-
tween the three columns and the three fields in Message.

We’ll cover projecঞons and default projecঞons in detail in Chapter 5. For now, all we
need to know is that this line allows us to query the database and get back Messages
instead of tuples of (String, String, Long).

The tag on the first line is an implementaঞon detail that allows Slick to manage mul-
ঞple uses of the table in a single query. Think of it like a table alias in SQL. We don’t
need to provide tags in our user code—Slick takes care of them automaঞcally.

22 CHAPTER 1. BASICS

1.4.4 Example Queries

Slick allows us to define and compose queries in advance of running them against the
database. We start by defining a TableQuery object that represents a simple SELECT
* style query on our message table:

val messages = TableQuery[MessageTable]

// messages: TableQuery[MessageTable] = Rep(TableExpansion)

Note that we’re not running this query at the moment—we’re simply defining it as a
means to build other queries. For example, we can create a SELECT * WHERE style
query using a combinator called filter:

val halSays = messages.filter(_.sender === "HAL")

// halSays: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2050731725)

Again, we haven’t run this query yet—we’ve defined it as a building block for yet more
queries. This demonstrates an important part of Slick’s query language—it is made
from composable elements that permit a lot of valuable code re-use.

Li[ed Embedding

If you’re a fan of terminology, know that what we have discussed so far is called
the li[ed embedding approach in Slick:

• define data types to store row data (case classes, tuples, or other types);
• define Table objects represenঞng mappings between our data types
and the database;

• define TableQueries and combinators to build useful queries before
we run them against the database.

Li[ed embedding is the standard way to work with Slick. We will discuss the
other approach, called Plain SQL querying, in Chapter 7.

1.4.5 Configuring the Database

We’ve wri�en all of the code so far without connecঞng to the database. Now it’s ঞme
to open a connecঞon and run some SQL. We start by defining a Database object
which acts as a factory for managing connecঞons and transacঞons:

1.4. EXAMPLE: A SEQUEL ODYSSEY 23

val db = Database.forConfig("chapter01")

// db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.

JdbcBackend$DatabaseDef@16d23447

The parameter to Database.forConfig determines which configuraঞon to use from
the application.conf file. This file is found in src/main/resources. It looks like
this:

chapter01 {

driver = "org.h2.Driver"

url = "jdbc:h2:mem:chapter01"

keepAliveConnection = true

connectionPool = disabled

}

This syntax comes from the Typesafe Config library, which is also used by Akka and
the Play framework.

The parameters we’re providing are intended to configure the underlying JDBC layer.
The driver parameter is the fully qualified class name of the JDBC driver for our
chosen DBMS.

The url parameter is the standard JDBC connecঞon URL, and in this case we’re cre-
aঞng an in-memory database called "chapter01".

By default the H2 in-memory database is deleted when the last connecঞon is closed.
As we will be running mulঞple connecঞons in our examples, we enable keepAlive-
Connection to keep the data around unঞl our program completes.

Slick manages database connecঞons and transacঞons using auto-commit. We’ll look
at transacঞons in Chapter 4.

JDBC

If you don’t have a background working with Java, you may not have heard of
Java Database Connecঞvity (JDBC). It’s a specificaঞon for accessing databases
in a vendor neutral way. That is, it aims to be independent of the specific
database you are connecঞng to.

The specificaঞon is mirrored by a library implemented for each database you
want to connect to. This library is called the JDBC driver.

JDBCworks with connecࢼon strings, which are URLs like the one above that tell
the driver where your database is and how to connect to it (e.g. by providing

https://github.com/typesafehub/config
https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html

24 CHAPTER 1. BASICS

login credenঞals).

1.4.6 Creaঞng the Schema

Now that we have a database configured as db, we can use it.

Let’s start with a CREATE statement for MessageTable, whichwe build usingmethods
of our TableQuery object, messages. The Slick method schema gets the schema
descripঞon. We can see what that would be via the createStatements method:

messages.schema.createStatements.mkString

// res0: String = "create table \"message\" (\"sender\" VARCHAR NOT NULL,\"

content\" VARCHAR NOT NULL,\"id\" BIGINT NOT NULL PRIMARY KEY

AUTO_INCREMENT)"

But we’ve not sent this to the database yet. We’ve just printed the statement, to
check it is what we think it should be.

In Slick, what we run against the database is an acࢼon. This is howwe create an acঞon
for the messages schema:

val action: DBIO[Unit] = messages.schema.create

// action: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@42e7704a

The result of this messages.schema.create expression is a DBIO[Unit]. This is an
object represenঞng a DB acঞon that, when run, completes with a result of type Unit.
Anything we run against a database is a DBIO[T] (or a DBIOAction, more generally).
This includes queries, updates, schema alteraঞons, and so on.

DBIO and DBIOAcঞon

In this book we will talk about acঞons as having the type DBIO[T].

This is a simplificaঞon. The more general type is DBIOAction, and specifically
for this example, it is a DBIOAction[Unit, NoStream, Effect.Schema].
The details of all of this we will get to later in the book.

But DBIO[T] is a type alias supplied by Slick, and is perfectly fine to use.

Let’s run this acঞon:

1.4. EXAMPLE: A SEQUEL ODYSSEY 25

import scala.concurrent.Future

val future: Future[Unit] = db.run(action)

// future: Future[Unit] = Future(Success(()))

The result of run is a Future[T], where T is the type of result returned by the
database. Creaঞng a schema is a side-effecঞng operaঞon so the result type is Fu-
ture[Unit]. This matches the type DBIO[Unit] of the acঞon we started with.

Futures are asynchronous. That’s to say, they are placeholders for values that will
eventually appear. We say that a future completes at some point. In producঞon code,
futures allow us to chain together computaঞons without blocking to wait for a result.
However, in simple examples like this we can block unঞl our acঞon completes:

import scala.concurrent.Await

import scala.concurrent.duration._

val result = Await.result(future, 2.seconds)

1.4.7 Inserঞng Data

Once our table is set up, we need to insert some test data. We’ll define a helper
method to create a few test Messages for demonstraঞon purposes:

def freshTestData = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

The insert of this test data is an acঞon:

val insert: DBIO[Option[Int]] = messages ++= freshTestData

// insert: DBIO[Option[Int]] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$MultiInsertAction@fee4bd2

The ++= method of message accepts a sequence of Message objects and translates
them to a bulk INSERT query (freshTestData is a regular Scala Seq[Message]). We
run the insert via db.run, and when the future completes our table is populated
with data:

val insertAction: Future[Option[Int]] = db.run(insert)

// insertAction: Future[Option[Int]] = Future(Success(Some(4)))

26 CHAPTER 1. BASICS

The result of an insert operaঞon is the number of rows inserted. The freshTest-
Data contains four messages, so in this case the result is Some(4) when the future
completes:

val rowCount = Await.result(insertAction, 2.seconds)

// rowCount: Option[Int] = Some(4)

The result is opঞonal because the underlying Java APIs do not guarantee a count of
rows for batch inserts—some databases simply return None. We discuss single and
batch inserts and updates further in Chapter 3.

1.4.8 Selecঞng Data

Now our database has a few rows in it, we can start selecঞng data. We do this by
taking a query, such as messages or halSays, and turning it into an acঞon via the
result method:

val messagesAction: DBIO[Seq[Message]] = messages.result

// messagesAction: DBIO[Seq[Message]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@c2b516c

val messagesFuture: Future[Seq[Message]] = db.run(messagesAction)

// messagesFuture: Future[Seq[Message]] = Future(Success(Vector(Message(Dave,

Hello, HAL. Do you read me, HAL?,1), Message(HAL,Affirmative, Dave. I read

you.,2), Message(Dave,Open the pod bay doors, HAL.,3), Message(HAL,I'm

sorry, Dave. I'm afraid I can't do that.,4))))

val messagesResults = Await.result(messagesFuture, 2.seconds)

// messagesResults: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

We can see the SQL issued to H2 using the statements method on the acঞon:

val sql = messages.result.statements.mkString

// sql: String = "select \"sender\", \"content\", \"id\" from \"message\""

1.4. EXAMPLE: A SEQUEL ODYSSEY 27

The exec Helper Method

In our applicaঞons we should avoid blocking on Futures whenever possi-
ble. However, in the examples in this book we’ll be making heavy use of
Await.result. We will introduce a helper method called exec to make the
examples easier to read:

def exec[T](action: DBIO[T]): T =

Await.result(db.run(action), 2.seconds)

All exec does is run the supplied acঞon and wait for the result. For example,
to run a select query we can write:

exec(messages.result)

Use of Await.result is strongly discouraged in producঞon code. Many web
frameworks provide direct means of working with Futures without blocking.
In these cases, the best approach is simply to transform the Future query
result to a Future of an HTTP response and send that to the client.

If we want to retrieve a subset of the messages in our table, we can run a modified
version of our query. For example, calling filter on messages creates a modified
query with a WHERE expression that retrieves the expected rows:

messages.filter(_.sender === "HAL").result.statements.mkString

// res3: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'HAL'"

To run this query, we convert it to an acঞon using result, run it against the database
with db.run, and await the final result with exec:

exec(messages.filter(_.sender === "HAL").result)

// res4: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

We actually generated this query earlier and stored it in the variable halSays. We
can get exactly the same results from the database by running this variable instead:

28 CHAPTER 1. BASICS

exec(halSays.result)

// res5: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

Noঞce that we created our original halSays before connecঞng to the database. This
demonstrates perfectly the noঞon of composing a query from small parts and running
it later on.

We can even stack modifiers to create queries with mulঞple addiঞonal clauses. For
example, we can map over the query to retrieve a subset of the columns. This modifies
the SELECT clause in the SQL and the return type of the result:

halSays.map(_.id).result.statements.mkString

// res6: String = "select \"id\" from \"message\" where \"sender\" = 'HAL'"

exec(halSays.map(_.id).result)

// res7: Seq[Long] = Vector(2L, 4L)

1.4.9 Combining Queries with For Comprehensions

Query is a monad. It implements the methods map, flatMap, filter, and withFil-
ter, making it compaঞble with Scala for comprehensions. For example, you will o[en
see Slick queries wri�en in this style:

val halSays2 = for {

message <- messages if message.sender === "HAL"

} yield message

// halSays2: Query[MessageTable, Message, Seq] = Rep(Bind)

Remember that for comprehensions are aliases for chains of method calls. All we are
doing here is building a query with a WHERE clause on it. We don’t touch the database
unঞl we execute the query:

exec(halSays2.result)

// res8: Seq[Message] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

1.4. EXAMPLE: A SEQUEL ODYSSEY 29

1.4.10 Acঞons Combine

Like Query, DBIOAction is also a monad. It implements the same methods described
above, and shares the same compaঞbility with for comprehensions.

We can combine the acঞons to create the schema, insert the data, and query results
into one acঞon. We can do this beforewe have a database connecঞon, andwe run the
acঞon like any other. To do this, Slick provides a number of useful acঞon combinators.
We can use andThen, for example:

val actions: DBIO[Seq[Message]] = (

messages.schema.create andThen

(messages ++= freshTestData) andThen

halSays.result

)

// actions: DBIO[Seq[Message]] = slick.dbio.

SynchronousDatabaseAction$FusedAndThenAction@b5c3ca2

What andThen does is combine two acঞons so that the result of the first acঞon is
thrown away. The end result of the above actions is the last acঞon in the andThen
chain.

If you want to get funky, >> is another name for andThen:

val sameActions: DBIO[Seq[Message]] = (

messages.schema.create >>

(messages ++= freshTestData) >>

halSays.result

)

// sameActions: DBIO[Seq[Message]] = slick.dbio.

SynchronousDatabaseAction$FusedAndThenAction@72c068a3

Combining acঞons is an important feature of Slick. For example, one reason for com-
bining acঞons is to wrap them inside a transacঞon. In Chapter 4 we’ll see this, and
also that acঞons can be composed with for comprehensions, just like queries.

Queries, Acࢼons, Futures… Oh My!

The difference between queries, acঞons, and futures is a big point of confusion
for newcomers to Slick 3. The three types share many properঞes: they all
have methods like map, flatMap, and filter, they are all compaঞble with
for comprehensions, and they all flow seamlessly into one another through
methods in the Slick API. However, their semanঞcs are quite different:

30 CHAPTER 1. BASICS

• Query is used to build SQL for a single query. Calls to map and filter
modify clauses to the SQL, but only one query is created.

• DBIOAction is used to build sequences of SQL queries. Calls to map and
filter chain queries together and transform their results once they
are retrieved in the database. DBIOAction is also used to delineate
transacঞons.

• Future is used to transform the asynchronous result of running a
DBIOAction. Transformaঞons on Futures happen a[er we have
finished speaking to the database.

In many cases (for example select queries) we create a Query first and convert
it to a DBIOAction using the result method. In other cases (for example
insert queries), the Slick API gives us a DBIOAction immediately, bypassing
Query. In all cases, we run a DBIOAction using db.run(...), turning it into
a Future of the result.

We recommend taking the ঞme to thoroughly understand Query, DBIOAction,
and Future. Learn how they are used, how they are similar, how they differ,
what their type parameters represent, and how they flow into one another.
This is perhaps the single biggest step you can take towards demysঞfying Slick
3.

1.5 Take Home Points

In this chapter we’ve seen a broad overview of the main aspects of Slick, including
defining a schema, connecঞng to the database, and issuing queries to retrieve data.

We typically model data from the database as case classes and tuples that map to
rows from a table. We define the mappings between these types and the database
using Table classes such as MessageTable.

We define queries by creaঞng TableQuery objects such as messages and transform-
ing them with combinators such as map and filter. These transformaঞons look like
transformaঞons on collecঞons, but they are used to build SQL code rather than ma-
nipulate the results returned.

We execute a query by creaঞng an acঞon object via its result method. Acঞons are
used to build sequences of related queries and wrap them in transacঞons.

Finally, we run the acঞon against the database by passing it to the run method of

1.6. EXERCISE: BRING YOUR OWN DATA 31

the database object. We are given back a Future of the result. When the future
completes, the result is available.

The query language is the one of the richest and most significant parts of Slick. We
will spend the enঞre next chapter discussing the various queries and transformaঞons
available.

1.6 Exercise: Bring Your Own Data

Let’s get some experience with Slick by running queries against the example database.
Start sbt using the sbt command and type console to enter the interacঞve Scala con-
sole. We’ve configured sbt to run the example applicaঞon before giving you control,
so you should start off with the test database set up and ready to go:

bash$ sbt

sbt logging...

> console

More sbt logging...

Application runs...

scala>

Start by inserঞng an extra line of dialog into the database. This line hit the cuমng
room floor late in the development of the film 2001, but we’re happy to reinstate it
here:

Message("Dave","What if I say 'Pretty please'?")

// res9: Message = Message("Dave", "What if I say 'Pretty please'?", 0L)

You’ll need to insert the row using the += method on messages. Alternaঞvely you
could put the message in a Seq and use ++=. We’ve included some common pi�alls
in the soluঞon in case you get stuck.

See the soluঞon

Now retrieve the new dialog by selecঞng all messages sent by Dave. You’ll need to
build the appropriate query using messages.filter, and create the acঞon to be run
by using its result method. Don’t forget to run the query by using the exec helper
method we provided.

Again, we’ve included some common pi�alls in the soluঞon.

See the soluঞon

32 CHAPTER 1. BASICS

Chapter 2

Selecঞng Data

The last chapter provided a shallow end-to-end overview of Slick. We saw how to
model data, create queries, convert them to acঞons, and run those acঞons against a
database. In the next two chapters we will look in more detail at the various types of
query we can perform in Slick.

This chapter covers selecࢼng data using Slick’s rich type-safe Scala reflecঞon of SQL.
Chapter 3 covers modifying data by inserঞng, updaঞng, and deleঞng records.

Select queries are our main means of retrieving data. In this chapter we’ll limit our-
selves to simple select queries that operate on a single table. In Chapter 6 we’ll look
at more complex queries involving joins, aggregates, and grouping clauses.

2.1 Select All The Rows!

The simplest select query is the TableQuery generated froma Table. In the following
example, messages is a TableQuery for MessageTable:

import slick.jdbc.H2Profile.api._

case class Message(

sender: String,

content: String,

id: Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

33

34 CHAPTER 2. SELECTING DATA

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

The type of messages is TableQuery[MessageTable], which is a subtype of a more
general Query type that Slick uses to represent select, update, and delete queries.
We’ll discuss these types in the next secঞon.

We can see the SQL of the select query by calling result.statements:

messages.result.statements.mkString

// res0: String = "select \"sender\", \"content\", \"id\" from \"message\""

Our TableQuery is the equivalent of the SQL select * from message.

Query Extension Methods

Like many of the methods discussed below, the result method is actually an
extension method applied to Query via an implicit conversion. You’ll need to
have everything from H2Profile.api in scope for this to work:

import slick.jdbc.H2Profile.api._

2.2 Filtering Results: The filterMethod

We can create a query for a subset of rows using the filter method:

messages.filter(_.sender === "HAL")

// res1: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter @

47843698)

The parameter to filter is a funcঞon from an instance of MessageTable to a value
of type Rep[Boolean] represenঞng a WHERE clause for our query:

2.3. THE QUERY AND TABLEQUERY TYPES 35

messages.filter(_.sender === "HAL").result.statements.mkString

// res2: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'HAL'"

Slick uses the Rep type to represent expressions over columns as well as individual
columns. A Rep[Boolean] can either be a Boolean-valued column in a table, or a
Boolean expression involving mulঞple columns. Slick can automaঞcally promote a
value of type A to a constant Rep[A], and provides a suite of methods for building
expressions as we shall see below.

2.3 The Query and TableQuery Types

The types in our filter expression deserve some deeper explanaঞon. Slick repre-
sents all queries using a trait Query[M, U, C] that has three type parameters:

• M is called the mixed type. This is the funcঞon parameter type we see when
calling methods like map and filter.

• U is called the unpacked type. This is the type we collect in our results.

• C is called the collecࢼon type. This is the type of collecঞon we accumulate
results into.

In the examples above, messages is of a subtype of Query called TableQuery. Here’s
a simplified version of the definiঞon in the Slick codebase:

trait TableQuery[T <: Table[_]] extends Query[T, T#TableElementType, Seq] {

// ...

}

A TableQuery is actually a Query that uses a Table (e.g. MessageTable) as its
mixed type and the table’s element type (the type parameter in the constructor, e.g.
Message) as its unpacked type. In other words, the funcঞon we provide to mes-

sages.filter is actually passed a parameter of type MessageTable:

messages.filter { messageTable: MessageTable =>

messageTable.sender === "HAL"

}

// res3: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter @

218287179)

36 CHAPTER 2. SELECTING DATA

This makes sense: messageTable.sender is one of the columns we defined in Mes-
sageTable above, and messageTable.sender === "HAL" creates a Scala value
represenঞng the SQL expression message.sender = 'HAL'.

This is the process that allows Slick to type-check our queries. Querys have access
to the type of the Table used to create them, allowing us to directly reference the
columns on the Table when we’re using combinators like map and filter. Every
column knows its own data type, so Slick can ensure we only compare columns of
compaঞble types. If we try to compare sender to an Int, for example, we get a type
error:

messages.filter(_.sender === 123)

// error: Cannot perform option-mapped operation

// with type: (String, Int) => R

// for base type: (String, String) => Boolean

// messages.filter(_.sender === "Dave").result.statements

// ^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// exec(messages.schema.create andThen (messages ++= freshTestData))

// ^

Constant Queries

So far we’ve built up queries from a TableQuery, and this is the common case
we use in most of this book. However you should know that you can also
construct constant queries, such as select 1, that are not related to any table.

We can use the Query companion object for this. So…

Query(1)

will produce this query:

Query(1).result.statements.mkString

// res6: String = "select 1"

2.4. TRANSFORMING RESULTS 37

The apply method of the Query object allows us to li[a scalar value to a
Query.

A constant query such as select 1 can be used to confirm we have database
connecঞvity. This could be a useful thing to do as an applicaঞon is starঞng up,
or a heartbeat system check that will consume minimal resources.

We’ll see another example of using a from-less query in Chapter 3.

2.4 Transforming Results

exec

Just as we did in Chapter 1, we’re using a helper method to run queries in the
REPL:

import scala.concurrent.{Await,Future}

import scala.concurrent.duration._

val db = Database.forConfig("chapter02")

// db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.

JdbcBackend$DatabaseDef@50b84fa7

def exec[T](action: DBIO[T]): T =

Await.result(db.run(action), 4.seconds)

This is included in the example source code for this chapter, in the main.scala
file. You can run these examples in the REPL to follow along with the text.

We have also set up the schema and sample data:

def freshTestData = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

exec(messages.schema.create andThen (messages ++= freshTestData))

// res7: Option[Int] = Some(4)

38 CHAPTER 2. SELECTING DATA

2.4.1 The mapMethod

Someঞmes we don’t want to select all of the columns in a Table. We can use the
map method on a Query to select specific columns for inclusion in the results. This
changes both the mixed type and the unpacked type of the query:

messages.map(_.content)

// res8: Query[Rep[String], String, Seq] = Rep(Bind)

Because the unpacked type (second type parameter) has changed to String, we now
have a query that selects Strings when run. If we run the query we see that only
the content of each message is retrieved:

val query = messages.map(_.content)

// query: Query[Rep[String], String, Seq] = Rep(Bind)

exec(query.result)

// res9: Seq[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

Also noঞce that the generated SQL has changed. Slick isn’t cheaঞng: it is actually
telling the database to restrict the results to that column in the SQL:

messages.map(_.content).result.statements.mkString

// res10: String = "select \"content\" from \"message\""

Finally, noঞce that themixed type (first type parameter) of our newquery has changed
to Rep[String]. This means we are only passed the content column when we
filter or map over this query:

val pods = messages.

map(_.content).

filter{content:Rep[String] => content like "%pod%"}

// pods: Query[Rep[String], String, Seq] = Rep(Filter @1865775633)

exec(pods.result)

// res11: Seq[String] = Vector("Open the pod bay doors, HAL.")

This change of mixed type can complicate query composiঞon with map. We recom-
mend calling map only as the final step in a sequence of transformaঞons on a query,
a[er all other operaঞons have been applied.

2.4. TRANSFORMING RESULTS 39

It is worth noঞng that we can map to anything that Slick can pass to the database as
part of a select clause. This includes individual Reps and Tables, as well as Tuples
of the above. For example, we can use map to select the id and content columns of
messages:

messages.map(t => (t.id, t.content))

// res12: Query[(Rep[Long], Rep[String]), (Long, String), Seq] = Rep(Bind)

The mixed and unpacked types change accordingly, and the SQL is modified as we
might expect:

messages.map(t => (t.id, t.content)).result.statements.mkString

// res13: String = "select \"id\", \"content\" from \"message\""

We can even map sets of columns to Scala data structures using mapTo:

case class TextOnly(id: Long, content: String)

val contentQuery = messages.

map(t => (t.id, t.content).mapTo[TextOnly])

// contentQuery: Query[slick.lifted.MappedProjection[TextOnly, (Long, String)],

TextOnly, Seq] = Rep(Bind)

exec(contentQuery.result)

// res14: Seq[TextOnly] = Vector(

// TextOnly(1L, "Hello, HAL. Do you read me, HAL?"),

// TextOnly(2L, "Affirmative, Dave. I read you."),

// TextOnly(3L, "Open the pod bay doors, HAL."),

// TextOnly(4L, "I'm sorry, Dave. I'm afraid I can't do that.")

//)

We can also select column expressions as well as single columns:

messages.map(t => t.id * 1000L).result.statements.mkString

// res15: String = "select \"id\" * 1000 from \"message\""

This all means that map is a powerful combinator for controlling the SELECT part of
your query.

Query’s flatMapMethod

Query also has a flatMap method with similar monadic semanঞcs to that of
Option or Future. flatMap is mostly used for joins, so we’ll cover it in Chap-
ter 6.

40 CHAPTER 2. SELECTING DATA

2.4.2 exists

Someঞmes we are less interested in the contents of a queries result than if results
exist at all. For this we have exists, which will return true if the result set is not
empty and false otherwise.

Let’s look at a quick example to show how we can use an exisঞng query with the
exists keyword:

val containsBay = for {

m <- messages

if m.content like "%bay%"

} yield m

// containsBay: Query[MessageTable, Message, Seq] = Rep(Bind)

val bayMentioned: DBIO[Boolean] =

containsBay.exists.result

// bayMentioned: DBIO[Boolean] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@41d45e5

The containsBay query returns all messages that menঞon “bay”. We can then use
this query in the bayMentioned expression to determine what to execute.

The above will generate SQL which looks similar to this:

select exists(

select "sender", "content", "id"

from "message"

where "content" like '%bay%'

)

We will see a more useful example in Chapter 3.

2.5 Converঞng Queries to Acঞons

Before running a query, we need to convert it to an acࢼon. We typically do this by
calling the resultmethod on the query. Acঞons represent sequences of queries. We
start with acঞons represenঞng single queries and compose them to formmulঞ-acঞon
sequences.

Acঞons have the type signature DBIOAction[R, S, E]. The three type parameters
are:

2.6. EXECUTING ACTIONS 41

• R is the type of data we expect to get back from the database (Message, Per-
son, etc);

• S indicates whether the results are streamed (Streaming[T]) or not
(NoStream); and

• E is the effect type and will be inferred.

In many cases we can simplify the representaঞon of an acঞon to just DBIO[T], which
is an alias for DBIOAction[T, NoStream, Effect.All].

Effects

Effects are not part of Essenঞal Slick, and we’ll be working in terms of DBIO[T]
for most of this text.

However, broadly speaking, an Effect is a way to annotate an acঞon. For
example, you can write a method that will only accept queries marked as Read
or Write, or a combinaঞon such as Read with Transactional.

The effects defined in Slick under the Effect object are:

• Read for queries that read from the database.
• Write for queries that have a write effect on the database.
• Schema for schema effects.
• Transactional for transacঞon effects.
• All for all of the above.

Slick will infer the effect for your queries. For example, messages.resultwill
be:

DBIOAction[Seq[String], NoStream, Effect.Read]

In the next chapter we will look at inserts and updates. The inferred effect for
an update in this case is: DBIOAction[Int, NoStream, Effect.Write].

You can also add your own Effect types by extending the exisঞng types.

2.6 Execuঞng Acঞons

To execute an acঞon, we pass it to one of two methods on our db object:

42 CHAPTER 2. SELECTING DATA

• db.run(...) runs the acঞon and returns all the results in a single collecঞon.
These are known as a materialized result.

• db.stream(...) runs the acঞon and returns its results in a Stream, allowing
us to process large datasets incrementally without consuming large amounts
of memory.

In this book we will deal exclusively with materialized queries. db.run returns a Fu-
ture of the final result of our acঞon. We need to have an ExecutionContext in
scope when we make the call:

import scala.concurrent.ExecutionContext.Implicits.global

val futureMessages = db.run(messages.result)

// futureMessages: Future[Seq[MessageTable#TableElementType]] = Future(Success(

Vector(Message(Dave,Hello, HAL. Do you read me, HAL?,1), Message(HAL,

Affirmative, Dave. I read you.,2), Message(Dave,Open the pod bay doors,

HAL.,3), Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4))))

Streaming

In this bookwewill deal exclusivelywithmaterialized queries. Let’s take a quick
look at streams now, so we are aware of the alternaঞve.

Calling db.stream returns a DatabasePublisher object instead of a Future.
This exposes three methods to interact with the stream:

• subscribe which allows integraঞon with Akka;
• mapResult which creates a new Publisher that maps the supplied
funcঞon on the result set from the original publisher; and

• foreach, to perform a side-effect with the results.

Streaming results can be used to feed reacঞve streams, or Akka streams or ac-
tors. Alternaঞvely, we can do something simple like use foreach to println
our results:

db.stream(messages.result).foreach(println)

…which will eventually print each row.

https://scala-slick.org/doc/3.3.3/api/index.html#slick.basic.DatabasePublisher
https://www.reactive-streams.org/
https://akka.io/docs/
https://akka.io/docs/

2.7. COLUMN EXPRESSIONS 43

If you want to explore this area, start with the Slick documentaঞon on stream-
ing.

2.7 Column Expressions

Methods like filter and map require us to build expressions based on columns in our
tables. The Rep type is used to represent expressions as well as individual columns.
Slick provides a variety of extension methods on Rep for building expressions.

We will cover the most common methods below. You can find a complete list in Ex-
tensionMethods.scala in the Slick codebase.

2.7.1 Equality and Inequality Methods

The === and =!=methods operate on any type of Rep and produce a Rep[Boolean].
Here are some examples:

messages.filter(_.sender === "Dave").result.statements

// res16: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

= 'Dave'"

//)

messages.filter(_.sender =!= "Dave").result.statements.mkString

// res17: String = "select \"sender\", \"content\", \"id\" from \"message\"

where not (\"sender\" = 'Dave')"

The <, >, <=, and >= methods can operate on any type of Rep (not just numeric
columns):

messages.filter(_.sender < "HAL").result.statements

// res18: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

< 'HAL'"

//)

messages.filter(m => m.sender >= m.content).result.statements

// res19: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

>= \"content\""

//)

https://scala-slick.org/doc/3.3.3/dbio.html#streaming
https://scala-slick.org/doc/3.3.3/dbio.html#streaming
https://github.com/slick/slick/blob/v3.3.3/slick/src/main/scala/slick/lifted/ExtensionMethods.scala
https://github.com/slick/slick/blob/v3.3.3/slick/src/main/scala/slick/lifted/ExtensionMethods.scala

44 CHAPTER 2. SELECTING DATA

Table 2.1: Rep comparison methods. Operand and result types should be inter-
preted as parameters to Rep[_].

Scala Code Operand Types Result Type SQL Equivalent

col1 === col2 A or Option[A] Boolean col1 = col2

col1 =!= col2 A or Option[A] Boolean col1 <> col2

col1 < col2 A or Option[A] Boolean col1 < col2

col1 > col2 A or Option[A] Boolean col1 > col2

col1 <= col2 A or Option[A] Boolean col1 <= col2

col1 >= col2 A or Option[A] Boolean col1 >= col2

2.7.2 String Methods

Slick provides the ++ method for string concatenaঞon (SQL’s || operator):

messages.map(m => m.sender ++ "> " ++ m.content).result.statements.mkString

// res20: String = "select (\"sender\"||'> ')||\"content\" from \"message\""

and the like method for SQL’s classic string pa�ern matching:

messages.filter(_.content like "%pod%").result.statements.mkString

// res21: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"content\" like '%pod%'"

Slick also provides methods such as startsWith, length, toUpperCase, trim, and
so on. These are implemented differently in different DBMSs—the examples below
are purely for illustraঞon:

Table 2.2: String column methods. Operand (e.g., col1, col2) must be String
or Option[String]. Operand and result types should be interpreted as pa-
rameters to Rep[_].

Scala Code Result Type SQL Equivalent

col1.length Int char_length(col1)

col1 ++ col2 String col1 || col2

c1 like c2 Boolean c1 like c2

c1 startsWith c2 Boolean c1 like (c2 || '%')

c1 endsWith c2 Boolean c1 like ('%' || c2)

c1.toUpperCase String upper(c1)

2.7. COLUMN EXPRESSIONS 45

Scala Code Result Type SQL Equivalent

c1.toLowerCase String lower(c1)

col1.trim String trim(col1)

col1.ltrim String ltrim(col1)

col1.rtrim String rtrim(col1)

2.7.3 Numeric Methods

Slick provides a comprehensive set of methods that operate on Reps with numeric
values: Ints, Longs, Doubles, Floats, Shorts, Bytes, and BigDecimals.

Table 2.3: Numeric column methods. Operand and result types should be in-
terpreted as parameters to Rep[_].

Scala Code Operand Column Types Result Type SQL Equivalent

col1 + col2 A or Option[A] A col1 + col2

col1 - col2 A or Option[A] A col1 - col2

col1 * col2 A or Option[A] A col1 * col2

col1 / col2 A or Option[A] A col1 / col2

col1 % col2 A or Option[A] A mod(col1,

col2)

col1.abs A or Option[A] A abs(col1)

col1.ceil A or Option[A] A ceil(col1)

col1.floor A or Option[A] A floor(col1)

col1.round A or Option[A] A round(col1, 0)

2.7.4 Boolean Methods

Slick also provides a set of methods that operate on boolean Reps:

Table 2.4: Boolean column methods. Operand and result types should be inter-
preted as parameters to Rep[_].

Scala Code Operand Column Types Result Type SQL Equivalent

col1 && col2 Boolean or
Option[Boolean]

Boolean col1 and col2

46 CHAPTER 2. SELECTING DATA

Scala Code Operand Column Types Result Type SQL Equivalent

col1 || col2 Boolean or
Option[Boolean]

Boolean col1 or col2

!col1 Boolean or
Option[Boolean]

Boolean not col1

2.7.5 Date and Time Methods

Slick provides column mappings for: Instant, LocalDate, LocalTime, LocalDate-
Time, OffsetTime, OffsetDateTime, and ZonedDateTime. Thatmeans you can use
all of those types as columns in your table definiঞons.

How your columns are mapped will depend on the database you’re using, as different
databases have different capabiliঞes when it comes to ঞme and date. The table below
shows the SQL types used for three common databases:

Table 2.5: Mapping from java.time types to SQL column types for three
databases. There’s a full list as part of the The Slick 3.3 Upgrade Guide.

Scala Type H2 Column Type PostgreSQL MySQL

Instant TIMESTAMP TIMESTAMP TEXT

LocalDate DATE DATE DATE

LocalTime VARCHAR TIME TEXT

LocalDateTime TIMESTAMP TIMESTAMP TEXT

OffsetTime VARCHAR TIMETZ TEXT

OffsetDateTime VARCHAR VARCHAR TEXT

ZonedDateTime VARCHAR VARCHAR TEXT

Unlike the String and Boolean types, there are no special methods for the
java.time types. However, as all types have the equality methods, you can use
===, >, <=, and so on with date and ঞme types as you’d expect.

2.7.6 Opঞon Methods and Type Equivalence

Slick models nullable columns in SQL as Reps with Option types. We’ll discuss this
in some depth in Chapter 5. However, as a preview, know that if we have a nullable
column in our database, we declare it as opঞonal in our Table:

https://scala-slick.org/doc/3.3.3/upgrade.html

2.7. COLUMN EXPRESSIONS 47

final class PersonTable(tag: Tag) /* ... */ {

// ...

def nickname = column[Option[String]]("nickname")

// ...

}

When it comes to querying on opঞonal values, Slick is pre�y smart about type equiv-
alence.

What do we mean by type equivalence? Slick type-checks our column expressions
to make sure the operands are of compaঞble types. For example, we can compare
Strings for equality but we can’t compare a String and an Int:

messages.filter(_.id === "foo")

// error: Cannot perform option-mapped operation

// with type: (Long, String) => R

// for base type: (Long, Long) => Boolean

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Interesঞngly, Slick is very finickity about numeric types. For example, comparing an
Int to a Long is considered a type error:

messages.filter(_.id === 123)

// error: Cannot perform option-mapped operation

// with type: (Long, Int) => R

// for base type: (Long, Long) => Boolean

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

48 CHAPTER 2. SELECTING DATA

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

On the flip side of the coin, Slick is clever about the equivalence of opঞonal and non-
opঞonal columns. As long as the operands are some combinaঞon of the types A and
Option[A] (for the same value of A), the query will normally compile:

messages.filter(_.id === Option(123L)).result.statements

// res24: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"id\" =

123"

//)

However, any opঞonal arguments must be strictly of type Option, not Some or None:

messages.filter(_.id === Some(123L)).result.statements

// error: type mismatch;

// found : Some[Long]

// required: slick.lifted.Rep[?]

// messages.filter(_.id === Some(123L)).result.statements

// ^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// messages.filter(_.id === Some(123L)).result.statements

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you find yourself in this situaঞon, remember you can always provide a type ascrip-
ঞon to the value:

messages.filter(_.id === (Some(123L): Option[Long]))

// res26: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@314842608)

2.8 Controlling Queries: Sort, Take, and Drop

There are a trio of funcঞons used to control the order and number of results returned
from a query. This is great for paginaঞon of a result set, but the methods listed in the
table below can be used independently.

2.8. CONTROLLING QUERIES: SORT, TAKE, AND DROP 49

Table 2.6: Methods for ordering, skipping, and limiঞng the results of a query.

Scala Code SQL Equivalent

sortBy ORDER BY

take LIMIT

drop OFFSET

We’ll look at each in turn, starঞng with an example of sortBy. Say we want messages
in order of the sender’s name:

exec(messages.sortBy(_.sender).result).foreach(println)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

// Message(HAL,Affirmative, Dave. I read you.,2)

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

Or the reverse order:

exec(messages.sortBy(_.sender.desc).result).foreach(println)

// Message(HAL,Affirmative, Dave. I read you.,2)

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

To sort by mulঞple columns, return a tuple of columns:

messages.sortBy(m => (m.sender, m.content)).result.statements

// res29: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" order by \"sender

\", \"content\""

//)

Now we know how to sort results, perhaps we want to show only the first five rows:

messages.sortBy(_.sender).take(5)

// res30: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Take)

If we are presenঞng informaঞon in pages, we’d need a way to show the next page
(rows 6 to 10):

50 CHAPTER 2. SELECTING DATA

messages.sortBy(_.sender).drop(5).take(5)

// res31: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Take)

This is equivalent to:

select "sender", "content", "id"

from "message"

order by "sender"

limit 5 offset 5

Sorঞng on Null columns

We had a brief introducঞon to nullable columns earlier in the chapter when we
looked at Opঞon Methods and Type Equivalence. Slick offers three modifiers
which can be used in conjuncঞon with desc and asc when sorঞng on nul-
lable columns: nullFirst, nullsDefault and nullsLast. These do what
you expect, by including nulls at the beginning or end of the result set. The
nullsDefault behaviour will use the SQL engines preference.

We don’t have any nullable fields in our example yet. But here’s a look at what
sorঞng a nullable column is like:

users.sortBy(_.name.nullsFirst)

The generated SQL for the above query would be:

select "name", "email", "id"

from "user"

order by "name" nulls first

We cover nullable columns in Chapter 5 and include an example of sorঞng
on nullable columns in example project the code is in nulls.scala in the folder
chapter-05.

2.9 Condiঞonal Filtering

So far we’ve seen query operaঞons such as map, filter, and take, and in later chap-
ters we’ll see joins and aggregaঞons. Much of your work with Slick will likely be with
just these few operaঞons.

https://github.com/underscoreio/essential-slick-code/tree/3.3

2.9. CONDITIONAL FILTERING 51

There are two other methods, filterOpt and filterIf, that help with dynamic
queries, where you may (or may not) want to filter rows based on some condiঞon.

For example, suppose we want to give our user the opঞon to filter by crew member
(message sender). That is, if you don’t specify a crew member, you’ll get everyone’s
messages.

Our first a�empt at this might be:

def query1(name: Option[String]) =

messages.filter(msg => msg.sender === name)

That’s a valid query, but if you feed it None, you’ll get no results, rather than all results.
We could add more checks to the query, such as also adding || name.isEmpty. But
what we want to do is only filter when we have a value. And that’s what filterOpt
does:

def query2(name: Option[String]) =

messages.filterOpt(name)((row, value) => row.sender === value)

You can read this query as: we’re going to opঞonally filter on name, and if name has a
value, we can use the value to filter the rows in the query.

The upshot of that is, when there’s no crew member provided, there’s no condiঞon
on the SQL:

query2(None).result.statements.mkString

// res32: String = "select \"sender\", \"content\", \"id\" from \"message\""

And when there is, the condiঞon applies:

query2(Some("Dave")).result.statements.mkString

// res33: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'Dave'"

Once you’re in the swing of using filterOpt, you may prefer to use a short-
hand version:

def queryShortHand(name: Option[String]) =

messages.filterOpt(name)(_.sender === _)

The behaviour of query is the same if you use this short version or the longer

52 CHAPTER 2. SELECTING DATA

version we used in the main text.

filterIf is a similar capability, but turns a where condiঞon on or off. For example,
we can give the user an opঞon to exclude “old” messages:

val hideOldMessages = true

// hideOldMessages: Boolean = true

val queryIf = messages.filterIf(hideOldMessages)(_.id > 100L)

// queryIf: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2012996018)

queryIf.result.statements.mkString

// res34: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"id\" > 100"

Herewe see a condiঞon of ID > 100 added to the query because hideOldMessages
is true. If it were false, the query would not contain the where clause.

The great convenience of filterIf and filterOpt is that you can chain them one
a[er another to build up concise dynamic queries:

val person = Some("Dave")

// person: Some[String] = Some("Dave")

val queryToRun = messages.

filterOpt(person)(_.sender === _).

filterIf(hideOldMessages)(_.id > 100L)

// queryToRun: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2098989530)

queryToRun.result.statements.mkString

// res35: String = "select \"sender\", \"content\", \"id\" from \"message\"

where (\"sender\" = 'Dave') and (\"id\" > 100)"

2.10 Take Home Points

Starঞng with a TableQuery we can construct a wide range of queries with filter
and map. As we compose these queries, the types of the Query follow along to give
type-safety throughout our applicaঞon.

The expressions we use in queries are defined in extension methods, and include ===,
=!=, like, && and so on, depending on the type of the Rep. Comparisons to Op-

tion types are made easy for us as Slick will compare Rep[T] and Rep[Option[T]]
automaঞcally.

2.11. EXERCISES 53

We’ve seen that map acts like a SQL select, and filter is like a WHERE. We’ll see the
Slick representaঞon of GROUP and JOIN in Chapter 6.

We introduced some new terminology:

• unpacked type, which is the regular Scala types we work with, such as String;
and

• mixed type, which is Slick’s column representaঞon, such as Rep[String].

We run queries by converঞng them to acঞons using the resultmethod. We run the
acঞons against a database using db.run.

The database acঞon type constructor DBIOAction takes three arguments that repre-
sent the result, streaming mode, and effect. DBIO[R] simplifies this to just the result
type.

What we’ve seen for composing queries will help us to modify data using update and
delete. That’s the topic of the next chapter.

2.11 Exercises

If you’ve not already done so, try out the above code. In the example project the code
is in main.scala in the folder chapter-02.

Once you’ve done that, work through the exercises below. An easy way to try things
out is to use triggered execuࢼon with SBT:

$ cd example-02

$ sbt

> ~run

That ~run will monitor the project for changes, and when a change is seen, the
main.scala program will be compiled and run. This means you can edit main.scala and
then look in your terminal window to see the output.

2.11.1 Count the Messages

How would you count the number of messages? Hint: in the Scala collecঞons the
method length gives you the size of the collecঞon.

See the soluঞon

https://github.com/underscoreio/essential-slick-code/tree/3.3

54 CHAPTER 2. SELECTING DATA

2.11.2 Selecঞng a Message

Using a for comprehension, select the message with the id of 1. What happens if you
try to find a message with an id of 999?

Hint: our IDs are Longs. Adding L a[er a number in Scala, such as 99L, makes it a
long.

See the soluঞon

2.11.3 One Liners

Re-write the query from the last exercise to not use a for comprehension. Which style
do you prefer? Why?

See the soluঞon

2.11.4 Checking the SQL

Calling the result.statements methods on a query will give you the SQL to be
executed. Apply that to the last exercise. What query is reported? What does this
tell you about the way filter has been mapped to SQL?

See the soluঞon

2.11.5 Is HAL Real?

Find if there are any messages by HAL in the database, but only return a boolean
value from the database.

See the soluঞon

2.11.6 Selecঞng Columns

So far we have been returning Message classes, booleans, or counts. Now we want
to select all the messages in the database, but return just their content columns.

Hint: think of messages as a collecঞon and what you would do to a collecঞon to just
get back a single field of a case class.

Check what SQL would be executed for this query.

See the soluঞon

2.11. EXERCISES 55

2.11.7 First Result

The methods head and headOption are useful methods on a result. Find the first
message that HAL sent.

What happens if you use head to find a message from “Alice” (note that Alice has sent
no messages).

See the soluঞon

2.11.8 Then the Rest

In the previous exercise you returned the first message HAL sent. This ঞme find the
next five messages HAL sent. What messages are returned?

What if we’d asked for HAL’s tenth through to twenঞeth message?

See the soluঞon

2.11.9 The Start of Something

The method startsWith on a String tests to see if the string starts with a parঞc-
ular sequence of characters. Slick also implements this for string columns. Find the
message that starts with “Open”. How is that query implemented in SQL?

See the soluঞon

2.11.10 Liking

Slick implements the method like. Find all the messages with “do” in their content.

Can you make this case insensiঞve?

See the soluঞon

2.11.11 Client-Side or Server-Side?

What does this do and why?

exec(messages.map(_.content.toString + "!").result)

See the soluঞon

56 CHAPTER 2. SELECTING DATA

Chapter 3

Creaঞng and Modifying Data

In the last chapter we saw how to retrieve data from the database using select queries.
In this chapter we will look at modifying stored data using insert, update, and delete
queries.

SQL veterans will know that update and delete queries share many similariঞes with
select queries. The same is true in Slick, where we use the Query monad and combi-
nators to build the different kinds of query. Ensure you are familiar with the content
of Chapter 2 before proceeding.

3.1 Inserঞng Rows

As we saw in Chapter 1, adding new data looks like an append operaঞon on a mutable
collecঞon. We can use the += method to insert a single row into a table, and ++= to
insert mulঞple rows. We’ll discuss both of these operaঞons below.

3.1.1 Inserঞng Single Rows

To insert a single row into a table we use the += method. Note that, unlike the select
queries we’ve seen, this creates a DBIOAction immediately without an intermediate
Query:

57

58 CHAPTER 3. CREATING AND MODIFYING DATA

val insertAction =

messages += Message("HAL", "No. Seriously, Dave, I can't let you in.")

// insertAction: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.

jdbc.JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@479

a532a

exec(insertAction)

// res1: Int = 1

We’ve le[the DBIO[Int] type annotaঞon off of action, so you’ll see the specific
type Slick is using. It’s not important for this discussion, but worth knowing that Slick
has a number of different kinds of DBIOAction classes in use under the hood.

The result of the acঞon is the number of rows inserted. However, it is o[en useful to
return something else, such as the primary key generated for the new row. We can
get this informaঞon using a method called returning. Before we get to that, we first
need to understand where the primary key comes from.

3.1.2 Primary Key Allocaঞon

When inserঞng data, we need to tell the database whether or not to allocate primary
keys for the new rows. It is common pracঞce to declare auto-incremenঞng primary
keys, allowing the database to allocate values automaঞcally if we don’t manually spec-
ify them in the SQL.

Slick allows us to allocate auto-incremenঞng primary keys via an opঞon on the column
definiঞon. Recall the definiঞon of MessageTable from Chapter 1, which looked like
this:

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

The O.AutoInc opঞon specifies that the id column is auto-incremenঞng, meaning
that Slick can omit the column in the corresponding SQL:

3.1. INSERTING ROWS 59

insertAction.statements.head

// res2: String = "insert into \"message\" (\"sender\",\"content\") values

(?,?)"

As a convenience, in our example code we put the id field at the end of the case class
and gave it a default value of 0L. This allows us to skip the field when creaঞng new
objects of type Message:

case class Message(

sender: String,

content: String,

id: Long = 0L

)

Message("Dave", "You're off my Christmas card list.")

// res3: Message = Message("Dave", "You're off my Christmas card list.", 0L)

There is nothing special about our default value of 0L—it doesn’t signify anything in
parঞcular. It is the O.AutoInc opঞon that determines the behaviour of +=.

Someঞmes we want to override the database’s default auto-incremenঞng behaviour
and specify our own primary key. Slick provides a forceInsert method that does
just this:

val forceInsertAction = messages forceInsert Message(

"HAL",

"I'm a computer, what would I do with a Christmas card anyway?",

1000L)

Noঞce that the SQL generated for this acঞon includes a manually specified ID, and
that running the acঞon results in a record with the ID being inserted:

forceInsertAction.statements.head

// res4: String = "insert into \"message\" (\"sender\",\"content\",\"id\")

values (?,?,?)"

exec(forceInsertAction)

// res5: Int = 1

exec(messages.filter(_.id === 1000L).result)

// res6: Seq[MessageTable#TableElementType] = Vector(

// Message(

// "HAL",

// "I'm a computer, what would I do with a Christmas card anyway?",

// 1000L

60 CHAPTER 3. CREATING AND MODIFYING DATA

//)

//)

3.1.3 Retrieving Primary Keys on Insert

When the database allocates primary keys for us it’s o[en the case that we want to
get the key back a[er an insert. Slick supports this via the returning method:

val insertDave: DBIO[Long] =

messages returning messages.map(_.id) += Message("Dave", "Point taken.")

// insertDave: DBIO[Long] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@5422a514

val pk: Long = exec(insertDave)

// pk: Long = 1001L

The argument to messages returning is a Query over the same table, which is why
messages.map(_.id) makes sense here. The query specifies what data we’d like
the database to return once the insert has finished.

We can demonstrate that the return value is a primary key by looking up the record
we just inserted:

exec(messages.filter(_.id === 1001L).result.headOption)

// res8: Option[Message] = Some(Message("Dave", "Point taken.", 1001L))

For convenience, we can save a few keystrokes and define an insert query that always
returns the primary key:

lazy val messagesReturningId = messages returning messages.map(_.id)

exec(messagesReturningId += Message("HAL", "Humans, eh."))

// res9: messagesReturningId.SingleInsertResult = 1002L

Using messagesReturningId will return the id value, rather than the count of the
number of rows inserted.

3.1.4 Retrieving Rows on Insert

Some databases allow us to retrieve the complete inserted record, not just the primary
key. For example, we could ask for the whole Message back:

3.1. INSERTING ROWS 61

exec(messages returning messages +=

Message("Dave", "So... what do we do now?"))

Not all databases provide complete support for the returning method. H2 only
allows us to retrieve the primary key from an insert.

If we tried this with H2, we get a runঞme error:

exec(messages returning messages +=

Message("Dave", "So... what do we do now?"))

// slick.SlickException: This DBMS allows only a single column to be returned

from an INSERT, and that column must be an AutoInc column.

// at slick.jdbc.JdbcStatementBuilderComponent$JdbcCompiledInsert.

buildReturnColumns(JdbcStatementBuilderComponent.scala:67)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

x17lzycompute(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.x$17(

JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

keyColumns$lzycompute(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

keyColumns(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

preparedInsert(JdbcActionComponent.scala:660)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.run(

JdbcActionComponent.scala:517)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:28)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:25)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.liftedTree1$1(BasicBackend.

scala:276)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.run(BasicBackend.scala:276)

// at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

java:1149)

// at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

java:624)

// at java.lang.Thread.run(Thread.java:748)

This is a shame, but geমng the primary key is o[en all we need.

Profile Capabiliঞes

The Slick manual contains a comprehensive table of the capabiliঞes for each
database profile. The ability to return complete records from an insert query
is referenced as the jdbc.returnInsertOther capability.

https://scala-slick.org/doc/3.3.3/supported-databases.html
https://scala-slick.org/doc/3.3.3/supported-databases.html

62 CHAPTER 3. CREATING AND MODIFYING DATA

TheAPI documentaঞon for each profile also lists the capabiliঞes that the profile
doesn’t have. For an example, the top of the H2 Profile Scaladoc page points
out several of its shortcomings.

If we want to get a complete populated Message back from a database without
jdbc.returnInsertOther support, we retrieve the primary key and manually add
it to the inserted record. Slick simplifies this with another method, into:

val messagesReturningRow =

messages returning messages.map(_.id) into { (message, id) =>

message.copy(id = id)

}

// messagesReturningRow: slick.jdbc.H2Profile.IntoInsertActionComposer[

MessageTable#TableElementType, Message] = slick.jdbc.

JdbcActionComponent$ReturningInsertActionComposerImpl@2160eb08

val insertMessage: DBIO[Message] =

messagesReturningRow += Message("Dave", "You're such a jerk.")

// insertMessage: DBIO[Message] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@19de5dba

exec(insertMessage)

// res10: Message = Message("Dave", "You're such a jerk.", 1003L)

The into method allows us to specify a funcঞon to combine the record and the new
primary key. It’s perfect for emulaঞng the jdbc.returnInsertOther capability, al-
though we can use it for any post-processing we care to imagine on the inserted data.

3.1.5 Inserঞng Specific Columns

If our database table contains a lot of columns with default values, it is someঞmes
useful to specify a subset of columns in our insert queries. We can do this by mapping
over a query before calling insert:

messages.map(_.sender).insertStatement

// res11: String = "insert into \"message\" (\"sender\") values (?)"

The parameter type of the += method is matched to the unpacked type of the query:

messages.map(_.sender)

// res12: Query[Rep[String], String, Seq] = Rep(Bind)

… so we execute this query by passing it a String for the sender:

https://scala-slick.org/doc/3.3.3/api/#slick.jdbc.H2Profile

3.1. INSERTING ROWS 63

exec(messages.map(_.sender) += "HAL")

// org.h2.jdbc.JdbcSQLIntegrityConstraintViolationException: NULL not allowed

for column "content"; SQL statement:

// insert into "message" ("sender") values (?) [23502-200]

// at org.h2.message.DbException.getJdbcSQLException(DbException.java:459)

// at org.h2.message.DbException.getJdbcSQLException(DbException.java:429)

// at org.h2.message.DbException.get(DbException.java:205)

// at org.h2.message.DbException.get(DbException.java:181)

// at org.h2.table.Column.validateConvertUpdateSequence(Column.java:374)

// at org.h2.table.Table.validateConvertUpdateSequence(Table.java:845)

// at org.h2.command.dml.Insert.insertRows(Insert.java:187)

// at org.h2.command.dml.Insert.update(Insert.java:151)

// at org.h2.command.CommandContainer.update(CommandContainer.java:198)

// at org.h2.command.Command.executeUpdate(Command.java:251)

// at org.h2.jdbc.JdbcPreparedStatement.executeUpdateInternal(

JdbcPreparedStatement.java:191)

// at org.h2.jdbc.JdbcPreparedStatement.executeUpdate(JdbcPreparedStatement.

java:152)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.

$anonfun$run$15(JdbcActionComponent.scala:520)

// at slick.jdbc.JdbcBackend$SessionDef.withPreparedStatement(JdbcBackend.

scala:425)

// at slick.jdbc.JdbcBackend$SessionDef.withPreparedStatement$(JdbcBackend.

scala:420)

// at slick.jdbc.JdbcBackend$BaseSession.withPreparedStatement(JdbcBackend.

scala:489)

// at slick.jdbc.JdbcActionComponent$InsertActionComposerImpl.preparedInsert(

JdbcActionComponent.scala:511)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.run(

JdbcActionComponent.scala:517)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:28)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:25)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.liftedTree1$1(BasicBackend.

scala:276)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.run(BasicBackend.scala:276)

// at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

java:1149)

// at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

java:624)

// at java.lang.Thread.run(Thread.java:748)

The query fails at runঞme because the content column is non-nullable in our schema.
No ma�er. We’ll cover nullable columns when discussing schemas in Chapter 5.

64 CHAPTER 3. CREATING AND MODIFYING DATA

3.1.6 Inserঞng Mulঞple Rows

Suppose we want to insert several Messages at the same ঞme. We could just use +=
to insert each one in turn. However, this would result in a separate query being issued
to the database for each record, which could be slow for large numbers of inserts.

As an alternaঞve, Slick supports batch inserts, where all the inserts are sent to the
database in one go. We’ve seen this already in the first chapter:

val testMessages = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

// testMessages: Seq[Message] = List(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 0L),

// Message("HAL", "Affirmative, Dave. I read you.", 0L),

// Message("Dave", "Open the pod bay doors, HAL.", 0L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 0L)

//)

exec(messages ++= testMessages)

// res13: Option[Int] = Some(4)

This code prepares one SQL statement and uses it for each row in the Seq. In princi-
ple Slick could opঞmize this insert further using database-specific features. This can
result in a significant boost in performance when inserঞng many records.

As we saw earlier this chapter, the default return value of a single insert is the num-
ber of rows inserted. The mulঞ-row insert above is also returning the number of rows,
except this ঞme the type is Option[Int]. The reason for this is that the JDBC spec-
ificaঞon permits the underlying database driver to indicate that the number of rows
inserted is unknown.

Slick also provides a batch version of messages returning..., including the into
method. We can use the messagesReturningRow query we defined last secঞon and
write:

exec(messagesReturningRow ++= testMessages)

// res14: messagesReturningRow.MultiInsertResult = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1008L),

// Message("HAL", "Affirmative, Dave. I read you.", 1009L),

// Message("Dave", "Open the pod bay doors, HAL.", 1010L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 1011L)

//)

3.1. INSERTING ROWS 65

3.1.7 More Control over Inserts

At this point we’ve inserted fixed data into the database. Someঞmes you need more
flexibility, including inserঞng data based on another query. Slick supports this via
forceInsertQuery.

The argument to forceInsertQuery is a query. So the form is:

insertExpression.forceInsertQuery(selectExpression)

Our selectExpression can be pre�y much anything, but it needs to match the
columns required by our insertExpression.

As an example, our query could check to see if a parঞcular row of data already exists,
and insert it if it doesn’t. That is, an “insert if doesn’t exist” funcঞon.

Let’s say we only want the director to be able to say “Cut!” once. The SQL would end
up like this:

insert into "messages" ("sender", "content")

select 'Stanley', 'Cut!'

where

not exists(

select

"id", "sender", "content"

from

"messages" where "sender" = 'Stanley'

and "content" = 'Cut!')

That looks quite involved, but we can build it up gradually.

The tricky part of this is the select 'Stanley', 'Cut!' part, as there is no
FROM clause there. We saw an example of how to create that in Chapter 2, with
Query.apply. For this situaঞon it would be:

val data = Query(("Stanley", "Cut!"))

// data: Query[(ConstColumn[String], ConstColumn[String]), (String, String),

Seq] = Rep(Pure $@255414464)

data is a constant query that returns a fixed value—a tuple of two columns. It’s the
equivalent of running SELECT 'Stanley', 'Cut!'; against the database, which is
one part of the query we need.

We also need to be able to test to see if the data already exists. That’s straigh�orward:

66 CHAPTER 3. CREATING AND MODIFYING DATA

val exists =

messages.

filter(m => m.sender === "Stanley" && m.content === "Cut!").

exists

Wewant to use the datawhen the row doesn’t exist, so combine the data and exists
with filterNot rather than filter:

val selectExpression = data.filterNot(_ => exists)

Finally, we need to apply this query with forceInsertQuery. But remember the
column types for the insert and select need to match up. So we map on messages to
make sure that’s the case:

val forceAction =

messages.

map(m => m.sender -> m.content).

forceInsertQuery(selectExpression)

// forceAction: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.

jdbc.JdbcActionComponent$InsertActionComposerImpl$InsertQueryAction@64

e1ef10

exec(forceAction)

// res15: Int = 1

exec(forceAction)

// res16: Int = 0

The first ঞme we run the query, the message is inserted. The second ঞme, no rows
are affected.

In summary, forceInsertQuery provides a way to build-up more complicated in-
serts. If you find situaঞons beyond the power of this method, you can always make
use of Plain SQL inserts, described in Chapter 7.

3.2 Deleঞng Rows

Slick lets us delete rows using the same Query objects we saw in Chapter 2. That is,
we specify which rows to delete using the filter method, and then call delete:

3.3. UPDATING ROWS 67

val removeHal: DBIO[Int] =

messages.filter(_.sender === "HAL").delete

// removeHal: DBIO[Int] = slick.jdbc.

JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@8c8ce82

exec(removeHal)

// res17: Int = 9

The return value is the number of rows affected.

The SQL generated for the acঞon can be seen by calling delete.statements:

messages.filter(_.sender === "HAL").delete.statements.head

// res18: String = "delete from \"message\" where \"message\".\"sender\" = 'HAL

'"

Note that it is an error to use delete in combinaঞon with map. We can only call
delete on a TableQuery:

messages.map(_.content).delete

// error: value delete is not a member of slick.lifted.Query[slick.lifted.Rep[

String],String,Seq]

// messages.filter(_.sender === "HAL").map(_.sender)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3.3 Updaঞng Rows

So far we’ve only looked at inserঞng new data and deleঞng exisঞng data. But what if
we want to update exisঞng data without deleঞng it first? Slick lets us create SQL UP-
DATE acঞons via the kinds of Query valueswe’ve been using for selecঞng and deleঞng
rows.

Restoring Data

In the last secঞon we removed all the rows for HAL. Before conঞnuing with
updaঞng rows, we should put them back:

68 CHAPTER 3. CREATING AND MODIFYING DATA

exec(messages.delete andThen (messages ++= freshTestData) andThen

messages.result)

// res20: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1013L),

// Message("HAL", "Affirmative, Dave. I read you.", 1014L),

// Message("Dave", "Open the pod bay doors, HAL.", 1015L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 1016

L)

//)

Acࢼon combinators, such as andThen, are the subject of the next chapter.

3.3.1 Updaঞng a Single Field

In the Messages we’ve created so far we’ve referred to the computer from 2001: A
Space Odyssey as “HAL”, but the correct name is “HAL 9000”. Let’s fix that.

We start by creaঞng a query to select the rows to modify, and the columns to change:

val updateQuery =

messages.filter(_.sender === "HAL").map(_.sender)

// updateQuery: Query[Rep[String], String, Seq] = Rep(Bind)

We can use update to turn this into an acঞon to run. Update requires the new values
for the column we want to change:

exec(updateQuery.update("HAL 9000"))

// res21: Int = 2

We can retrieve the SQL for this query by calling updateStatment instead of update:

updateQuery.updateStatement

// res22: String = "update \"message\" set \"sender\" = ? where \"message\".\"

sender\" = 'HAL'"

Let’s break down the code in the Scala expression. By building our update query
from the messages TableQuery, we specify that we want to update records in the
message table in the database:

val messagesByHal = messages.filter(_.sender === "HAL")

// messagesByHal: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep

3.3. UPDATING ROWS 69

(Filter @1736154416)

We only want to update the sender column, so we use map to reduce the query to
just that column:

val halSenderCol = messagesByHal.map(_.sender)

// halSenderCol: Query[Rep[String], String, Seq] = Rep(Bind)

Finally we call the updatemethod, which takes a parameter of the unpacked type (in
this case String):

val action: DBIO[Int] = halSenderCol.update("HAL 9000")

// action: DBIO[Int] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@49ef7a3

Running that acঞon would return the number of rows changed.

3.3.2 Updaঞng Mulঞple Fields

We can update more than one field at the same ঞme by mapping the query to a tuple
of the columns we care about…

// 1016 is "I'm sorry, Dave...."

val query = messages.

filter(_.id === 1016L).

map(message => (message.sender, message.content))

// query: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

…and then supplying the tuple values we want to used in the update:

val updateAction: DBIO[Int] =

query.update(("HAL 9000", "Sure, Dave. Come right in."))

// updateAction: DBIO[Int] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@29fb93ed

exec(updateAction)

// res24: Int = 1

exec(messages.filter(_.sender === "HAL 9000").result)

// res25: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL 9000", "Affirmative, Dave. I read you.", 1014L),

// Message("HAL 9000", "Sure, Dave. Come right in.", 1016L)

//)

70 CHAPTER 3. CREATING AND MODIFYING DATA

Again, we can see the SQL we’re running using the updateStatement method. The
returned SQL contains two ? placeholders, one for each field as expected:

messages.

filter(_.id === 1016L).

map(message => (message.sender, message.content)).

updateStatement

// res26: String = "update \"message\" set \"sender\" = ?, \"content\" = ?

where \"message\".\"id\" = 1016"

We can even use mapTo to use case classes as the parameter to update:

case class NameText(name: String, text: String)

val newValue = NameText("Dave", "Now I totally don't trust you.")

// newValue: NameText = NameText("Dave", "Now I totally don't trust you.")

messages.

filter(_.id === 1016L).

map(m => (m.sender, m.content).mapTo[NameText]).

update(newValue)

// res27: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write] =

slick.jdbc.JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@

242cf2eb

3.3.3 Updaঞng with a Computed Value

Let’s now turn to more interesঞng updates. How about converঞng every message to
be all capitals? Or adding an exclamaঞon mark to the end of each message? Both
of these queries involve expressing the desired result in terms of the current value in
the database. In SQL we might write something like:

update "message" set "content" = CONCAT("content", '!')

This is not currently supported by update in Slick, but there are ways to achieve the
same result. One such way is to use Plain SQL queries, which we cover in Chapter 7.
Another is to perform a client-side update by defining a Scala funcঞon to capture the
change to each row:

def exclaim(msg: Message): Message =

msg.copy(content = msg.content + "!")

3.4. TAKE HOME POINTS 71

We can update rows by selecঞng the relevant data from the database, applying this
funcঞon, and wriঞng the results back individually. Note that approach can be quite
inefficient for large datasets—it takes N + 1 queries to apply an update to N results.

You may be tempted to write something like this:

def modify(msg: Message): DBIO[Int] =

messages.filter(_.id === msg.id).update(exclaim(msg))

// Don't do it this way:

for {

msg <- exec(messages.result)

} yield exec(modify(msg))

// res28: Seq[Int] = Vector(1, 1, 1, 1)

This will have the desired effect, but at some cost. What we have done there is use
our own exec method which will wait for results. We use it to fetch all rows, and
then we use it on each row to modify the row. That’s a lot of waiঞng. There is also
no support for transacঞons as we db.run each acঞon separately.

A be�er approach is to turn our logic into a single DBIO acঞon using acࢼon combinators.
This, together with transacঞons, is the topic of the next chapter.

However, for this parঞcular example, we recommend using Plain SQL (Chapter 7)
instead of client-side updates.

3.4 Take Home Points

For modifying the rows in the database we have seen that:

• inserts are via a += or ++= call on a table;

• updates are via an update call on a query, but are somewhat limited when you
need to update using the exisঞng row value; and

• deletes are via a delete call to a query.

Auto-incremenঞng values are inserted by Slick, unless forced. The auto-incremented
values can be returned from the insert by using returning.

Databases have different capabiliঞes. The limitaঞons of each profile is listed in the
profile’s Scala Doc page.

72 CHAPTER 3. CREATING AND MODIFYING DATA

3.5 Exercises

The code for this chapter is in the GitHub repository in the chapter-03 folder. As with
chapter 1 and 2, you can use the run command in SBT to execute the code against
an H2 database.

Where Did My Data Go?

Several of the exercises in this chapter require you to delete or update content
from the database. We’ve shown you above how to restore you data, but if you
want to explore and change the schema you might want to completely reset
the schema.

In the example code we provide a populate method you can use:

exec(populate)

This will drop, create, and populate the messages table with known values.

Populate is defined as:

import scala.concurrent.ExecutionContext.Implicits.global

def populate: DBIOAction[Option[Int], NoStream, Effect.All] =

for {

// Drop table if it already exists, then create the table:

_ <- messages.schema.drop.asTry andThen messages.schema.create

// Add some data:

count <- messages ++= freshTestData

} yield count

We’ll meet asTry and andThen in the next chapter.

3.5.1 Get to the Specifics

In Inserঞng Specific Columns we looked at only inserঞng the sender column:

messages.map(_.sender) += "HAL"

This failed when we tried to use it as we didn’t meet the requirements of the message
table schema. For this to succeed we need to include content as well as sender.

Rewrite the above query to include the content column.

https://github.com/underscoreio/essential-slick-code/tree/3.3

3.5. EXERCISES 73

See the soluঞon

3.5.2 Bulk All the Inserts

Insert the conversaঞon below between Alice and Bob, returning the messages popu-
lated with ids.

val conversation = List(

Message("Bob", "Hi Alice"),

Message("Alice","Hi Bob"),

Message("Bob", "Are you sure this is secure?"),

Message("Alice","Totally, why do you ask?"),

Message("Bob", "Oh, nothing, just wondering."),

Message("Alice","Ten was too many messages"),

Message("Bob", "I could do with a sleep"),

Message("Alice","Let's just get to the point"),

Message("Bob", "Okay okay, no need to be tetchy."),

Message("Alice","Humph!"))

See the soluঞon

3.5.3 No Apologies

Write a query to delete messages that contain “sorry”.

See the soluঞon

3.5.4 Update Using a For Comprehension

Rewrite the update statement below to use a for comprehension.

val rebootLoop = messages.

filter(_.sender === "HAL").

map(msg => (msg.sender, msg.content)).

update(("HAL 9000", "Rebooting, please wait..."))

// rebootLoop: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write]

= slick.jdbc.JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10

@54608cc3

Which style do you prefer?

See the soluঞon

74 CHAPTER 3. CREATING AND MODIFYING DATA

3.5.5 Selecঞve Memory

Delete HALs first two messages. This is a more difficult exercise.

You don’t know the IDs of the messages, or the content of them. But you do know
the IDs increase.

Hints:

• First write a query to select the two messages. Then see if you can find a way
to use it as a subquery.

• You can use in in a query to see if a value is in a set of values returned from a
query.

See the soluঞon

Chapter 4

Combining Acঞons

At some point you’ll find yourself wriঞng a piece of code made up of mulঞple acঞons.
You might need a simple sequence of acঞons to run one a[er another; or you might
need something more sophisঞcated where one acঞon depends on the results of an-
other.

In Slick you use acࢼon combinators to turn a number of acঞons into a single acঞon.
You can then run this combined acঞon just like any single acঞon. You might also run
these combined acঞons in a transacࢼon.

This chapter focuses on these combinators. Some, such as map, fold, and zip, will be
familiar from the Scala collecঞons library. Others, such as sequence and asTry may
be less familiar. We will give examples of how to use many of them in this chapter.

This is a key concept in Slick. Make sure you spend ঞme geমng comfortable with
combining acঞons.

4.1 Combinators Summary

The temptaঞon with mulঞple acঞons might be to run each acঞon, use the result, and
run another acঞon. This will require you to deal with mulঞple Futures. We recom-
mend you avoid that whenever you can.

Instead, focus on the acঞons and how they combine together, not on themessy details
of running them. Slick provides a set of combinators to make this possible.

75

76 CHAPTER 4. COMBINING ACTIONS

Before geমng into the detail, take a look at the two tables below. They list out the
key methods available on an acঞon, and also the combinators available on DBIO.

Table 4.1: Combinators on acঞon instances of DBIOAction, specifically a
DBIO[T]. Types simplified. (EC) Indicates an execuঞon context is required.

Method Arguments Result Type

map (EC) T => R DBIO[R]

flatMap (EC) T => DBIO[R] DBIO[R]

filter (EC) T => Boolean DBIO[T]

named String DBIO[T]

zip DBIO[R] DBIO[(T,R)]

asTry DBIO[Try[T]]

andThen or >> DBIO[R] DBIO[R]

andFinally DBIO[_] DBIO[T]

cleanUp (EC) Option[Throwable]=>DBIO[_] DBIO[T]

failed DBIO[Throwable]

Table 4.2: Combinators on DBIO object, with types simplified. (EC) Indicates an
execuঞon context is required.

Method Arguments Result Type

sequence TraversableOnce[DBIO[T]] DBIO[TraversableOnce[T]]

seq DBIO[_]* DBIO[Unit]

from Future[T] DBIO[T]

successful V DBIO[V]

failed Throwable DBIO[Nothing]

fold (EC) (Seq[DBIO[T]], T)

(T,T)=>T

DBIO[T]

4.2 Combinators in Detail

4.2.1 andThen (or >>)

The simplest way to run one acঞon a[er another is perhaps andThen. The combined
acঞons are both run, but only the result of the second is returned:

4.2. COMBINATORS IN DETAIL 77

val reset: DBIO[Int] =

messages.delete andThen messages.size.result

// reset: DBIO[Int] = slick.dbio.SynchronousDatabaseAction$FusedAndThenAction@

29cc1771

exec(reset)

// res1: Int = 0

The result of the first query is ignored, so we cannot use it. Later we will see how
flatMap allows us to use the result to make choices about which acঞon to run next.

Combined Acঞons Are Not Automaঞcally Transacঞons

By default, when you combine acঞons together you do not get a single trans-
acঞon. At the end of this chapter we’ll see that it’s very easy to run combined
acঞons in a transacঞon with:

db.run(actions.transactionally)

4.2.2 DBIO.seq

If you have a bunch of acঞons you want to run, you can use DBIO.seq to combine
them:

val resetSeq: DBIO[Unit] =

DBIO.seq(messages.delete, messages.size.result)

This is rather like combining the acঞons with andThen, but even the last value is
discarded.

4.2.3 map

Mapping over an acঞon is a way to set up a transformaঞon of a value from the
database. The transformaঞon will run on the result of the acঞon when it is returned
by the database.

As an example, we can create an acঞon to return the content of amessage, but reverse
the text:

78 CHAPTER 4. COMBINING ACTIONS

// Restore the data we deleted in the previous section

exec(messages ++= freshTestData)

// res2: Option[Int] = Some(4)

import scala.concurrent.ExecutionContext.Implicits.global

val text: DBIO[Option[String]] =

messages.map(_.content).result.headOption

// text: DBIO[Option[String]] = slick.jdbc.

StreamingInvokerAction$HeadOptionAction@48ce3ded

val backwards: DBIO[Option[String]] =

text.map(optionalContent => optionalContent.map(_.reverse))

// backwards: DBIO[Option[String]] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@48ce3ded,

// slick.dbio.DBIOAction$$Lambda$6716/771068809@366173d5,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(backwards)

// res3: Option[String] = Some("?LAH ,em daer uoy oD .LAH ,olleH")

Here we have created an acঞon called backwards that, when run, ensures a funcঞon
is applied to the result of the text acঞon. In this case the funcঞon is to apply reverse
to an opঞonal String.

Note that we have made three uses of map in this example:

• an Option map to apply reverse to our Option[String] result;
• a map on a query to select just the content column; and
• map on our acঞon so that the result will be transform when the acঞon is run.

Combinators everywhere!

This example transformed an Option[String] to another Option[String]. As you
may expect if map changes the type of a value, the type of DBIO changes too:

text.map(os => os.map(_.length))

// res4: DBIOAction[Option[Int], NoStream, Effect.All] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@48ce3ded,

// slick.dbio.DBIOAction$$Lambda$6716/771068809@7a6b1934,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

4.2. COMBINATORS IN DETAIL 79

0, submissions = 0]

//)

Note that the first type parameter on the DBIOAction is now Option[Int] (as
length returns an Int), not Option[String].

Execuঞon Context Required

Somemethods require an execuঞon context and some don’t. For example, map
does, but andThen does not. What gives?

The reason is that map allows you to call arbitrary codewhen joining the acঞons
together. Slick cannot allow that code to be run on its own execuঞon context,
because it has no way to know if you are going to ঞe up Slicks threads for a
long ঞme.

In contrast, methods such as andThenwhich combine acঞons without custom
code can be run on Slick’s own execuঞon context. Therefore, you do not need
an execuঞon context available for andThen.

You’ll know if you need an execuঞon context, because the compiler will tell
you:

Cannot find an implicit ExecutionContext. You might pass

an (implicit ec: ExecutionContext) parameter to your method

or import scala.concurrent.ExecutionContext.Implicits.global.

The Slick manual discusses this in the secঞon on Database I/O Acঞons.

4.2.4 DBIO.successful and DBIO.failed

When combining acঞons you will someঞmes need to create an acঞon that represents
a simple value. Slick provides DBIO.successful for that purpose:

val ok: DBIO[Int] = DBIO.successful(100)

We’ll see an example of this when we discuss flatMap.

And for failures, the value is a Throwable:

https://scala-slick.org/doc/3.3.3/dbio.html

80 CHAPTER 4. COMBINING ACTIONS

val err: DBIO[Nothing] =

DBIO.failed(new RuntimeException("pod bay door unexpectedly locked"))

This has a parঞcular role to play inside transacঞons, which we cover later in this chap-
ter.

4.2.5 flatMap

Ahh, flatMap. Wonderful flatMap. This method gives us the power to sequence
acঞons and decide what we want to do at each step.

The signature of flatMap should feel similar to the flatMap you see elsewhere:

// Simplified:

def flatMap[S](f: R => DBIO[S])(implicit e: ExecutionContext): DBIO[S]

That is, we give flatMap a funcঞon that depends on the value from an acঞon, and
evaluates to another acঞon.

As an example, let’s write a method to remove all the crew’s messages, and post a
message saying how many messages were removed. This will involve an INSERT and
a DELETE, both of which we’re familiar with:

val delete: DBIO[Int] =

messages.delete

def insert(count: Int) =

messages += Message("NOBODY", s"I removed ${count} messages")

The first thing flatMap allows us to do is run these acঞons in order:

import scala.concurrent.ExecutionContext.Implicits.global

val resetMessagesAction: DBIO[Int] =

delete.flatMap{ count => insert(count) }

// resetMessagesAction: DBIO[Int] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@33

d5fe97,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(resetMessagesAction)

4.2. COMBINATORS IN DETAIL 81

// res5: Int = 1

The 1 we see is the result of insert, which is the number of rows inserted.

This single acঞon produces the two SQL expressions you’d expect:

delete from "message";

insert into "message" ("sender","content")

values ('NOBODY', 'I removed 4 messages');

Beyond sequencing, flatMap also gives us control over which acঞons are run. To
illustrate this we will produce a variaঞon of resetMessagesAction which will not
insert a message if no messages were removed in the first step:

val logResetAction: DBIO[Int] =

delete.flatMap {

case 0 => DBIO.successful(0)

case n => insert(n)

}

We’ve decided a result of 0 is right if no message was inserted. But the point here is
that flatMap gives us arbitrary control over how acঞons can be combined.

Occasionally the compiler will complain about a flatMap and need your help to figur-
ing out the types. Recall that DBIO[T] is an alias for DBIOAction[T,S,E], encoding
streaming and effects. When mixing effects, such as inserts and selects, you may
need to explicitly specify the type parameters to apply to the resulঞng acঞon:

query.flatMap[Int, NoStream, Effect.All] { result => ... }

…but in many cases the compiler will figure these out for you.

Do it in the database if you can

Combining acঞons to sequence queries is a powerful feature of Slick. However,
you may be able to reduce mulঞple queries into a single database query. If you
can do that, you’re probably be�er off doing it.

As an example, you could implement “insert if not exists” like this:

82 CHAPTER 4. COMBINING ACTIONS

// Not the best way:

def insertIfNotExists(m: Message): DBIO[Int] = {

val alreadyExists =

messages.filter(_.content === m.content).result.headOption

alreadyExists.flatMap {

case Some(m) => DBIO.successful(0)

case None => messages += m

}

}

…but as we saw earlier in “More Control over Inserts” you can achieve the same
effect with a single SQL statement.

One query can o[en (but doesn’t always) perform be�er than a sequence of
queries. Your mileage may vary.

4.2.6 DBIO.sequence

Despite the similarity in name to DBIO.seq, DBIO.sequence has a different purpose.
It takes a sequence of DBIOs and gives back a DBIO of a sequence. That’s a bit of a
mouthful, but an example may help.

Let’s say we want to reverse the text of every message (row) in the database. We
start with this:

def reverse(msg: Message): DBIO[Int] =

messages.filter(_.id === msg.id).

map(_.content).

update(msg.content.reverse)

That’s a straigh�orward method that returns an update acঞon for one message. We
can apply it to every message…

// Don't do this

val manyUpdates: DBIO[Seq[DBIO[Int]]] =

messages.result.

map(msgs => msgs.map(reverse))

…which will give us an acঞon that returns acঞons! Note the crazy type signature.

You can find yourself in this awkward situaঞon when you’re trying to do something
like a join, but not quite. The puzzle is how to run this kind of beast.

This is where DBIO.sequence saves us. Rather than produce many acঞons via
msgs.map(reverse) we use DBIO.sequence to return a single acঞon:

4.2. COMBINATORS IN DETAIL 83

val updates: DBIO[Seq[Int]] =

messages.result.

flatMap(msgs => DBIO.sequence(msgs.map(reverse)))

The difference is:

• we’ve wrapped the Seq[DBIO] with DBIO.sequence to give a single
DBIO[Seq[Int]]; and

• we use flatMap to combine the sequence with the original query.

The end result is a sane type which we can run like any other acঞon.

Of course this one acঞon turns into many SQL statements:

select "sender", "content", "id" from "message"

update "message" set "content" = ? where "message"."id" = 1

update "message" set "content" = ? where "message"."id" = 2

update "message" set "content" = ? where "message"."id" = 3

update "message" set "content" = ? where "message"."id" = 4

4.2.7 DBIO.fold

Recall that many Scala collecঞons support fold as a way to combine values:

List(3,5,7).fold(1) { (a,b) => a * b }

// res6: Int = 105

1 * 3 * 5 * 7

// res7: Int = 105

You can do the same kind of thing in Slick: when you need to run a sequence of
acঞons, and reduce the results down to a value, you use fold.

As an example, suppose we have a number of reports to run. We want to summarize
all these reports to a single number.

// Pretend these two reports are complicated queries

// that return Important Business Metrics:

val report1: DBIO[Int] = DBIO.successful(41)

val report2: DBIO[Int] = DBIO.successful(1)

val reports: List[DBIO[Int]] =

84 CHAPTER 4. COMBINING ACTIONS

report1 :: report2 :: Nil

We can fold those reports with a funcঞon.

But we also need to consider our starঞng posiঞon:

val default: Int = 0

Finally we can produce an acঞon to summarize the reports:

val summary: DBIO[Int] =

DBIO.fold(reports, default) {

(total, report) => total + report

}

// summary: DBIO[Int] = FlatMapAction(

// FlatMapAction(

// SuccessAction(0),

// slick.dbio.DBIOAction$$$Lambda$7196/2008502859@acd9c55,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//),

// slick.dbio.DBIOAction$$$Lambda$7196/2008502859@378fa902,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(summary)

// res8: Int = 42

DBIO.fold is a way to combine acঞons, such that the results are combined by a func-
ঞon you supply. As with other combinators, your funcঞon isn’t run unঞl we execute
the acঞon itself. In this case all our reports are run, and the sum of the values reported.

4.2.8 zip

We’ve seen how DBIO.seq combines acঞons and ignores the results. We’ve also seen
that andThen combines acঞons and keeps one result. If youwant to keep both results,
zip is the combinator for you:

val zip: DBIO[(Int, Seq[Message])] =

messages.size.result zip messages.filter(_.sender === "HAL").result

// zip: DBIO[(Int, Seq[Message])] = slick.dbio.

SynchronousDatabaseAction$$anon$5@150fb47e

4.2. COMBINATORS IN DETAIL 85

// Make sure we have some messages from HAL:

exec(messages ++= freshTestData)

// res9: Option[Int] = Some(4)

exec(zip)

// res10: (Int, Seq[Message]) = (

// 5,

// Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 11L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 13L)

//)

//)

The acঞon returns a tuple represenঞng the results of both queries: a count of the
total number of messages, and the messages from HAL.

4.2.9 andFinally and cleanUp

The two methods cleanUp and andFinally act a li�le like Scala’s catch and
finally.

cleanUp runs a[er an acঞon completes, and has access to any error informaঞon as
an Option[Throwable]:

// An action to record problems we encounter:

def log(err: Throwable): DBIO[Int] =

messages += Message("SYSTEM", err.getMessage)

// Pretend this is important work which might fail:

val work = DBIO.failed(new RuntimeException("Boom!"))

val action: DBIO[Int] = work.cleanUp {

case Some(err) => log(err)

case None => DBIO.successful(0)

}

The result of running this action is sঞll the original excepঞon…

exec(action)

// java.lang.RuntimeException: Boom!

// at repl.Session$App.<init>(4-combining-actions.md:241)

// at repl.Session$.app(4-combining-actions.md:3)

…but cleanUp has produced a side-effect for us:

86 CHAPTER 4. COMBINING ACTIONS

exec(messages.filter(_.sender === "SYSTEM").result)

// res11: Seq[MessageTable#TableElementType] = Vector(

// Message("SYSTEM", "Boom!", 14L)

//)

Both cleanUp and andFinally run a[er an acঞon, regardless of whether it succeeds
or fails. cleanUp runs in response to a previous failed acঞon; andFinally runs all the
ঞme, regardless of success or failure, and has no access to the Option[Throwable]
that cleanUp sees.

4.2.10 asTry

Calling asTry on an acঞon changes the acঞon’s type from a DBIO[T] to a
DBIO[Try[T]]. This means you can work in terms of Scala’s Success[T] and
Failure instead of excepঞons.

Suppose we had an acঞon that might throw an excepঞon:

val tryAction = DBIO.failed(new RuntimeException("Boom!"))

We can place this inside Try by combining the acঞon with asTry:

exec(tryAction.asTry)

// res13: util.Try[Nothing] = Failure(java.lang.RuntimeException: Boom!)

And successful acঞons will evaluate to a Success[T]:

exec(messages.size.result.asTry)

// res14: util.Try[Int] = Success(6)

4.3 Logging Queries and Results

With acঞons combined together, it’s useful to see the queries that are being executed.

We’ve seen how to retrieve the SQL of a query using insertStatement and similar
methods on a query, or the statements method on an acঞon. These are useful for
experimenঞng with Slick, but someঞmes we want to see all the queries when Slick
executes them. We can do that by configuring logging.

Slick uses a logging interface called SLF4J. We can configure this to capture infor-
maঞon about the queries being run. The build.sbt files in the exercises use an

https://www.slf4j.org/

4.3. LOGGING QUERIES AND RESULTS 87

SLF4J-compaঞble logging back-end called Logback, which is configured in the file sr-
c/main/resources/logback.xml. In that file we can enable statement logging by turning
up the logging to debug level:

<logger name="slick.jdbc.JdbcBackend.statement" level="DEBUG"/>

This causes Slick to log every query, including modificaঞons to the schema:

DEBUG slick.jdbc.JdbcBackend.statement - Preparing statement:

delete from "message" where "message"."sender" = 'HAL'

We can change the level of various loggers, as shown in the table below.

Table 4.3: Slick loggers and their effects.

Logger Will log…

slick.jdbc.JdbcBackend.statement SQL sent to the database.
slick.jdbc.JdbcBackend.parameter Parameters passed to a query.
slick.jdbc.StatementInvoker.result The first few results of each query.
slick.session Session events such as

opening/closing connecঞons.
slick Everything!

The StatementInvoker.result logger, in parঞcular, is pre�y cute. Here’s an exam-
ple from running a select query:

result - /--------+----------------------+----\

result - | sender | content | id |

result - +--------+----------------------+----+

result - | HAL | Affirmative, Dave... | 2 |

result - | HAL | I'm sorry, Dave. ... | 4 |

result - \--------+----------------------+----/

The combinaঞon of parameter and statement can show you the values bound to ?
placeholders. For example, when adding rows we can see the values being inserted:

statement - Preparing statement: insert into "message"

("sender","content") values (?,?)

https://logback.qos.ch/

88 CHAPTER 4. COMBINING ACTIONS

parameter - /--------+---------------------------\

parameter - | 1 | 2 |

parameter - | String | String |

parameter - |--------+---------------------------|

parameter - | Dave | Hello, HAL. Do you rea... |

parameter - | HAL | I'm sorry, Dave. I'm a... |

parameter - \--------+---------------------------/

4.4 Transacঞons

So far each of the changes we’ve made to the database run independently of the
others. That is, each insert, update, or delete query we run can succeed or fail inde-
pendently of the rest.

We o[en want to ঞe sets of modificaঞons together in a transacࢼon so that they either
all succeed or all fail. We can do this in Slick using the transactionally method.

As an example, let’s re-write the movie script. We want to make sure the script
changes all complete or nothing changes. We can do this by finding the old script
text and replacing it with some new text:

def updateContent(old: String) =

messages.filter(_.content === old).map(_.content)

exec {

(updateContent("Affirmative, Dave. I read you.").update("Wanna come in?")

andThen

updateContent("Open the pod bay doors, HAL.").update("Pretty please!")

andThen

updateContent("I'm sorry, Dave. I'm afraid I can't do that.").update("

Opening now.")).transactionally

}

// res15: Int = 1

exec(messages.result).foreach(println)

// Message(NOBODY,I removed 4 messages,9)

// Message(Dave,Hello, HAL. Do you read me, HAL?,10)

// Message(HAL,Wanna come in?,11)

// Message(Dave,Pretty please!,12)

// Message(HAL,Opening now.,13)

// Message(SYSTEM,Boom!,14)

The changes we make in the transactionally block are temporary unঞl the block
completes, at which point they are commi�ed and become permanent.

4.5. TAKE HOME POINTS 89

To manually force a rollback you need to call DBIO.failed with an appropriate ex-
cepঞon.

val willRollback = (

(messages += Message("HAL", "Daisy, Daisy...")) >>

(messages += Message("Dave", "Please, anything but your singing")) >>

DBIO.failed(new Exception("agggh my ears")) >>

(messages += Message("HAL", "Give me your answer do"))

).transactionally

// willRollback: DBIOAction[Int, NoStream, Effect.Write with Effect.Write with

Effect with Effect.Write with Effect.Transactional] = slick.dbio.

SynchronousDatabaseAction$$anon$11@6ffbcb49

exec(willRollback.asTry)

// res17: util.Try[Int] = Failure(java.lang.Exception: agggh my ears)

The result of running willRollback is that the database won’t have changed. Inside
of transacঞonal block you would see the inserts unঞl DBIO.failed is called.

If we removed the .transactionally that is wrapping our combined acঞons, the
first two inserts would succeed, even though the combined acঞon failed.

4.5 Take Home Points

Inserts, selects, deletes and other forms of Database Acঞon can be combined using
flatMap and other combinators. This is a powerful way to sequence acঞons, and
make acঞons depend on the results of other acঞons.

Combining acঞons avoid having to deal with awaiঞng results or having to sequence
Futures yourself.

We saw that the SQL statements executed and the result returned from the database
can be monitored by configuring the logging system.

Finally, we saw that acঞons that are combined together can also be run inside a trans-
acঞon.

4.6 Exercises

4.6.1 And Then what?

In Chapter 1 we created a schema and populated the database as separate acঞons.
Use your newly found knowledge to combine them.

90 CHAPTER 4. COMBINING ACTIONS

This exercise expects to start with an empty database. If you’re already in the REPL
and the database exists, you’ll need to drop the table first:

val drop: DBIO[Unit] = messages.schema.drop

// drop: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$8@2576a80d

val create: DBIO[Unit] = messages.schema.create

// create: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@4db25499

val populate: DBIO[Option[Int]] = messages ++= freshTestData

// populate: DBIO[Option[Int]] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$MultiInsertAction@52975680

exec(drop)

See the soluঞon

4.6.2 First!

Create amethod that will insert amessage, but if it is the first message in the database,
automaঞcally insert the message “First!” before it.

Your method signature should be:

def prefixFirst(m: Message): DBIO[Int] = ???

Use your knowledge of the flatMap acঞon combinator to achieve this.

See the soluঞon

4.6.3 There Can be Only One

Implement onlyOne, a method that guarantees that an acঞon will return only one
result. If the acঞon returns anything other than one result, the method should fail
with an excepঞon.

Below is the method signature and two test cases:

def onlyOne[T](ms: DBIO[Seq[T]]): DBIO[T] = ???

You can see that onlyOne takes an acঞon as an argument, and that the acঞon could
return a sequence of results. The return from the method is an acঞon that will return
a single value.

4.6. EXERCISES 91

In the example data there is only one message that contains the word “Sorry”, so we
expect onlyOne to return that row:

val happy = messages.filter(_.content like "%sorry%").result

// happy: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@732184b5

// We expect...

// exec(onlyOne(happy))

// ...to return a message.

However, there are twomessages containing theword “I”. In this case onlyOne should
fail:

val boom = messages.filter(_.content like "%I%").result

// boom: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@2c6800d4

// If we run this...

// exec(onlyOne(boom))

// we want a failure, such as:

// java.lang.RuntimeException: Expected 1 result, not 2

Hints:

• The signature of onlyOne is telling us we will take an acঞon that produces a
Seq[T] and return an acঞon that produces a T. That tells us we need an acঞon
combinator here.

• That fact that the method may fail means we want to use DBIO.successful
and DBIO.failed in there somewhere.

See the soluঞon

4.6.4 Let’s be Reasonable

Some fool is throwing excepঞons in our code, destroying our ability to reason about
it. Implement exactlyOne which wraps onlyOne encoding the possibility of failure
using types rather than excepঞons.

Then rerun the test cases.

See the soluঞon

92 CHAPTER 4. COMBINING ACTIONS

4.6.5 Filtering

There is a DBIO filtermethod, but it produces a runঞme excepঞon if the filter pred-
icate is false. It’s like Future’s filter method in that respect. We’ve not found a
situaঞon where we need it.

However, we can create our own kind of filter. It can take some alternaঞve acঞon
when the filter predicate fails.

The signature could be:

def myFilter[T](action: DBIO[T])(p: T => Boolean)(alternative: => T) = ???

If you’re not comfortable with the [T] type parameter, or the by name parameter on
alternative, just use Int instead:

def myFilter(action: DBIO[Int])(p: Int => Boolean)(alternative: Int) = ???

Go ahead and implement myFilter.

We have an example usage from the ship’s markeঞng department. They are happy to
report the number of chat messages, but only if that number is at least 100:

myFilter(messages.size.result)(_ > 100)(100)

See the soluঞon

4.6.6 Unfolding

This is a challenging exercise.

We saw that fold can take a number of acঞons and reduce them using a funcঞon
you supply. Now imagine the opposite: unfolding an iniঞal value into a sequence of
values via a funcঞon. In this exercise we want you to write an unfold method that
will do just that.

Why would you need to do something like this? One example would be when you
have a tree structure represented in a database and need to search it. You can follow
a link between rows, possibly recording what you find as you follow those links.

As an example, let’s pretend the crew’s ship is a set of rooms, one connected to just
one other:

4.6. EXERCISES 93

case class Room(name: String, connectsTo: String)

class FloorPlan(tag: Tag) extends Table[Room](tag, "floorplan") {

def name = column[String]("name")

def connectsTo = column[String]("next")

def * = (name, connectsTo).mapTo[Room]

}

lazy val floorplan = TableQuery[FloorPlan]

exec {

(floorplan.schema.create) >>

(floorplan += Room("Outside", "Podbay Door")) >>

(floorplan += Room("Podbay Door", "Podbay")) >>

(floorplan += Room("Podbay", "Galley")) >>

(floorplan += Room("Galley", "Computer")) >>

(floorplan += Room("Computer", "Engine Room"))

}

// res28: Int = 1

For any given room it’s easy to find the next room. For example:

SELECT

"connectsTo"

FROM

"foorplan"

WHERE

"name" = 'Podbay'

-- Returns 'Galley'

Write a method unfold that will take any room name as a starঞng point, and a query
to find the next room, and will follow all the connecঞons unঞl there are no more
connecঞng rooms.

The signature of unfold could be:

def unfold(

z: String,

f: String => DBIO[Option[String]]

): DBIO[Seq[String]] = ???

…where z is the starঞng (“zero”) room, and f will lookup the connecঞng room (an
acঞon for the query to find the next room).

If unfold is given "Podbay" as a starঞng point it should return an acঞonwhich, when
run, will produce: Seq("Podbay", "Galley", "Computer", "Engine Room").

94 CHAPTER 4. COMBINING ACTIONS

You’ll want to accumulate results of the rooms you visit. One way to do that would
be to use a different signature:

def unfold(

z: String,

f: String => DBIO[Option[String]],

acc: Seq[String] = Seq.empty

): DBIO[Seq[String]] = ???

See the soluঞon

Chapter 5

Data Modelling

We can do the basics of connecঞng to a database, running queries, and changing data.
We turn now to richer models of data and how our applicaঞon hangs together.

In this chapter we will:

• understand how to structure an applicaঞon;

• look at alternaঞves to modelling rows as case classes;

• store richer data types in columns; and

• expand on our knowledge of modelling tables to introduce opঞonal values and
foreign keys.

To do this, we’ll expand the chat applicaঞon schema to support more than just mes-
sages.

5.1 Applicaঞon Structure

So far, all of our examples have been wri�en in a single Scala file. This approach
doesn’t scale to larger applicaঞon codebases. In this secঞon we’ll explain how to split
up applicaঞon code into modules.

95

96 CHAPTER 5. DATA MODELLING

Unঞl now we’ve also been exclusively using Slick’s H2 profile. When wriঞng real
applicaঞons we o[en need to be able to switch profiles in different circumstances.
For example, we may use PostgreSQL in producঞon and H2 in our unit tests.

An example of this pa�ern can be found in the example project, folder chapter-05, file
structure.scala.

5.1.1 Abstracঞng over Databases

Let’s look at how we can write code that works with mulঞple different database pro-
files. When we previously wrote…

import slick.jdbc.H2Profile.api._

…we were locking ourselves into H2. We want to write an import that works with
a variety of profiles. Fortunately, Slick provides a common supertype for profiles—a
trait called JdbcProfile:

import slick.jdbc.JdbcProfile

Wecan’t import directly from JdbcProfile because it isn’t a concrete object. Instead,
we have to inject a dependency of type JdbcProfile into our applicaঞon and import
from that. The basic pa�ern we’ll use is as follows:

• isolate our database code into a trait (or a few traits);

• declare the Slick profile as an abstract val and import from that; and

• extend our database trait to make the profile concrete.

Here’s a simple form of this pa�ern:

trait DatabaseModule {

// Declare an abstract profile:

val profile: JdbcProfile

// Import the Slick API from the profile:

import profile.api._

// Write our database code here...

}

object Main1 extends App {

// Instantiate the database module, assigning a concrete profile:

https://github.com/underscoreio/essential-slick-code/tree/3.3

5.1. APPLICATION STRUCTURE 97

val databaseLayer = new DatabaseModule {

val profile = slick.jdbc.H2Profile

}

}

In this pa�ern, we declare our profile using an abstract val. This is enough to allow us
to write import profile.api._. The compiler knows that the val is going to be an
immutable JdbcProfile even if we haven’t yet said which one. Whenwe instanঞate
the DatabaseModule we bind profile to our profile of choice.

5.1.2 Scaling to Larger Codebases

As our applicaঞons get bigger, we need to split our code up into mulঞple files to keep
it manageable. We can do this by extending the pa�ern above to a family of traits:

trait Profile {

val profile: JdbcProfile

}

trait DatabaseModule1 { self: Profile =>

import profile.api._

// Write database code here

}

trait DatabaseModule2 { self: Profile =>

import profile.api._

// Write more database code here

}

// Mix the modules together:

class DatabaseLayer(val profile: JdbcProfile) extends

Profile with

DatabaseModule1 with

DatabaseModule2

// Instantiate the modules and inject a profile:

object Main2 extends App {

val databaseLayer = new DatabaseLayer(slick.jdbc.H2Profile)

}

Herewe factor out our profile dependency into its own Profile trait. Eachmodule
of database code specifies Profile as a self-type, meaning it can only be extended
by a class that also extends Profile. This allows us to share the profile across our
family of modules.

98 CHAPTER 5. DATA MODELLING

To work with a different database, we inject a different profile when we instanঞate
the database code:

val anotherDatabaseLayer = new DatabaseLayer(slick.jdbc.PostgresProfile)

// anotherDatabaseLayer: DatabaseLayer = repl.SessionAppDatabaseLayer@769

e16b6

This basic pa�ern is a reasonable way of structuring your applicaঞon.

5.2 Representaঞons for Rows

In previous chapters we modelled rows as case classes. Although this is a common
usage pa�ern, and the one we recommend, there are several representaঞon opঞons
available, including tuples, case classes, and HLists. Let’s invesঞgate these by looking
in more detail at how Slick relates columns in our database to fields in our classes.

5.2.1 Projecঞons, ProvenShapes, mapTo, and <>

When we declare a table in Slick, we are required to implement a *method that spec-
ifies a “default projecঞon”:

class MyTable(tag: Tag) extends Table[(String, Int)](tag, "mytable") {

def column1 = column[String]("column1")

def column2 = column[Int]("column2")

def * = (column1, column2)

}

Expose Only What You Need

We can hide informaঞon by excluding it from our row definiঞon. The default
projecঞon controls what is returned, in what order, and is driven by our row
definiঞon.

For example, we don’t need to map everything in a table with legacy columns
that aren’t being used.

Projecঞons provide mappings between database columns and Scala values. In the
code above, the definiঞon of * is mapping column1 and column2 from the database
to the (String, Int) tuples defined in the extends Table clause.

If we look at the definiঞon of * in the Table class, we see something confusing:

5.2. REPRESENTATIONS FOR ROWS 99

abstract class Table[T] {

def * : ProvenShape[T]

}

The type of * is actually something called a ProvenShape, not a tuple of columns
as we specified in our example. There is clearly something else going on here. Slick
is using implicit conversions to build a ProvenShape object from the columns we
provided.

The internal workings of ProvenShape are certainly beyond the scope of this book.
Suffice to say that Slick can use any Scala type as a projecঞon provided it can generate
a compaঞble ProvenShape. If we look at the rules for ProvenShape generaঞon, we
will get an idea about what data types we can map. Here are the three most common
use cases:

1. Single column definiঞons produce shapes that map the column contents to a
value of the column’s type parameter. For example, a column of Rep[String]
maps a value of type String:

class MyTable1(tag: Tag) extends Table[String](tag, "mytable") {

def column1 = column[String]("column1")

def * = column1

}

2. Tuples of database columns map tuples of their type parameters. For example,
(Rep[String], Rep[Int]) is mapped to (String, Int):

class MyTable2(tag: Tag) extends Table[(String, Int)](tag, "mytable")

{

def column1 = column[String]("column1")

def column2 = column[Int]("column2")

def * = (column1, column2)

}

3. If we have a ProvenShape[A], we can convert it to a ProvenShape[B]

using the “projecঞon operator” <>. In this example we know we can get
ProvenShape[A] when the A is the String and Int tuple (from the previous
example). We supply funcঞons to convert each way between A and B and
Slick builds the resulঞng shape. Here our B is the User case class:

100 CHAPTER 5. DATA MODELLING

case class User(name: String, id: Long)

class UserTable3(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).<>(User.tupled, User.unapply)

}

The projecঞon operator <> is the secret ingredient that allows us tomap awide variety
of types. As long as we can convert a tuple of columns to and from some type B, we
can store instances of B in a database.

We’ve not seen <> unঞl now because the mapTo macro builds a projecঞon for us. In
most situaঞons mapTo is both more convenient and more efficient to use than <>.
However, <> is available and worth knowing about if we need more control over the
mapping. It will also be a method you see a great deal in code bases created before
Slick 3.2.

The two arguments to <> are:

• a funcঞon from A => B, which converts from the exisঞng shape’s unpacked
row-level encoding (String, Long) to our preferred representaঞon (User);
and

• a funcঞon from B => Option[A], which converts the other way.

We can supply these funcঞons by hand if we want:

def intoUser(pair: (String, Long)): User =

User(pair._1, pair._2)

def fromUser(user: User): Option[(String, Long)] =

Some((user.name, user.id))

and write:

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).<>(intoUser, fromUser)

}

5.2. REPRESENTATIONS FOR ROWS 101

In the User example, the case class supplies these funcঞons via User.tupled and
User.unapply, so we don’t need to build them ourselves. However it is useful to
remember that we can provide our own funcঞons for more elaborate packaging and
unpackaging of rows. We will see this in one of the exercises in this chapter.

In this secঞonwe’ve looked at the details of projecঞons. In general, though, the mapTo
macro is sufficient for many situaঞons.

5.2.2 Tuples versus Case Classes

We’ve seen how Slick is able to map case classes and tuples of values. But which
shouldweuse? In one sense there is li�le difference between case classes and tuples—
both represent fixed sets of values. However, case classes differ from tuples in two
important respects.

First, case classes have field names, which improves code readability:

val dave = User("Dave", 0L)

// dave: User = User("Dave", 0L)

dave.name // case class field access

// res1: String = "Dave" // case class field access

val tuple = ("Dave", 0L)

// tuple: (String, Long) = ("Dave", 0L)

tuple._1 // tuple field access

// res2: String = "Dave"

Second, case classes have types that disঞnguish them from other case classes with
the same field types:

case class Dog(name: String, id: Long)

val user = User("Dave", 0L)

val dog = Dog("Lassie", 0L)

// Different types (a warning, but when compiled -Xfatal-warnings....)

user == dog

// error: No warnings can be incurred under -Werror.

As a general rule, we recommend using case classes to represent database rows for
these reasons.

102 CHAPTER 5. DATA MODELLING

5.2.3 Heterogeneous Lists

We’ve seen how Slick can map database tables to tuples and case classes. Scala vet-
erans idenঞfy a key weakness in this approach—tuples and case classes run into limi-
taঞons at 22 fields¹.

Many of us have heard horror stories of legacy tables in enterprise databases that have
tens or hundreds of columns. How dowemap these rows? Fortunately, Slick provides
an HList implementaঞon to support tables with very large numbers of columns.

To moঞvate this, let’s consider a poorly-designed legacy table for storing product at-
tributes:

case class Attr(id: Long, productId: Long /* ...etc */)

class AttrTable(tag: Tag) extends Table[Attr](tag, "attrs") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

def name3 = column[String]("name3")

def value3 = column[Int]("value3")

def name4 = column[String]("name4")

def value4 = column[Int]("value4")

def name5 = column[String]("name5")

def value5 = column[Int]("value5")

def name6 = column[String]("name6")

def value6 = column[Int]("value6")

def name7 = column[String]("name7")

def value7 = column[Int]("value7")

def name8 = column[String]("name8")

def value8 = column[Int]("value8")

def name9 = column[String]("name9")

def value9 = column[Int]("value9")

def name10 = column[String]("name10")

def value10 = column[Int]("value10")

def name11 = column[String]("name11")

def value11 = column[Int]("value11")

def name12 = column[String]("name12")

def value12 = column[Int]("value12")

def * = ??? // we'll fill this in below

}

¹Scala 2.11 introduced the ability to define case classes with more than 22 fields, but tuples and func-
ঞons are sঞll limited to 22. We’ve wri�en about this in a blog post.

https://scala-slick.org/doc/3.3.3/api/#slick.collection.heterogeneous.HList
https://underscore.io/blog/posts/2016/10/11/twenty-two.html

5.2. REPRESENTATIONS FOR ROWS 103

Hopefully you don’t have a table like this at your organizaঞon, but accidents do hap-
pen.

This table has 26 columns—too many to model using flat tuples. Fortunately, Slick
provides an alternaঞve mapping representaঞon that scales to arbitrary numbers of
columns. This representaঞon is called a heterogeneous list or HList².

An HList is a sort of hybrid of a list and a tuple. It has an arbitrary length like a List,
but each element can be a different type like a tuple. Here are some examples:

import slick.collection.heterogeneous.{HList, HCons, HNil}

import slick.collection.heterogeneous.syntax._

val emptyHList = HNil

// emptyHList: HNil.type = HNil

val shortHList: Int :: HNil = 123 :: HNil

// shortHList: Int :: HNil = (123)

val longerHList: Int :: String :: Boolean :: HNil =

123 :: "abc" :: true :: HNil

// longerHList: Int :: String :: Boolean :: HNil = (123, "abc", true)

HLists are constructed recursively like Lists, allowing us to model arbitrarily large
collecঞons of values:

• an empty HList is represented by the singleton object HNil;

• longer HLists are formed by prepending values using the :: operator, which
creates a new list of a new type.

Noঞce the types and values of each HListmirror each other: the longerHList com-
prises values of types Int, String, and Boolean, and its type comprises the types
Int, String, and Boolean as well. Because the element types are preserved, we can
write code that takes each precise type into account.

Slick is able to produce ProvenShapes to map HLists of columns to HLists of their
values. For example, the shape for a Rep[Int] :: Rep[String] :: HNil maps
values of type Int :: String :: HNil.

²You may have heard of HList via other libraries, such as shapeless. We’re talking here about Slick’s
own implementaঞon of HList, not the shapeless one. You can use the shapeless HList via a library we’ve
provided called slickless.

https://github.com/milessabin/shapeless
https://github.com/underscoreio/slickless

104 CHAPTER 5. DATA MODELLING

5.2.3.1 Using HLists Directly

We can use an HList to map the large table in our example above. Here’s what the
default projecঞon looks like:

import slick.collection.heterogeneous.{ HList, HCons, HNil }

import slick.collection.heterogeneous.syntax._

import scala.language.postfixOps

type AttrHList =

Long :: Long ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

HNil

class AttrTable(tag: Tag) extends Table[AttrHList](tag, "attrs") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

def name3 = column[String]("name3")

def value3 = column[Int]("value3")

def name4 = column[String]("name4")

def value4 = column[Int]("value4")

def name5 = column[String]("name5")

def value5 = column[Int]("value5")

def name6 = column[String]("name6")

def value6 = column[Int]("value6")

def name7 = column[String]("name7")

def value7 = column[Int]("value7")

def name8 = column[String]("name8")

def value8 = column[Int]("value8")

def name9 = column[String]("name9")

def value9 = column[Int]("value9")

def name10 = column[String]("name10")

def value10 = column[Int]("value10")

def name11 = column[String]("name11")

def value11 = column[Int]("value11")

def name12 = column[String]("name12")

def value12 = column[Int]("value12")

def * = id :: productId ::

name1 :: value1 :: name2 :: value2 :: name3 :: value3 ::

name4 :: value4 :: name5 :: value5 :: name6 :: value6 ::

5.2. REPRESENTATIONS FOR ROWS 105

name7 :: value7 :: name8 :: value8 :: name9 :: value9 ::

name10 :: value10 :: name11 :: value11 :: name12 :: value12 ::

HNil

}

val attributes = TableQuery[AttrTable]

// attributes: TableQuery[AttrTable] = Rep(TableExpansion)

Wriঞng HList types and values is cumbersome and error prone, so we’ve introduced
a type alias of AttrHList to help us.

Working with this table involves inserঞng, updaঞng, selecঞng, and modifying
instances of AttrHList. For example:

import scala.concurrent.ExecutionContext.Implicits.global

val program: DBIO[Seq[AttrHList]] = for {

_ <- attributes.schema.create

_ <- attributes += 0L :: 100L ::

"name1" :: 1 :: "name2" :: 2 :: "name3" :: 3 ::

"name4" :: 4 :: "name5" :: 5 :: "name6" :: 6 ::

"name7" :: 7 :: "name8" :: 8 :: "name9" :: 9 ::

"name10" :: 10 :: "name11" :: 11 :: "name12" :: 12 ::

HNil

rows <- attributes.filter(_.value1 === 1).result

} yield rows

// program: DBIO[Seq[AttrHList]] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@2

c30df3,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

val myAttrs: AttrHList = exec(program).head

// myAttrs: AttrHList = (

// 1L,

// 100L,

// "name1",

// 1,

// "name2",

// 2,

// "name3",

// 3,

// "name4",

// 4,

// "name5",

106 CHAPTER 5. DATA MODELLING

// 5,

// "name6",

// 6,

// "name7",

// 7,

// "name8",

// 8,

// "name9",

// 9,

// "name10",

// 10,

// "name11",

// 11,

// "name12",

// 12

//)

We can extract values from our query results HList using pa�ern matching or a vari-
ety of type-preserving methods defined on HList, including head, apply, drop, and
fold:

val id: Long = myAttrs.head

// id: Long = 1L

val productId: Long = myAttrs.tail.head

// productId: Long = 100L

val name1: String = myAttrs(2)

// name1: String = "name1"

val value1: Int = myAttrs(3)

// value1: Int = 1

5.2.3.2 Using HLists and Case Classes

In pracঞce we’ll want to map an HList representaঞon to a regular class to make it
easier to work with. Slick’s <> operator works with HList shapes as well as tuple
shapes. To use it we’d have to produce our own mapping funcঞons in place of the
case class apply and unapply, but otherwise this approach is the same as we’ve
seen for tuples.

However, the mapTo macro will generate the mapping between an HList and a case
class for us:

// A case class for our very wide row:

case class Attrs(id: Long, productId: Long,

name1: String, value1: Int, name2: String, value2: Int /* etc */)

class AttrTable(tag: Tag) extends Table[Attrs](tag, "attributes") {

5.2. REPRESENTATIONS FOR ROWS 107

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

/* etc */

def * = (

id :: productId ::

name1 :: value1 :: name2 :: value2 /* etc */ ::

HNil

).mapTo[Attrs]

}

val attributes = TableQuery[AttrTable]

Noঞce the pa�ern is:

def * = (some hlist).mapTo[case class with the same fields]

With this in place our table is defined on a plain Scala case class. We can query and
modify the data as normal using case classes:

val program: DBIO[Seq[Attrs]] = for {

_ <- attributes.schema.create

_ <- attributes += Attrs(0L, 100L, "n1", 1, "n2", 2 /* etc */)

rows <- attributes.filter(_.productId === 100L).result

} yield rows

// program: DBIO[Seq[Attrs]] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@5

fc4cd6a,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(program)

// res6: Seq[Attrs] = Vector(Attrs(1L, 100L, "n1", 1, "n2", 2))

Code Generaঞon

Someঞmes your code is the definiঞve descripঞon of the schema; other ঞmes
it’s the database itself. The la�er is the case when working with legacy
databases, or database where the schema is managed independently of your

108 CHAPTER 5. DATA MODELLING

Slick applicaঞon.

When the database is considered the source truth in your organisaঞon, the
Slick code generator is an important tool. It allows you to connect to a database,
generate the table definiঞons, and customize the code produced. For tables
with wide rows, it produces an HList representaঞon.

Prefer it to manually reverse engineering a schema by hand.

5.3 Table and Column Representaঞon

Now we know how rows can be represented and mapped, let’s look in more detail
at the representaঞon of the table and the columns it comprises. In parঞcular we’ll
explore nullable columns, foreign keys, more about primary keys, composite keys, and
opঞons you can apply to a table.

5.3.1 Nullable Columns

Columns defined in SQL are nullable by default. That is, they can contain NULL as a
value. Slick makes columns non-nullable by default—if you want a nullable column
you model it naturally in Scala as an Option[T].

Let’s create a variant of User with an opঞonal email address:

case class User(name: String, email: Option[String] = None, id: Long = 0L)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

We can insert users with or without an email address:

val program = (

users.schema.create >>

(users += User("Dave", Some("dave@example.org"))) >>

(users += User("HAL"))

https://scala-slick.org/doc/3.3.3/code-generation.html

5.3. TABLE AND COLUMN REPRESENTATION 109

)

// program: DBIOAction[Int, NoStream, Effect.Schema with Effect.Write with

Effect.Write] = slick.dbio.SynchronousDatabaseAction$FusedAndThenAction@7

b41589b

exec(program)

// res8: Int = 1

and retrieve them again with a select query:

exec(users.result).foreach(println)

// User(Dave,Some(dave@example.org),1)

// User(HAL,None,2)

So far, so ordinary. What might be a surprise is how you go about selecঞng all rows
that have no email address. You might expect the following to find the one row that
has no email address:

// Don't do this

val none: Option[String] = None

// none: Option[String] = None

val badQuery = exec(users.filter(_.email === none).result)

// badQuery: Seq[UserTable#TableElementType] = Vector()

Despite the fact that we do have one row in the database no email address, this query
produces no results.

Veterans of database administraঞon will be familiar with this interesঞng quirk of SQL:
expressions involving null themselves evaluate to null. For example, the SQL ex-
pression 'Dave' = 'HAL' evaluates to false, whereas the expression 'Dave' =

null evaluates to null.

Our Slick query above amounts to:

SELECT * FROM "user" WHERE "email" = NULL

The SQL expression "email" = null evaluates to null for any value of "email".
SQL’s null is a falsey value, so this query never returns a value.

To resolve this issue, SQL provides two operators: IS NULL and IS NOT NULL,
which are provided in Slick by the methods isEmpty and isDefined on any
Rep[Option[A]]:

110 CHAPTER 5. DATA MODELLING

Table 5.1: Opঞonal column methods. Operand and result types should be in-
terpreted as parameters to Rep[_]. The ? method is described in the next
secঞon.

Scala Code Operand Column Types Result Type SQL Equivalent

col.? A Option[A] col

col.isEmpty Option[A] Boolean col is null

col.isDefined Option[A] Boolean col is not

null

We can fix our query by replacing our equality check with isEmpty:

val myUsers = exec(users.filter(_.email.isEmpty).result)

// myUsers: Seq[UserTable#TableElementType] = Vector(User("HAL", None, 2L))

which translates to the following SQL:

SELECT * FROM "user" WHERE "email" IS NULL

5.3.2 Primary Keys

We had our first introducঞon to primary keys in Chapter 1, where we started seমng
up id fields using the O.PrimaryKey and O.AutoInc column opঞons:

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

These opঞons do two things:

• they modify the SQL generated for DDL statements;

• O.AutoInc removes the corresponding column from the SQL generated for
INSERT statements, allowing the database to insert an auto-incremenঞng
value.

In Chapter 1 we combined O.AutoInc with a case class that has a default ID of 0L,
knowing that Slick will skip the value in insert statements:

5.3. TABLE AND COLUMN REPRESENTATION 111

case class User(name: String, id: Long = 0L)

While we like the simplicity of this style, some developers prefer to wrap primary key
values in Options:

case class User(name: String, id: Option[Long] = None)

In this model we use None as the primary key of an unsaved record and Some as the
primary key of a saved record. This approach has advantages and disadvantages:

• on the posiঞve side it’s easier to idenঞfy unsaved records;

• on the negaঞve side it’s harder to get the value of a primary key for use in a
query.

Let’s look at the changes we need to make to our UserTable to make this work:

case class User(id: Option[Long], name: String)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (id.?, name).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

The key thing to noঞce here is that we don’t want the primary key to be opঞonal in
the database. We’re using None to represent an unsaved value—the database assigns
a primary key for us on insert, so we can never retrieve a None via a database query.

We need to map our non-nullable database column to an opঞonal field value. This
is handled by the ? method in the default projecঞon, which converts a Rep[A] to a
Rep[Option[A]].

5.3.3 Compound Primary Keys

There is a second way to declare a column as a primary key:

112 CHAPTER 5. DATA MODELLING

def id = column[Long]("id", O.AutoInc)

def pk = primaryKey("pk_id", id)

This separate step doesn’t make much of a difference in this case. It separates the
column definiঞon from the key constraint, meaning the schema will include:

ALTER TABLE "user" ADD CONSTRAINT "pk_id" PRIMARY KEY("id")

The primaryKey method is more useful for defining compound primary keys that in-
volve two or more columns.

Let’s look at this by adding the ability for people to chat in rooms. First we need a
table for storing rooms, which is straigh�orward:

// Regular table definition for a chat room:

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

lazy val insertRoom = rooms returning rooms.map(_.id)

Next we need a table that relates users to rooms. We’ll call this the occupant table.
Rather than give this table an auto-generated primary key, we’ll make it a compound
of the user and room IDs:

case class Occupant(roomId: Long, userId: Long)

class OccupantTable(tag: Tag) extends Table[Occupant](tag, "occupant") {

def roomId = column[Long]("room")

def userId = column[Long]("user")

def pk = primaryKey("room_user_pk", (roomId, userId))

def * = (roomId, userId).mapTo[Occupant]

}

lazy val occupants = TableQuery[OccupantTable]

We can define composite primary keys using tuples or HLists of columns (Slick gen-
erates a ProvenShape and inspects it to find the list of columns involved). The SQL
generated for the occupant table is:

5.3. TABLE AND COLUMN REPRESENTATION 113

CREATE TABLE "occupant" (

"room" BIGINT NOT NULL,

"user" BIGINT NOT NULL

)

ALTER TABLE "occupant"

ADD CONSTRAINT "room_user_pk" PRIMARY KEY("room", "user")

Using the occupant table is no different from any other table:

val program: DBIO[Int] = for {

_ <- rooms.schema.create

_ <- occupants.schema.create

elenaId <- insertUser += User(None, "Elena")

airLockId <- insertRoom += Room("Air Lock")

// Put Elena in the Room:

rowsAdded <- occupants += Occupant(airLockId, elenaId)

} yield rowsAdded

// program: DBIO[Int] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@

7196e207,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(program)

// res11: Int = 1

Of course, if we try to put Dave in the Air Lock twice, the database will complain
about duplicate primary keys.

5.3.4 Indices

We can use indices to increase the efficiency of database queries at the cost of higher
disk usage. Creaঞng and using indices is the highest form of database sorcery, differ-
ent for every database applicaঞon, and well beyond the scope of this book. However,
the syntax for defining an index in Slick is simple. Here’s a table with two calls to
index:

114 CHAPTER 5. DATA MODELLING

class IndexExample(tag: Tag) extends Table[(String,Int)](tag, "people") {

def name = column[String]("name")

def age = column[Int]("age")

def * = (name, age)

def nameIndex = index("name_idx", name, unique=true)

def compoundIndex = index("c_idx", (name, age), unique=true)

}

The corresponding DDL statement produced due to nameIndex will be:

CREATE UNIQUE INDEX "name_idx" ON "people" ("name")

We can create compound indices on mulঞple columns just like we can with primary
keys. In this case (compoundIndex) the corresponding DDL statement will be:

CREATE UNIQUE INDEX "c_idx" ON "people" ("name", "age")

5.3.5 Foreign Keys

Foreign keys are declared in a similar manner to compound primary keys.

The method foreignKey takes four required parameters:

• a name;

• the column, or columns, that make up the foreign key;

• the TableQuery that the foreign key belongs to; and

• a funcঞon on the supplied TableQuery[T] taking the supplied column(s) as
parameters and returning an instance of T.

We’ll step through this by using foreign keys to connect a message to a user. We do
this by changing the definiঞon of message to reference the id of its sender instead
of their name:

case class Message(

senderId : Long,

content : String,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

5.3. TABLE AND COLUMN REPRESENTATION 115

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id)

}

lazy val messages = TableQuery[MessageTable]

The column for the sender is now a Long instead of a String. We have also defined
a method, sender, providing the foreign key linking the senderId to a user id.

The foreignKey gives us two things. First, it adds a constraint to the DDL statement
generated by Slick:

ALTER TABLE "message" ADD CONSTRAINT "sender_fk"

FOREIGN KEY("sender") REFERENCES "user"("id")

ON UPDATE NO ACTION

ON DELETE NO ACTION

On Update and On Delete

A foreign key makes certain guarantees about the data you store. In the case
we’ve looked at there must be a sender in the user table to successfully insert
a new message.

So what happens if something changes with the user row? There are a num-
ber of referenࢼal acࢼons that could be triggered. The default is for nothing to
happen, but you can change that.

Let’s look at an example. Suppose we delete a user, and we want all the mes-
sages associated with that user to be removed. We could do that in our appli-
caঞon, but it’s something the database can provide for us:

https://en.wikipedia.org/wiki/Foreign_key#Referential_actions

116 CHAPTER 5. DATA MODELLING

class AltMsgTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id, onDelete=

ForeignKeyAction.Cascade)

}

Providing Slick’s schema command has been run for the table, or the SQL ON
DELETE CASCADE acঞon has been manually applied to the database, the fol-
lowing acঞon will remove HAL from the users table, and all of the messages
that HAL sent:

users.filter(_.name === "HAL").delete

Slick supports onUpdate and onDelete for the five acঞons:

Acঞon Descripঞon

NoAction The default.
Cascade A change in the referenced table triggers a change

in the referencing table. In our example, deleঞng a
user will cause their messages to be deleted.

Restrict Changes are restricted, triggered a constraint
violaঞon excepঞon. In our example, you would
not be allowed to delete a user who had posted a
message.

SetNull The column referencing the updated value will be
set to NULL.

SetDefault The default value for the referencing column will
be used. Default values are discussion in Table
and Column Modifiers, later in this chapter.

Second, the foreign key gives us a query that we can use in a join. We’ve dedicated
the next chapter to looking at joins in detail, but here’s a simple join to illustrate the
use case:

5.3. TABLE AND COLUMN REPRESENTATION 117

val q = for {

msg <- messages

usr <- msg.sender

} yield (usr.name, msg.content)

// q: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

This is equivalent to the query:

SELECT u."name", m."content"

FROM "message" m, "user" u

WHERE "id" = m."sender"

…and once we have populated the database…

def findUserId(name: String): DBIO[Option[Long]] =

users.filter(_.name === name).map(_.id).result.headOption

def findOrCreate(name: String): DBIO[Long] =

findUserId(name).flatMap { userId =>

userId match {

case Some(id) => DBIO.successful(id)

case None => insertUser += User(None, name)

}

}

// Populate the messages table:

val setup = for {

daveId <- findOrCreate("Dave")

halId <- findOrCreate("HAL")

// Add some messages:

_ <- messages.schema.create

rowsAdded <- messages ++= Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

} yield rowsAdded

// setup: DBIOAction[Option[Int], NoStream, Effect.All with Effect.All with

Effect.Schema with Effect.Write] = FlatMapAction(

// FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@e2f92e,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//),

118 CHAPTER 5. DATA MODELLING

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(setup)

// res14: Option[Int] = Some(4)

…our query produces the following results, showing the sender name (not ID) and
corresponding message:

exec(q.result).foreach(println)

// (Dave,Hello, HAL. Do you read me, HAL?)

// (HAL,Affirmative, Dave. I read you.)

// (Dave,Open the pod bay doors, HAL.)

// (HAL,I'm sorry, Dave. I'm afraid I can't do that.)

Save Your Sanity With Laziness

Defining foreign keys places constraints on the order in which we have to
define our database tables. In the example above, the foreign key from
MessageTable to UserTable requires us to place the la�er definiঞon above
the former in our Scala code.

Ordering constraints make complex schemas difficult to write. Fortunately, we
can work around them using def and lazy val.

As a rule, use lazy val for TableQuerys and def foreign keys (for consistency
with column definiঞons).

5.3.6 Column Opঞons

We’ll round off this secঞon by looking at modifiers for columns and tables. These
allow us to tweak the default values, sizes, and data types for columns at the SQL
level.

We have already seen two examples of column opঞons, namely O.PrimaryKey and
O.AutoInc. Column opঞons are defined in ColumnOption, and as you have seen are
accessed via O.

The following example introduces four new opঞons: O.Length, O.SqlType,
O.Unique, and O.Default.

https://scala-slick.org/doc/3.3.3/api/index.html#slick.ast.ColumnOption

5.4. CUSTOM COLUMNMAPPINGS 119

case class PhotoUser(

name : String,

email : String,

avatar : Option[Array[Byte]] = None,

id : Long = 0L)

class PhotoTable(tag: Tag) extends Table[PhotoUser](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String](

"name",

O.Length(64, true),

O.Default("Anonymous Coward")

)

def email = column[String]("email", O.Unique)

def avatar = column[Option[Array[Byte]]]("avatar", O.SqlType("BINARY(2048)"))

def * = (name, email, avatar, id).mapTo[PhotoUser]

}

In this example we’ve done four things:

1. We’ve used O.Length to give the name column a maximum length. This modi-
fies the type of the column in theDDL statement. The parameters toO.Length
are an Int specifying the maximum length, and a Boolean indicaঞng whether
the length is variable. Seমng the Boolean to true sets the SQL column type
to VARCHAR; seমng it to false sets the type to CHAR.

2. We’ve used O.Default to give the name column a default value. This adds a
DEFAULT clause to the column definiঞon in the DDL statement.

3. We added a uniqueness constraint on the email column.

4. We’ve used O.SqlType to control the exact type used by the database. The
values allowed here depend on the database we’re using.

5.4 Custom Column Mappings

We want to work with types that have meaning to our applicaঞon. This means con-
verঞng data from the simple types the database uses to something more developer-
friendly.

120 CHAPTER 5. DATA MODELLING

We’ve already seen Slick’s ability tomap tuples and HLists of columns to case classes.
However, so far the fields of our case classes have been restricted to simple types such
as Int and String,

Slick also lets us control how individual columns are mapped to Scala types. For exam-
ple, perhaps we’d like to use Joda Time’s DateTime class for anything date and ঞme
related. Slick doesn’t provide naঞve support for Joda Time³, but it’s painless for us to
implement it via Slick’s ColumnType type class:

import java.sql.Timestamp

import org.joda.time.DateTime

import org.joda.time.DateTimeZone.UTC

object CustomColumnTypes {

implicit val jodaDateTimeType =

MappedColumnType.base[DateTime, Timestamp](

dt => new Timestamp(dt.getMillis),

ts => new DateTime(ts.getTime, UTC)

)

}

What we’re providing here is two funcঞons to MappedColumnType.base:

• one from a DateTime to a database-friendly java.sql.Timestamp; and

• one that does the reverse, taking a Timestamp and converঞng it to a
DateTime.

Once we have declared this custom column type, we are free to create columns con-
taining DateTimes:

case class Message(

senderId : Long,

content : String,

timestamp : DateTime,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

// Bring our implicit conversions into scope:

import CustomColumnTypes._

³However since Slick 3.3.0 there is built-in support for java.time.Instant, LocalDate, LocalTime,
LocalDateTime, OffsetTime, OffsetDateTime, and ZonedDateTime. You’ll very likely want to use
these over the older Joda Time library.

https://www.joda.org/joda-time/

5.4. CUSTOM COLUMNMAPPINGS 121

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def timestamp = column[DateTime]("timestamp")

def * = (senderId, content, timestamp, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessage = messages returning messages.map(_.id)

Reset Your Database

If you’ve been following along in the REPL, by nowyou’re going to have a bunch
of tables and rows. Now is a good ঞme to remove all of that.

You can exit the REPL and restart it. H2 is holding the data in memory, so
turning it on and off again is one way to reset your database.

Alternaঞvely, you can use an acঞon:

val schemas = (users.schema ++

messages.schema ++

occupants.schema ++

rooms.schema)

// schemas: slick.jdbc.H2Profile.DDL = slick.sql.SqlProfile$DDL$$anon$1@

9d7ec033

exec(schemas.drop)

Our modified definiঞon of MessageTable allows us to work directly with Messages
containing DateTime ঞmestamps, without having to do cumbersome type conver-
sions by hand:

val program = for {

_ <- messages.schema.create

_ <- users.schema.create

daveId <- insertUser += User(None, "Dave")

msgId <- insertMessage += Message(

daveId,

"Open the pod bay doors, HAL.",

DateTime.now)

} yield msgId

// program: DBIOAction[insertMessage.SingleInsertResult, NoStream, Effect.

Schema with Effect.Schema with Effect.Write with Effect.Write] =

FlatMapAction(

122 CHAPTER 5. DATA MODELLING

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@

63844785,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

val msgId = exec(program)

// msgId: insertMessage.SingleInsertResult = 1L

Fetching the database row will automaঞcally convert the timestamp field into the
DateTime value we expect:

exec(messages.filter(_.id === msgId).result)

// res18: Seq[MessageTable#TableElementType] = Vector(

// Message(1L, "Open the pod bay doors, HAL.", 2021-05-07T17:38:55.513Z, 1L)

//)

This model of working with semanঞc types is immediately appealing to Scala devel-
opers. We strongly encourage you to use ColumnType in your applicaঞons, to help
reduce bugs and let Slick take care of the type conversions.

5.4.1 Value Classes

We are currently using Longs to model primary keys. Although this is a good choice
at a database level, it’s not great for our applicaঞon code.

The problem is we can make silly mistakes, such as trying to look up a User by pri-
mary key using the primary key from a Message. They are both Longs, but trying to
compare them makes no sense. And yet the code would compile, and could possibly
return a result. But it’s likely to be the wrong result.

We can prevent these kinds of problems using types. The essenঞal approach is to
model primary keys using value classes:

case class MessagePK(value: Long) extends AnyVal

case class UserPK(value: Long) extends AnyVal

A value class is a compile-ঞmewrapper around a value. At run ঞme, the wrapper goes
away, leaving no allocaঞon or performance overhead⁴ in our running code.

⁴It’s not totally cost free: there are situaঞons where a value will need allocaঞon, such as when passed
to a polymorphic method.

https://docs.scala-lang.org/overviews/core/value-classes.html
https://docs.scala-lang.org/overviews/core/value-classes.html

5.4. CUSTOM COLUMNMAPPINGS 123

To use a value class we need to provide Slick with ColumnTypes to use these types
with our tables. This is the same process we used for Joda Time DateTimes:

implicit val messagePKColumnType =

MappedColumnType.base[MessagePK, Long](_.value, MessagePK(_))

// messagePKColumnType: slick.jdbc.H2Profile.BaseColumnType[MessagePK] =

MappedJdbcType[repl.Session$App19$MessagePK -> Long']

implicit val userPKColumnType =

MappedColumnType.base[UserPK, Long](_.value, UserPK(_))

// userPKColumnType: slick.jdbc.H2Profile.BaseColumnType[UserPK] =

MappedJdbcType[repl.Session$App19$UserPK -> Long']

Defining all these type class instances can be ঞme consuming, especially if we’re defin-
ing one for every table in our schema. Fortunately, Slick provides a short-hand called
MappedTo to take care of this for us:

case class MessagePK(value: Long) extends AnyVal with MappedTo[Long]

case class UserPK(value: Long) extends AnyVal with MappedTo[Long]

When we use MappedTo we don’t need to define a separate ColumnType. MappedTo
works with any class that:

• has a method called value that returns the underlying database value; and

• has a single-parameter constructor to create the Scala value from the database
value.

Value classes are a great fit for the MappedTo pa�ern.

Let’s redefine our tables to use our custom primary key types. We will convert User…

case class User(name: String, id: UserPK = UserPK(0L))

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[UserPK]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

…and Message:

124 CHAPTER 5. DATA MODELLING

case class Message(

senderId : UserPK,

content : String,

id : MessagePK = MessagePK(0L))

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[MessagePK]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[UserPK]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users) (_.id, onDelete=

ForeignKeyAction.Cascade)

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessage = messages returning messages.map(_.id)

Noঞce how we’re able to be explicit: the User.id and Message.senderId are
UserPKs, and the Message.id is a MessagePK.

We can lookup values if we have the right kind of key:

users.filter(_.id === UserPK(0L))

// res22: Query[UserTable, UserTable#TableElementType, Seq] = Rep(Filter @

211274507)

…but if we accidentally try to mix our primary keys, we’ll find we cannot:

users.filter(_.id === MessagePK(0L))

// error: Cannot perform option-mapped operation

// with type: (repl.Session.App8.UserPK, repl.Session.App8.MessagePK) =>

R

// for base type: (repl.Session.App8.UserPK, repl.Session.App8.UserPK) =>

Boolean

// messages.filter(_.flag === (Important : Flag)).result

// ^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// lazy val users = TableQuery[UserTable]

// ^

5.4. CUSTOM COLUMNMAPPINGS 125

Values classes are a low-cost way to make code safer and more legible. The amount
of code required is small, however for a large database it can sঞll be an overhead. We
can either use code generaঞon to overcome this, or generalise our primary key type
by making it generic:

case class PK[A](value: Long) extends AnyVal with MappedTo[Long]

case class User(

name : String,

id : PK[UserTable])

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[PK[UserTable]]("id", O.AutoInc, O.PrimaryKey)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

val exampleQuery =

users.filter(_.id === PK[UserTable](0L))

// exampleQuery: Query[UserTable, UserTable#TableElementType, Seq] = Rep(Filter

@959233222)

With this approach we achieve type safety without the boiler plate of many primary
key type definiঞons. Depending on the nature of your applicaঞon, this may be con-
venient for you.

The general point is that we can use the whole of the Scala type system to represent
primary keys, foreign keys, rows, and columns from our database. This is enormously
valuable and should not be overlooked.

5.4.2 Modelling Sum Types

We’ve used case classes extensively for modelling data. Using the language of alge-
braic data types, case classes are “product types” (created from conjuncঞons of their
field types). The other common form of algebraic data type is known as a sum type,
formed from a disjuncࢼon of other types. We’ll look at modelling these now.

As an example let’s add a flag to our Message class to model messages as important,
offensive, or spam. The natural way to do this is establish a sealed trait and a set of
case objects:

126 CHAPTER 5. DATA MODELLING

sealed trait Flag

case object Important extends Flag

case object Offensive extends Flag

case object Spam extends Flag

case class Message(

senderId : UserPK,

content : String,

flag : Option[Flag] = None,

id : MessagePK = MessagePK(0L))

There are a number of ways we could represent the flags in the database. For the sake
of the argument, let’s use characters: !, X, and $. We need a new custom ColumnType

to manage the mapping:

implicit val flagType =

MappedColumnType.base[Flag, Char](

flag => flag match {

case Important => '!'

case Offensive => 'X'

case Spam => '$'

},

code => code match {

case '!' => Important

case 'X' => Offensive

case '$' => Spam

})

// flagType: slick.jdbc.H2Profile.BaseColumnType[Flag] = MappedJdbcType[repl.

Session$App25$Flag -> Char']

We like sum types because the compiler can ensure we’ve covered all the cases. If we
add a new flag (OffTopic perhaps), the compiler will issue warnings unঞl we add it
to our Flag => Char funcঞon. We can turn these compiler warnings into errors by
enabling the Scala compiler’s -Xfatal-warnings opঞon, prevenঞng us shipping the
applicaঞon unঞl we’ve covered all bases.

Using Flag is the same as any other custom type:

class MessageTable(tag: Tag) extends Table[Message](tag, "flagmessage") {

def id = column[MessagePK]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[UserPK]("sender")

def content = column[String]("content")

def flag = column[Option[Flag]]("flag")

def * = (senderId, content, flag, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id, onDelete=

5.4. CUSTOM COLUMNMAPPINGS 127

ForeignKeyAction.Cascade)

}

lazy val messages = TableQuery[MessageTable]

exec(messages.schema.create)

We can insert a message with a flag easily:

val halId = UserPK(1L)

// halId: UserPK = UserPK(1L)

exec(

messages += Message(

halId,

"Just kidding - come on in! LOL.",

Some(Important)

)

)

// res27: Int = 1

We can also query for messages with a parঞcular flag. However, we need to give the
compiler a li�le help with the types:

exec(

messages.filter(_.flag === (Important : Flag)).result

)

// res28: Seq[MessageTable#TableElementType] = Vector(

// Message(

// UserPK(1L),

// "Just kidding - come on in! LOL.",

// Some(Important),

// MessagePK(1L)

//)

//)

The type annotaࢼon here is annoying. We can work around it in two ways:

First, we can define a “smart constructor” method for each flag that returns it pre-cast
as a Flag:

object Flags {

val important : Flag = Important

val offensive : Flag = Offensive

val spam : Flag = Spam

128 CHAPTER 5. DATA MODELLING

val action = messages.filter(_.flag === Flags.important).result

}

Second, we can define some custom syntax to build our filter expressions:

implicit class MessageQueryOps(message: MessageTable) {

def isImportant = message.flag === (Important : Flag)

def isOffensive = message.flag === (Offensive : Flag)

def isSpam = message.flag === (Spam : Flag)

}

messages.filter(_.isImportant).result.statements.head

// res29: String = "select \"sender\", \"content\", \"flag\", \"id\" from \"

flagmessage\" where \"flag\" = '!'"

5.5 Take Home Points

In this Chapter we covered a lot of Slick’s features for defining database schemas.
We went into detail about defining tables and columns, mapping them to convenient
Scala types, adding primary keys, foreign keys, and indices, and customising Slick’s
DDL SQL. We also discussed wriঞng generic code that works with mulঞple database
back-ends, and how to structure the database layer of your applicaঞon using traits
and self-types.

The most important points are:

• We can separate the specific profile for our database (H2, Postgres, etc) from
our tables. We assemble a database layer from a number of traits, leaving the
profile as an abstract field that can be implemented at runঞme.

• We can represent rows in a variety of ways: tuples, HLists, and arbitrary
classes and case classes via the mapTo macro.

• If we need more control over a mapping from columns to other data structures,
the <> method is available.

• We can represent individual values in columns using arbitrary Scala data types
by providing ColumnTypes to manage the mappings. We’ve seen numerous
examples supporঞng typed primary keys such as UserPK, sealed traits such as
Flag, and third party classes such as DateTime.

5.6. EXERCISES 129

• Nullable values are typically represented as Options in Scala. We can either
define columns to store Options directly, or use the ? method to map non-
nullable columns to opঞonal ones.

• We can define simple primary keys using O.PrimaryKey and compound keys
using the primaryKey method.

• We can define foreignKeys, which gives us a simple way of linking tables in
a join. More on this next chapter.

Slick’s philosophy is to keep models simple. Wemodel rows as flat case classes, ignor-
ing joins with other tables. While this may seem inflexible at first, it more than pays
for itself in terms of simplicity and transparency. Database queries are explicit and
type-safe, and return values of convenient types.

In the next chapter we will build on the foundaঞons of primary and foreign keys and
look at wriঞng more complex queries involving joins and aggregate funcঞons.

5.6 Exercises

5.6.1 Filtering Opঞonal Columns

Imagine a reporঞng tool on a web site. Someঞmes you want to look at all the users in
the database, and someঞmes you want to only see rows matching a parঞcular value.

Working with the opঞonal email address for a user, write a method that will take an
opঞonal value, and list rows matching that value.

The method signature is:

def filterByEmail(email: Option[String]) = ???

Assume we only have two user records, one with an email address and one with no
email address:

case class User(name: String, email: Option[String], id: Long = 0)

class UserTable(tag: Tag) extends Table[User](tag, "filtering_3") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

130 CHAPTER 5. DATA MODELLING

}

lazy val users = TableQuery[UserTable]

val setup = DBIO.seq(

users.schema.create,

users += User("Dave", Some("dave@example.org")),

users += User("HAL ", None)

)

exec(setup)

We want filterByEmail(Some("dave@example.org")) to produce one row, and
filterByEmail(None) to produce two rows:

Tip: it’s OK to use mulঞple queries.

See the soluঞon

5.6.2 Matching or Undecided

Not everyone has an email address, so perhaps when filtering it would be safer to
exclude rows that don’t match our filter criteria. That is, keep NULL addresses in the
results.

Add Elena to the database…

exec(

users += User("Elena", Some("elena@example.org"))

)

// res36: Int = 1

…andmodify filterByEmail sowhenwe search for Some("elena@example.org")
we only exclude Dave, as he definitely doesn’t match that address.

This ঞme you can do this in one query.

Hint: if you get stuck thinking about this in terms of SQL, think about it in terms of
Scala collecঞons. E.g.,

List(Some("dave"), Some("elena"), None).filter(???) == List(Some("elena",

None))

See the soluঞon

5.6. EXERCISES 131

5.6.3 Enforcement

What happens if you try adding a message for a user ID of 3000?

For example:

messages += Message(UserPK(3000L), "Hello HAL!")

Note that there is no user in our example with an ID of 3000.

See the soluঞon

5.6.4 Mapping Enumeraঞons

We can use the same trick that we’ve seen for DateTime and value classes to map
enumeraঞons.

Here’s a Scala Enumeraঞon for a user’s role:

object UserRole extends Enumeration {

type UserRole = Value

val Owner = Value("O")

val Regular = Value("R")

}

Modify the user table to include a UserRole. In the database store the role as a
single character.

See the soluঞon

5.6.5 Alternaঞve Enumeraঞons

Modify your soluঞon to the previous exercise to store the value in the database as an
integer.

If you see an unrecognized user role value, default it to a UserRole.Regular.

See the soluঞon

132 CHAPTER 5. DATA MODELLING

5.6.6 Custom Boolean

Messages can be high priority or low priority.

The database is a bit of a mess:

• The database value for high priority messages will be: y, Y, +, or high.

• For low priority messages the value will be: n, N, -, lo, or low.

Go ahead and model this with a sum type.

See the soluঞon

5.6.7 Turning a Row into Many Case Classes

Our HList example mapped a table with many columns. It’s not the only way to deal
with lots of columns.

Use custom funcঞons with <> and map UserTable into a tree of case classes. To
do this you will need to define the schema, define a User, insert data, and query the
data.

To make this easier, we’re just going to map six of the columns. Here are the case
classes to use:

case class EmailContact(name: String, email: String)

case class Address(street: String, city: String, country: String)

case class User(contact: EmailContact, address: Address, id: Long = 0L)

You’ll find a definiঞon of UserTable that you can copy and paste in the example code
in the file chapter-05/src/main/scala/nested_case_class.scala.

See the soluঞon

Chapter 6

Joins and Aggregates

Wrangling data with joins and aggregates can be painful. In this chapter we’ll try to
ease that pain by exploring:

• different styles of join (monadic and applicaঞve);

• different ways to join (inner, outer and zip); and

• aggregate funcঞons and grouping.

6.1 Two Kinds of Join

There are two styles of join in Slick. One, called applicaࢼve, is based on an explicit
join method. It’s a lot like the SQL JOIN … ON syntax.

The second style of join, monadic, makes use of flatMap as a way to join tables.

These two styles of join are not mutually exclusive. We can mix and match them in
our queries. It’s o[en convenient to create an applicaঞve join and use it in a monadic
join.

6.2 Chapter Schema

To demonstrate joins we will need at least two tables. Wewill store users in one table,
and messages in a separate table, and we will join across these tables to find out who

133

https://en.wikipedia.org/wiki/Join_(SQL)

134 CHAPTER 6. JOINS AND AGGREGATES

sent a message.

We’ll start with User…

import slick.jdbc.H2Profile.api._

import scala.concurrent.ExecutionContext.Implicits.global

case class User(name: String, id: Long = 0L)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

…and add Message:

// Note that messages have senders, which are references to users

case class Message(

senderId : Long,

content : String,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("senderId")

def content = column[String]("content")

def sender = foreignKey("sender_fk", senderId, users)(_.id)

def * = (senderId, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessages = messages returning messages.map(_.id)

We’ll populate the database with the usual movie script:

def freshTestData(daveId: Long, halId: Long) = Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

6.3. MONADIC JOINS 135

val setup = for {

_ <- (users.schema ++ messages.schema).create

daveId <- insertUser += User("Dave")

halId <- insertUser += User("HAL")

rowsAdded <- messages ++= freshTestData(daveId, halId)

} yield rowsAdded

// setup: DBIOAction[Option[Int], NoStream, Effect.Schema with Effect.Write

with Effect.Write with Effect.Write] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@2

b1a8a94,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(setup)

// res0: Option[Int] = Some(4)

Later in this chapter we’ll add more tables for more complex joins.

6.3 Monadic Joins

We have seen an example of monadic joins in the previous chapter:

val monadicFor = for {

msg <- messages

usr <- msg.sender

} yield (usr.name, msg.content)

// monadicFor: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(

Bind)

Noঞce how we are using msg.sender which is defined as a foreign key in the
MessageTable definiঞon. (See Foreign Keys in Chapter 5 to recap this topic.)

We can express the same query without using a for comprehension:

val monadicDesugar =

messages flatMap { msg =>

msg.sender.map { usr =>

(usr.name, msg.content)

}

}

136 CHAPTER 6. JOINS AND AGGREGATES

// monadicDesugar: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

Either way, when we run the query Slick generates something like the following SQL:

select

u."name", m."content"

from

"message" m, "user" u

where

u."id" = m."sender"

That’s the monadic style of query, using foreign key relaঞonships.

Run the Code

You’ll find the example queries for this secঞon in the file joins.sql over at
the associated GitHub repository.

From the chapter-06 folder start SBT and at the SBT > prompt run:

runMain JoinsExample

Even if we don’t have a foreign key, we can use the same style and control the join
ourselves:

val monadicFilter = for {

msg <- messages

usr <- users if usr.id === msg.senderId

} yield (usr.name, msg.content)

// monadicFilter: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

Note how this ঞme we’re using msg.senderId, not the foreign key sender. This
produces the same query when we joined using sender.

You’ll see plenty of examples of this style of join. They look straigh�orward to read,
and are natural to write. The cost is that Slick has to translate the monadic expression
down to something that SQL is capable of running.

https://github.com/underscoreio/essential-slick-code/tree/3.3

6.4. APPLICATIVE JOINS 137

6.4 Applicaঞve Joins

An applicaঞve join is where we explicitly write the join in code. In SQL this is via the
JOIN and ON keywords, which are mirrored in Slick with the following methods:

• join — an inner join,

• joinLeft — a le[outer join,

• joinRight — a right outer join,

• joinFull — a full outer join.

We will work through examples of each of these methods. But as a quick taste of the
syntax, here’s how we can join the messages table to the users on the senderId:

val applicative1: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on (_.senderId === _.id)

// applicative1: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

As you can see, this code produces a query of (MessageTable, UserTable). If we
want to, we can be more explicit about the values used in the on part:

val applicative2: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on ((m: MessageTable, u: UserTable) =>

m.senderId === u.id

)

// applicative2: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

We can also write the join condiঞon using pa�ern matching:

val applicative3: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on { case (m, u) => m.senderId === u.id }

// applicative3: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

Joins like this form queries that we convert to acঞons the usual way:

138 CHAPTER 6. JOINS AND AGGREGATES

val action: DBIO[Seq[(Message, User)]] = applicative3.result

// action: DBIO[Seq[(Message, User)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@206d26b6

exec(action)

// res1: Seq[(Message, User)] = Vector(

// (Message(1L, "Hello, HAL. Do you read me, HAL?", 1L), User("Dave", 1L)),

// (Message(2L, "Affirmative, Dave. I read you.", 2L), User("HAL", 2L)),

// (Message(1L, "Open the pod bay doors, HAL.", 3L), User("Dave", 1L)),

// (

// Message(2L, "I'm sorry, Dave. I'm afraid I can't do that.", 4L),

// User("HAL", 2L)

//)

//)

The end result of Seq[(Message, User)] is each message paired with the corre-
sponding user.

6.4.1 More Tables, Longer Joins

In the rest of this secঞon we’ll work through a variety of more involved joins. You
may find it useful to refer to figure 6.1, which sketches the schema we’re using in this
chapter.

For now we will add one more table. This is a Room that a User can be in, giving us
channels for our chat conversaঞons:

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

lazy val insertRoom = rooms returning rooms.map(_.id)

And we’ll modify a message so it can opঞonally be a�ached to a room:

case class Message(

senderId : Long,

content : String,

roomId : Option[Long] = None,

id : Long = 0L)

6.4. APPLICATIVE JOINS 139

Figure 6.1: The database schema for this chapter. Find this code in the chat-
schema.scala file of the example project on GitHub. A message can have a sender,
which is a join to the user table. Also, a message can be in a room, which is a join to
the room table.

140 CHAPTER 6. JOINS AND AGGREGATES

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("senderId")

def content = column[String]("content")

def roomId = column[Option[Long]]("roomId")

def sender = foreignKey("sender_fk", senderId, users)(_.id)

def * = (senderId, content, roomId, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessages = messages returning messages.map(_.id)

We’ll reset our database and populate it with some messages happening in the “Air
Lock” room:

exec(messages.schema.drop)

val daveId = 1L

// daveId: Long = 1L

val halId = 2L

// halId: Long = 2L

val setup = for {

// Create the modified and new tables:

_ <- (messages.schema ++ rooms.schema).create

// Create one room:

airLockId <- insertRoom += Room("Air Lock")

// Half the messages will be in the air lock room...

_ <- insertMessages += Message(daveId, "Hello, HAL. Do you read me, HAL?",

Some(airLockId))

_ <- insertMessages += Message(halId, "Affirmative, Dave. I read you.",

Some(airLockId))

// ...and half will not be in room:

_ <- insertMessages += Message(daveId, "Open the pod bay doors, HAL.")

_ <- insertMessages += Message(halId, "I'm sorry, Dave. I'm afraid I can't do

that.")

// See what we end up with:

msgs <- messages.result

} yield (msgs)

// setup: DBIOAction[Seq[MessageTable#TableElementType], NoStream, Effect.

Schema with Effect.Write with Effect.Write with Effect.Write with Effect.

Write with Effect.Write with Effect.Read] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@7

6.4. APPLICATIVE JOINS 141

ef35c42,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(setup).foreach(println)

// Message(1,Hello, HAL. Do you read me, HAL?,Some(1),1)

// Message(2,Affirmative, Dave. I read you.,Some(1),2)

// Message(1,Open the pod bay doors, HAL.,None,3)

// Message(2,I'm sorry, Dave. I'm afraid I can't do that.,None,4)

Now let’s get to work and join across all these tables.

6.4.2 Inner Join

An inner join selects data frommulঞple tables, where the rows in each table match up
in some way. Typically, the matching up is done by comparing primary keys. If there
are rows that don’t match up, they won’t appear in the join results.

Let’s look up messages that have a sender in the user table, and a room in the rooms
table:

val usersAndRooms =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on{ case ((msg,user), room) => msg.roomId === room.id }

// usersAndRooms: Query[((MessageTable, UserTable), RoomTable), ((MessageTable#

TableElementType, UserTable#TableElementType), RoomTable#TableElementType)

, Seq] = Rep(Join Inner)

We’re joining messages to users, and messages to rooms. We use a binary funcঞon
on the first call to on and a pa�ern matching funcঞon on our second call, to illustrate
two styles.

Because each join results in a query of a tuple, successive joins result in nested tuples.
Pa�ern matching is our preferred syntax for unpacking these tuples because it explic-
itly clarifies the structure of the query. However, you may see this more concisely
expressed as a binary funcঞon for both joins:

val usersAndRoomsBinaryFunction =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on(_._1.roomId === _.id)

142 CHAPTER 6. JOINS AND AGGREGATES

// usersAndRoomsBinaryFunction: Query[((MessageTable, UserTable), RoomTable),

((MessageTable#TableElementType, UserTable#TableElementType), RoomTable#

TableElementType), Seq] = Rep(Join Inner)

The result is the same either way.

6.4.2.1 Mapping Joins

We can turn this query into an acঞon as it stands:

val usersAndRoomQuery: DBIO[Seq[((Message, User), Room)]] =

usersAndRooms.result

// usersAndRoomQuery: DBIO[Seq[((Message, User), Room)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@775d827c

…but our results will contain nested tuples. That’s OK, if that’s what you want. But
typically we want to map over the query to fla�en the results and select the columns
we want.

Rather than returning the table classes, we can pick out just the informaঞon we want.
Perhaps the message, the name of the sender, and the ঞtle of the room:

val usersAndRoomTitles =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on { case ((msg,user), room) => msg.roomId === room.id }.

map { case ((msg, user), room) => (msg.content, user.name, room.title) }

// usersAndRoomTitles: Query[(Rep[String], Rep[String], Rep[String]), (String,

String, String), Seq] = Rep(Bind)

val action: DBIO[Seq[(String, String, String)]] = usersAndRoomTitles.result

// action: DBIO[Seq[(String, String, String)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@5d9b84f6

exec(action).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Dave,Air Lock)

// (Affirmative, Dave. I read you.,HAL,Air Lock)

6.4.2.2 Filter with Joins

As joins are queries, we can transform them using the combinators we learned in
previous chapters. We’ve already seen an example of the map combinator. Another
example would be the filter method.

6.4. APPLICATIVE JOINS 143

As an example, we can use our usersAndRooms query and modify it to focus on a
parঞcular room. Perhaps we want to use our join for the Air Lock room:

// The query we've already seen...

val usersAndRooms =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on { case ((msg,user), room) => msg.roomId === room.id }

// ...modified to focus on one room:

val airLockMsgs =

usersAndRooms.

filter { case (_, room) => room.title === "Air Lock" }

// airLockMsgs: Query[((MessageTable, UserTable), RoomTable), ((MessageTable#

TableElementType, UserTable#TableElementType), RoomTable#TableElementType)

, Seq] = Rep(Filter @22510755)

As with other queries, the filter becomes a WHERE clause in SQL. Something like this:

SELECT

"message"."content", "user"."name", "room"."title"

FROM

"message"

INNER JOIN "user" ON "message"."sender" = "user"."id"

INNER JOIN "room" ON "message"."room" = "room"."id"

WHERE

"room"."title" = 'Air Lock';

6.4.3 Le[Join

A le[join (a.k.a. le[outer join), adds an extra twist. Now we are selecঞng all the
records from a table, and matching records from another table if they exist. If we find
no matching record on the le[, we will end up with NULL values in our results.

For an example from our chat schema, observe that messages can opঞonally be in a
room. Let’s suppose we want a list of all the messages and the room they are sent to.
Visually the le[outer join is as shown below:

That is, we are going to select all the data from the messages table, plus data from the
rooms table for those messages that are in a room.

The join would be:

144 CHAPTER 6. JOINS AND AGGREGATES

Figure 6.2: A visualizaঞon of the le[outer join example. Selecঞng messages and
associated rooms. For similar diagrams, see A Visual Explanaঞon of SQL Joins, Coding
Horror, 11 Oct 2007.

https://blog.codinghorror.com/a-visual-explanation-of-sql-joins/

6.4. APPLICATIVE JOINS 145

val left = messages.joinLeft(rooms).on(_.roomId === _.id)

// left: Query[(MessageTable, Rep[Option[RoomTable]]), (MessageTable#

TableElementType, Option[Room]), Seq] = Rep(Join LeftOption)

This query, left, is going to fetch messages and look up their corresponding room
from the room table. Not all messages are in a room, so in that case the roomId
column will be NULL.

Slick will li[those possibly null values into something more comfortable: Option.
The full type of left is:

Query[

(MessageTable, Rep[Option[RoomTable]]),

(MessageTable#TableElementType, Option[Room]),

Seq]

The results of this query are of type (Message, Option[Room])—Slick has made
the Room side opঞonal for us automaঞcally.

If we want to just pick out the message content and the room ঞtle, we can map over
the query:

val leftMapped =

messages.

joinLeft(rooms).on(_.roomId === _.id).

map { case (msg, room) => (msg.content, room.map(_.title)) }

// leftMapped: Query[(Rep[String], Rep[Option[String]]), (String, Option[String

]), Seq] = Rep(Bind)

Because the room element is opঞonal, we naturally extract the title element using
Option.map: room.map(_.title).

The type of this query then becomes:

Query[

(Rep[String], Rep[Option[String]]),

(String, Option[String]),

Seq]

The types String and Option[String] correspond to the message content and
room ঞtle:

146 CHAPTER 6. JOINS AND AGGREGATES

exec(leftMapped.result).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Some(Air Lock))

// (Affirmative, Dave. I read you.,Some(Air Lock))

// (Open the pod bay doors, HAL.,None)

// (I'm sorry, Dave. I'm afraid I can't do that.,None)

6.4.4 Right Join

In the previous secঞon, we saw that a le[join selects all the records from the le[
hand side of the join, with possibly NULL values from the right.

Right joins (or right outer joins) reverse the situaঞon, selecঞng all records from the
right side of the join, with possibly NULL values from the le[.

We can demonstrate this by reversing our le[join example. We’ll ask for all rooms
together with private messages have they received. We’ll use for comprehension
syntax this ঞme for variety:

val right = for {

(msg, room) <- messages joinRight (rooms) on (_.roomId === _.id)

} yield (room.title, msg.map(_.content))

// right: Query[(Rep[String], Rep[Option[String]]), (String, Option[String]),

Seq] = Rep(Bind)

Let’s create another room and see how the query works out:

exec(rooms += Room("Pod Bay"))

// res7: Int = 1

exec(right.result).foreach(println)

// (Air Lock,Some(Hello, HAL. Do you read me, HAL?))

// (Air Lock,Some(Affirmative, Dave. I read you.))

// (Pod Bay,None)

6.4.5 Full Outer Join

Full outer joins mean either side can be NULL.

From our schema an example would be the ঞtle of all rooms and messages in those
rooms. Either side could be NULL because messages don’t have to be in rooms, and
rooms don’t have to have any messages.

6.4. APPLICATIVE JOINS 147

val outer = for {

(room, msg) <- rooms joinFull messages on (_.id === _.roomId)

} yield (room.map(_.title), msg.map(_.content))

// outer: Query[(Rep[Option[String]], Rep[Option[String]]), (Option[String],

Option[String]), Seq] = Rep(Bind)

The type of this query has opঞons on either side:

Query[

(Rep[Option[String]], Rep[Option[String]]),

(Option[String], Option[String]),

Seq]

As you can see from the results…

exec(outer.result).foreach(println)

// (Some(Air Lock),Some(Hello, HAL. Do you read me, HAL?))

// (Some(Air Lock),Some(Affirmative, Dave. I read you.))

// (Some(Pod Bay),None)

// (None,Some(Open the pod bay doors, HAL.))

// (None,Some(I'm sorry, Dave. I'm afraid I can't do that.))

…some rooms have many messages, some none, some messages have rooms, and
some do not.

At the ঞme of wriঞng H2 does not support full outer joins. Whereas earlier
versions of Slick would throw a runঞme excepঞon, Slick 3 compiles the query
into something that will run, emulaঞng a full outer join.

6.4.6 Cross Joins

In the examples above, whenever we’ve used joinwe’ve also used an on to constrain
the join. This is opঞonal.

If we omit the on condiঞon for any join, joinLeft, or joinRight, we end up with
a cross join.

Cross joins include every row from the le[table with every row from the right table.
If we have 10 rows in the first table and 5 in the second, the cross join produces 50
rows.

An example:

148 CHAPTER 6. JOINS AND AGGREGATES

val cross = messages joinLeft users

// cross: slick.lifted.BaseJoinQuery[MessageTable, Rep[Option[UserTable]],

MessageTable#TableElementType, Option[User], Seq, MessageTable, UserTable]

= Rep(Join LeftOption)

6.5 Zip Joins

Zip joins are equivalent to zip on a Scala collecঞon. Recall that the zip in the collec-
ঞons library operates on two lists and returns a list of pairs:

val xs = List(1, 2, 3)

// xs: List[Int] = List(1, 2, 3)

xs zip xs.drop(1)

// res10: List[(Int, Int)] = List((1, 2), (2, 3))

Slick provides the equivalent zip method for queries, plus two variaঞons. Let’s say
we want to pair up adjacent messages into what we’ll call a “conversaঞon”:

// Select message content, ordered by id:

val msgs = messages.sortBy(_.id.asc).map(_.content)

// msgs: Query[Rep[String], String, Seq] = Rep(Bind)

// Pair up adjacent messages:

val conversations = msgs zip msgs.drop(1)

// conversations: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Join Zip)

This will turn into an inner join, producing output like:

exec(conversations.result).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Affirmative, Dave. I read you.)

// (Affirmative, Dave. I read you.,Open the pod bay doors, HAL.)

// (Open the pod bay doors, HAL.,I'm sorry, Dave. I'm afraid I can't do that.)

A second variaঞon, zipWith, lets us provide a mapping funcঞon along with the join.
We can provide a funcঞon to upper-case the first part of a conversaঞon, and lower-
case the second part:

def combiner(c1: Rep[String], c2: Rep[String]) =

(c1.toUpperCase, c2.toLowerCase)

val query = msgs.zipWith(msgs.drop(1), combiner)

// query: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

6.5. ZIP JOINS 149

exec(query.result).foreach(println)

// (HELLO, HAL. DO YOU READ ME, HAL?,affirmative, dave. i read you.)

// (AFFIRMATIVE, DAVE. I READ YOU.,open the pod bay doors, hal.)

// (OPEN THE POD BAY DOORS, HAL.,i'm sorry, dave. i'm afraid i can't do that.)

The final variant is zipWithIndex, which is as per the Scala collecঞons method of
the same name. Let’s number each message:

val withIndexQuery = messages.map(_.content).zipWithIndex

// withIndexQuery: slick.lifted.BaseJoinQuery[Rep[String], Rep[Long], String,

Long, Seq, Rep[String], Rep[Long]] = Rep(Join Zip)

val withIndexAction: DBIO[Seq[(String, Long)]] =

withIndexQuery.result

// withIndexAction: DBIO[Seq[(String, Long)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@2c99188a

For H2 the SQL ROWNUM() funcঞon is used to generate a number. The data from this
query will be:

exec(withIndexAction).foreach(println)

// (Hello, HAL. Do you read me, HAL?,0)

// (Affirmative, Dave. I read you.,1)

// (Open the pod bay doors, HAL.,2)

// (I'm sorry, Dave. I'm afraid I can't do that.,3)

Not all databases support zip joins. Check for the relational.zip capability in the
capabilities field of your chosen database profile:

// H2 supports zip

slick.jdbc.H2Profile.capabilities.

map(_.toString).

contains("relational.zip")

// res14: Boolean = true

// SQLite does not support zip

slick.jdbc.SQLiteProfile.capabilities.

map(_.toString).

contains("relational.zip")

// res15: Boolean = false

150 CHAPTER 6. JOINS AND AGGREGATES

6.6 Joins Summary

In this chapter we’ve seen examples of the two different styles of join: applicaঞve
and monadic. We’ve also mixed and matched these styles.

We’ve seen how to construct the arguments to on methods, either with a binary join
condiঞon or by deconstrucঞng a tuple with pa�ern matching.

Each join step produces a tuple. Using pa�ern matching in map and filter allows us
to clearly name each part of the tuple, especially when the tuple is deeply nested.

We’ve also explored inner and outer joins, zip joins, and cross joins. We saw that
each type of join is a query, making it compaঞble with combinators such as map and
filter from earlier chapters.

6.7 Seen Any Strange Queries?

If you’ve been following along and running the example joins, you may have noঞced
large or unusual queries being generated. Or you may not have. Since Slick 3.1, the
SQL generated by Slick has improved greatly.

However, you may find the SQL generated a li�le strange or involved. If Slick gener-
ates verbose queries are they are going to be slow?

Here’s the key concept: the SQL generated by Slick is fed to the database opঞmizer.
That opঞmizer has far be�er knowledge about your database, indexes, query paths,
than anything else. It will opঞmize the SQL from Slick into something that works well.

Unfortunately, some opঞmizers don’t manage this very well. Postgres does a good
job. MySQL is, at the ঞme of wriঞng, pre�y bad at this. The trick here is to watch for
slow queries, and use your database’s EXPLAIN command to examine and debug the
query plan.

Opঞmisaঞons can o[en be achieved by rewriঞng monadic joins in applicaঞve style
and judiciously adding indices to the columns involved in joins. However, a full dis-
cussion of query opঞmisaঞon is out of the scope of this book. See your database’s
documentaঞon for more informaঞon.

If all else fails, we can rewrite queries for ulঞmate control using Slick’s Plain SQL fea-
ture. We will look at this in Chapter 7.

6.8. AGGREGATION 151

6.8 Aggregaঞon

Aggregate funcঞons are all about compuঞng a single value from some set of rows. A
simple example is count. This secঞon looks at aggregaঞon, and also at grouping rows,
and compuঞng values on those groups.

6.8.1 Funcঞons

Slick provides a few aggregate funcঞons, as listed in the table below.

Table 6.1: A Selecঞon of Aggregate Funcঞons

Method SQL

length COUNT(1)

min MIN(column)

max MAX(column)

sum SUM(column)

avg AVG(column) — mean of the column values

Using them causes no great surprises, as shown in the following examples:

val numRows: DBIO[Int] = messages.length.result

// numRows: DBIO[Int] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@11119fc5

val numDifferentSenders: DBIO[Int] =

messages.map(_.senderId).distinct.length.result

// numDifferentSenders: DBIO[Int] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@5015401a

val firstSent: DBIO[Option[Long]] =

messages.map(_.id).min.result

// firstSent: DBIO[Option[Long]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@6ae3465a

While length returns an Int, the other funcঞons return an Option. This is because
there may be no rows returned by the query, meaning there is no minimum, no maxi-
mum and so on.

152 CHAPTER 6. JOINS AND AGGREGATES

6.8.2 Grouping

Aggregate funcঞons are o[en used with column grouping. For example, how many
messages has each user sent? That’s a grouping (by user) of an aggregate (count).

6.8.2.1 groupBy

Slick provides groupBywhichwill group rows by some expression. Here’s an example:

val msgPerUser: DBIO[Seq[(Long, Int)]] =

messages.groupBy(_.senderId).

map { case (senderId, msgs) => senderId -> msgs.length }.

result

// msgPerUser: DBIO[Seq[(Long, Int)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@eda5ec4

A groupBy must be followed by a map. The input to the map will be the grouping key
(senderId) and a query for the group.

When we run the query, it’ll work, but it will be in terms of a user’s primary key:

exec(msgPerUser)

// res18: Seq[(Long, Int)] = Vector((1L, 2), (2L, 2))

6.8.2.2 Groups and Joins

It’d be nicer to see the user’s name. We can do that using our join skills:

val msgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }.

result

// msgsPerUser: slick.jdbc.H2Profile.StreamingProfileAction[Seq[(String, Int)],

(String, Int), Effect.Read] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@13a8076d

The results would be:

exec(msgsPerUser).foreach(println)

// (Dave,2)

// (HAL,2)

6.8. AGGREGATION 153

So what’s happened here? What groupBy has given us is a way to place rows into
groups according to some funcঞonwe supply. In this example the funcঞon is to group
rows based on the user’s name. It doesn’t have to be a String, it could be any type
in the table.

When it comes to mapping, we now have the key to the group (the user’s name in our
case), and the corresponding group rows as a query.

Becausewe’ve joinedmessages and users, our group is a query of those two tables. In
this example we don’t care what the query is because we’re just counঞng the number
of rows. But someঞmes we will need to know more about the query.

6.8.2.3 More Complicated Grouping

Let’s look at a more involved example by collecঞng some staঞsঞcs about our mes-
sages. We want to find, for each user, how many messages they sent, and the id of
their first message. We want a result something like this:

Vector(

(HAL, 2, Some(2)),

(Dave, 2, Some(1)))

We have all the aggregate funcঞons we need to do this:

val stats =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map {

case (name, group) =>

(name, group.length, group.map{ case (msg, user) => msg.id}.min)

}

// stats: Query[(Rep[String], Rep[Int], Rep[Option[Long]]), (String, Int,

Option[Long]), Seq] = Rep(Bind)

We’ve now started to create a bit of a monster query. We can simplify this, but before
doing so, it may help to clarify that this query is equivalent to the following SQL:

select

user.name, count(1), min(message.id)

from

message inner join user on message.sender = user.id

group by

user.name

154 CHAPTER 6. JOINS AND AGGREGATES

Convince yourself the Slick and SQL queries are equivalent, by comparing:

• the map expression in the Slick query to the SELECT clause in the SQL;

• the join to the SQL INNER JOIN; and

• the groupBy to the SQL GROUP expression.

If you do that you’ll see the Slick expression makes sense. But when seeing these
kinds of queries in code it may help to simplify by introducing intermediate funcঞons
with meaningful names.

There are a few ways to go at simplifying this, but the lowest hanging fruit is that
min expression inside the map. The issue here is that the group pa�ern is a Query of
(MessageTable, UserTable) as that’s our join. That leads to us having to split it
further to access the message’s ID field.

Let’s pull that part out as a method:

import scala.language.higherKinds

def idOf[S[_]](group: Query[(MessageTable,UserTable), (Message,User), S]) =

group.map { case (msg, user) => msg.id }

What we’ve done here is introduced a method to work on the group query, using the
knowledge of the Query type introduced in The Query and TableQuery Types secঞon
of Chapter 2.

The query (group) is parameterized by thee things: the join, the unpacked values, and
the container for the results. By container we mean something like Seq[T]. We don’t
really care what our results go into, but we do care we’re working with messages and
users.

With this li�le piece of domain specific language in place, the query becomes:

val nicerStats =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => (name, group.length, idOf(group).min) }

// nicerStats: Query[(Rep[String], Rep[Int], Rep[Option[Long]]), (String, Int,

Option[Long]), Seq] = Rep(Bind)

exec(nicerStats.result).foreach(println)

// (Dave,2,Some(1))

6.8. AGGREGATION 155

// (HAL,2,Some(2))

We think these small changes make code more maintainable and, quite frankly, less
scary. It may be marginal in this case, but real world queries can become large. Your
team mileage may vary, but if you see Slick queries that are hard to understand, try
pulling the query apart into named methods.

Group By True

There’s a groupBy { _ => true} trick you can use where you want to select
more than one aggregate from a query.

As an example, have a go at translaঞng this SQL into a Slick query:

select min(id), max(id) from message where content like '%read%'

It’s pre�y easy to get either min or max:

messages.filter(_.content like "%read%").map(_.id).min

// res21: Rep[Option[Long]] = Rep(Apply Function min)

But you want both min and max in one query. This is where groupBy { _ =>

true} comes into play:

messages.

filter(_.content like "%read%").

groupBy(_ => true).

map {

case (_, msgs) => (msgs.map(_.id).min, msgs.map(_.id).max)

}

// res22: Query[(Rep[Option[Long]], Rep[Option[Long]]), (Option[Long],

Option[Long]), Seq] = Rep(Bind)

The effect of _ => true here is to group all rows into the same group! This
allows us to reuse the msgs query, and obtain the result we want.

6.8.2.4 Grouping by Mulঞple Columns

The result of groupBy doesn’t need to be a single value: it can be a tuple. This gives
us access to grouping by mulঞple columns.

We can look at the number of messages per user per room. Something like this:

156 CHAPTER 6. JOINS AND AGGREGATES

Vector(

(Air Lock, HAL, 1),

(Air Lock, Dave, 1),

(Kitchen, Frank, 3))

…assuming we add a message from Frank:

val addFrank = for {

kitchenId <- insertRoom += Room("Kitchen")

frankId <- insertUser += User("Frank")

rowsAdded <- messages ++= Seq(

Message(frankId, "Hello?", Some(kitchenId)),

Message(frankId, "Helloooo?", Some(kitchenId)),

Message(frankId, "HELLO!?", Some(kitchenId))

)

} yield rowsAdded

// addFrank: DBIOAction[Option[Int], NoStream, Effect.Write with Effect.Write

with Effect.Write] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction

@744e944f,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(addFrank)

// res23: Option[Int] = Some(3)

To run the report we’re going to need to group by room and then by user, and finally
count the number of rows in each group:

val msgsPerRoomPerUser =

rooms.

join(messages).on(_.id === _.roomId).

join(users).on{ case ((room,msg), user) => user.id === msg.senderId }.

groupBy { case ((room,msg), user) => (room.title, user.name) }.

map { case ((room,user), group) => (room, user, group.length) }.

sortBy { case (room, user, group) => room }

// msgsPerRoomPerUser: Query[(Rep[String], Rep[String], Rep[Int]), (String,

String, Int), Seq] = Rep(SortBy Ordering(Asc,NullsDefault))

Hopefully you’re now in a posiঞon where you can unpick this:

• We join on messages, room and user to be able to display the room ঞtle and
user name.

6.9. TAKE HOME POINTS 157

• The value passed into the groupBy will be determined by the join.

• The result of the groupBy is the columns for the grouping, which is a tuple of
the room ঞtle and the user’s name.

• We select (map) just the columns we want: room, user and the number of rows.

• For fun we’ve thrown in a sortBy to get the results in room order.

Running the acঞon produces our expected report:

exec(msgsPerRoomPerUser.result).foreach(println)

// (Air Lock,Dave,1)

// (Air Lock,HAL,1)

// (Kitchen,Frank,3)

6.9 Take Home Points

Slick supports join, joinLeft, joinRight, joinOuter and a zip join. You can map
and filter over these queries as you would other queries with Slick. Using pa�ern
matching on the query tuples can be more readable than accessing tuples via ._1,
._2 and so on.

Aggregaঞon methods, such as length and sum, produce a value from a set of rows.

Rows can be grouped based on an expression supplied to groupBy. The result of a
grouping expression is a group key and a query defining the group. Use map, filter,
sortBy as you would with any query in Slick.

The SQL produced by Slick might not be the SQL you would write. Slick expects the
database query engine to perform opঞmisaঞon. If you find slow queries, take a look
at Plain SQL, discussed in the next chapter.

6.10 Exercises

Because these exercises are all about mulঞple tables, take a moment to remind your-
self of the schema. You’ll find this in the example code, chatper-06, in the source
file chat_schema.scala.

158 CHAPTER 6. JOINS AND AGGREGATES

6.10.1 Name of the Sender

Each message is sent by someone. That is, the messages.senderId will have a
matching row via users.id.

Please…

• Write a monadic join to return all Message rows and the associated User

record for each of them.

• Change your answer to return only the content of a message and the name of
the sender.

• Modify the query to return the results in name order.

• Re-write the query as an applicaঞve join.

These exercises will get your fingers familiar with wriঞng joins.

See the soluঞon

6.10.2 Messages of the Sender

Write a method to fetch all the message sent by a parঞcular user. The signature is:

def findByName(name: String): Query[Rep[Message], Message, Seq] = ???

See the soluঞon

6.10.3 Having Many Messages

Modify the msgsPerUser query…

val msgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }

…to return the counts for just those users with more than 2 messages.

See the soluঞon

6.10. EXERCISES 159

6.10.4 Collecঞng Results

A join on messages and senders will produce a row for every message. Each row will
be a tuple of the user and message:

users.join(messages).on(_.id === _.senderId)

// res1: slick.lifted.Query[

// (UserTable, MessageTable),

// (UserTable#TableElementType, MessageTable#TableElementType),

// Seq] = Rep(Join Inner)

The return type is effecঞvely Seq[(User, Message)].

Someঞmes you’ll really want something like a Map[User, Seq[Message]].

There’s no built-in way to do that in Slick, but you can do it in Scala using the collec-
ঞons groupBy method.

val almost = Seq(

("HAL" -> "Hello"),

("Dave" -> "How are you?"),

("HAL" -> "I have terrible pain in all the diodes")

).groupBy{ case (name, message) => name }

// almost: Map[String, Seq[(String, String)]] = HashMap(

// "HAL" -> List(("HAL", "Hello"), ("HAL", "I have terrible pain in all the

diodes")),

// "Dave" -> List(("Dave", "How are you?"))

//)

That’s close, but the values in the map are sঞll a tuple of the name and the message.
We can go further and reduce this to:

val correct = almost.view.mapValues { values =>

values.map{ case (name, msg) => msg }

}

correct.foreach(println)

// (HAL,List(Hello, I have terrible pain in all the diodes))

// (Dave,List(How are you?))

The .view call is required in Scala 2.13 to convert the lazy evaluated map into a strict
map. A future version of Scala will remove the need for the .view call.

Go ahead and write a method to encapsulate this for a join:

160 CHAPTER 6. JOINS AND AGGREGATES

def userMessages: DBIO[Map[User, Seq[Message]]] = ???

See the soluঞon

Chapter 7

Plain SQL

Slick supports Plain SQL queries in addiঞon to the li[ed embedded style we’ve seen
up to this point. Plain queries don’t compose as nicely as li[ed, or offer quite the
same type safely. But they enable you to execute essenঞally arbitrary SQL when you
need to. If you’re unhappy with a parঞcular query produced by Slick, dropping into
Plain SQL is the way to go.

In this secঞon we will see that:

• the interpolators sql (for select) and sqlu (for updates) are used to create Plain
SQL queries;

• values can be safely subsঞtuted into queries using a ${expresson} syntax;

• custom types can be used in Plain SQL, as long as there is a converter in scope;
and

• the tsql interpolator can be used to check the syntax and types of a query via
a database at compile ঞme.

A Table to Work With

For the examples that follow, we’ll set up a table for rooms. For now we’ll do
this as we have in other chapters using the li[ed embedded style:

161

https://docs.scala-lang.org/overviews/core/string-interpolation.html

162 CHAPTER 7. PLAIN SQL

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

val roomSetup = DBIO.seq(

rooms.schema.create,

rooms ++= Seq(Room("Air Lock"), Room("Pod"), Room("Brain Room"))

)

// roomSetup: DBIOAction[Unit, NoStream, Effect.Write with Effect.Schema

] = slick.dbio.DBIOAction$$anon$4@20f5fa11

val setupResult = exec(roomSetup)

7.1 Selects

Let’s start with a simple example of returning a list of room IDs.

val action = sql""" select "id" from "room" """.as[Long]

// action: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] = slick.

jdbc.SQLActionBuilder$$anon$1@5c41b300

Await.result(db.run(action), 2.seconds)

// res0: Vector[Long] = Vector(1L, 2L, 3L)

Running a Plain SQL query looks similar to other queries we’ve seen in this book: call
db.run as usual.

The big difference is with the construcঞon of the query. We supply both the SQL we
want to run and specify the expected result type using as[T]. And the result we get
back is an acঞon to run, rather than a Query.

The as[T] method is pre�y flexible. Let’s get back the room ID and room ঞtle:

val roomInfo = sql""" select "id", "title" from "room" """.as[(Long,String)]

// roomInfo: slick.sql.SqlStreamingAction[Vector[(Long, String)], (Long, String

), Effect] = slick.jdbc.SQLActionBuilder$$anon$1@695607a4

exec(roomInfo)

// res1: Vector[(Long, String)] = Vector(

7.1. SELECTS 163

// (1L, "Air Lock"),

// (2L, "Pod"),

// (3L, "Brain Room")

//)

Noঞce we specified a tuple of (Long, String) as the result type. This matches the
columns in our SQL SELECT statement.

Using as[T] we can build up arbitrary result types. Later we’ll see how we can use
our own applicaঞon case classes too.

One of the most useful features of the SQL interpolators is being able to reference
Scala values in a query:

val roomName = "Pod"

// roomName: String = "Pod"

val podRoomAction = sql"""

select

"id", "title"

from

"room"

where

"title" = $roomName """.as[(Long,String)].headOption

// podRoomAction: slick.sql.SqlStreamingAction[Vector[(Long, String)], (Long,

String), Effect]#ResultAction[Option[(Long, String)], NoStream, Effect] =

slick.jdbc.StreamingInvokerAction$HeadOptionAction@786516e7

exec(podRoomAction)

// res2: Option[(Long, String)] = Some((2L, "Pod"))

Noঞce how $roomName is used to reference a Scala value roomName. This value is in-
corporated safely into the query. That is, you don’t have to worry about SQL injecঞon
a�acks when you use the SQL interpolators in this way.

The Danger of Strings

The SQL interpolators are essenঞal for situaঞons where you need full control
over the SQL to be run. Be aware there is some loss of compile-ঞme safety.
For example:

164 CHAPTER 7. PLAIN SQL

val t = 42

// t: Int = 42

val badAction =

sql""" select "id" from "room" where "title" = $t """.as[Long]

// badAction: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] =

slick.jdbc.SQLActionBuilder$$anon$1@774f5e88

This compiles, but fails at runঞme as the type of the title column is a String
and we’ve provided an Int:

exec(badAction.asTry)

// res3: util.Try[Vector[Long]] = Failure(

// org.h2.jdbc.JdbcSQLDataException: Data conversion error converting

"Air Lock"; SQL statement:

// select "id" from "room" where "title" = ? [22018-200]

//)

The equivalent query using the li[ed embedded style would have caught the
problem at compile ঞme. The tsql interpolator, described later in this chapter,
helps here by connecঞng to a database at compile ঞme to check the query and
types.

Another danger is with the #$ style of subsঞtuঞon. This is called splicing, and
is used when you don’t want SQL escaping to apply. For example, perhaps the
name of the table you want to use may change:

val table = "room"

// table: String = "room"

val splicedAction = sql""" select "id" from "#$table" """.as[Long]

// splicedAction: slick.sql.SqlStreamingAction[Vector[Long], Long,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@26c72ad2

In this situaঞon we do not want the value of table to be treated as a String.
If we did, it’d be an invalid query: select "id" from "'message'" (noঞce
the double quotes and single quotes around the table name, which is not valid
SQL).

This means you can produce unsafe SQL with splicing. The golden rule is to
never use #$ with input supplied by users.

To be sure you remember it, say it again with us: never use #$ with input sup-
plied by users.

7.1. SELECTS 165

7.1.1 Select with Custom Types

Out of the box Slick knows how to convert many data types to and from SQL data
types. The examples we’ve seen so far include turning a Scala String into a SQL
string, and a SQL BIGINT to a Scala Long. These conversions are available via as[T].

If we want to work with a type that Slick doesn’t know about, we need to provide a
conversion. That’s the role of the GetResult type class.

For an example, let’s set up a table for messages with some interesঞng structure:

import org.joda.time.DateTime

case class Message(

sender : String,

content : String,

created : DateTime,

updated : Option[DateTime],

id : Long = 0L

)

The point of interest for the moment is that we have a created field of type
DateTime. This is from Joda Time, and Slick does not ship with built-in support for
this type.

This is the query we want to run:

sql""" select "created" from "message" """.as[DateTime]

// error: could not find implicit value for parameter rconv: slick.jdbc.

GetResult[org.joda.time.DateTime] (No implicit view available from slick.

jdbc.PositionedResult => org.joda.time.DateTime.)

// sql""" select "created" from "message" """.as[DateTime]

// ^^^

OK, that won’t compile as Slick doesn’t know anything about DateTime. For this to
compile we need to provide an instance of GetResult[DateTime]:

import slick.jdbc.GetResult

import java.sql.Timestamp

import org.joda.time.DateTimeZone.UTC

implicit val GetDateTime =

GetResult[DateTime](r => new DateTime(r.nextTimestamp(), UTC))

// GetDateTime: AnyRef with GetResult[DateTime] = <function1>

166 CHAPTER 7. PLAIN SQL

GetResult is wrapping up a funcঞon from r (a PositionedResult) to DateTime.
The PositionedResult provides access to the database value (via nextTimestamp,
nextLong, nextBigDecimal and so on). We use the value from nextTimestamp to
feed into the constructor for DateTime.

The name of this value doesn’t ma�er. What’s important is that the value is implicit
and the type is GetResult[DateTime]. This allows the compiler to lookup our con-
version funcঞon when we menঞon a DateTime.

Now we can construct our acঞon:

sql""" select "created" from "message" """.as[DateTime]

// res5: slick.sql.SqlStreamingAction[Vector[DateTime], DateTime, Effect] =

slick.jdbc.SQLActionBuilder$$anon$1@2237af48

7.1.2 Case Classes

As you’ve probably guessed, returning a case class from a Plain SQL query means
providing a GetResult for the case class. Let’s work through an example for the
messages table.

Recall that a message contains: an ID, some content, the sender ID, a ঞmestamp, and
an opঞonal ঞmestamp.

To provide a GetResult[Message]we need all the types inside the Message to have
GetResult instances. We’ve already tackled DateTime. And Slick knows how to han-
dle Long and String. So that leaves us with Option[DateTime] and the Message
itself.

For opঞonal values, Slick providesnextXXXOptionmethods, such as nextLongOption.
For the opঞonal date ঞmewe read the database value usingnextTimestampOption()
and then map to the right type:

implicit val GetOptionalDateTime = GetResult[Option[DateTime]](r =>

r.nextTimestampOption().map(ts => new DateTime(ts, UTC))

)

// GetOptionalDateTime: AnyRef with GetResult[Option[DateTime]] = <function1>

With all the individual columns mapped we can pull them together in a GetResult
for Message. There are two helper methods which make it easier to construct these
instances:

• << for calling the appropriate nextXXX method; and

7.2. UPDATES 167

• <<? when the value is opঞonal.

We can use them like this:

implicit val GetMessage = GetResult(r =>

Message(sender = r.<<,

content = r.<<,

created = r.<<,

updated = r.<<?,

id = r.<<)

)

// GetMessage: AnyRef with GetResult[Message] = <function1>

This works because we’ve provided implicits for the components of the case class. As
the types of the fields are known, << and <<? can use the implicit GetResult[T] for
the type of each type.

Now we can select into Message values:

val messageAction: DBIO[Seq[Message]] =

sql""" select * from "message" """.as[Message]

// messageAction: DBIO[Seq[Message]] = slick.jdbc.SQLActionBuilder$$anon$1@4

b782390

In all likelihood you’ll prefer the li[ed embedded style over Plain SQL in this specific
example. But if you do find yourself using Plain SQL, for performance reasons perhaps,
it’s useful to know how to convert database values up into meaningful domain types.

SELECT *

We someঞmes use SELECT * in this chapter to fit our code examples onto the
page. You should avoid this in your code base as it leads to bri�le code.

An example: if, outside of Slick, a table is modified to add a column, the results
from the query will unexpectedly change. You code may not longer be able to
map results.

7.2 Updates

Back in Chapter 3 we saw how to modify rows with the update method. We noted
that batch updates were challenging when we wanted to use the row’s current value.
The example we used was appending an exclamaঞon mark to a message’s content:

168 CHAPTER 7. PLAIN SQL

UPDATE "message" SET "content" = CONCAT("content", '!')

Plain SQL updates will allow us to do this. The interpolator is sqlu:

val updateAction =

sqlu"""UPDATE "message" SET "content" = CONCAT("content", '!')"""

// updateAction: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@2a44fcb7

The action we have constructed, just like other acঞons, is not run unঞl we evaluate
it via db.run. But when it is run, it will append the exclamaঞon mark to each row
value, which is what we couldn’t do as efficiently with the li[ed embedded style.

Just like the sql interpolator, we also have access to $ for binding to variables:

val char = "!"

// char: String = "!"

val interpolatorAction =

sqlu"""UPDATE "message" SET "content" = CONCAT("content", $char)"""

// interpolatorAction: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@343b214f

This gives us two benefits: the compiler will point out typos in variables names, but
also the input is saniঞzed against SQL injecঞon a�acks.

In this case, the statement that Slick generates will be:

interpolatorAction.statements.head

// res6: String = "UPDATE \"message\" SET \"content\" = CONCAT(\"content\", ?)"

7.2.1 Updaঞng with Custom Types

Working with basic types like String and Int is fine, but someঞmes you want to
update using a richer type. We saw the GetResult type class for mapping select
results, and for updates this is mirrored with the SetParameter type class.

We can teach Slick how to set DateTime parameters like this:

import slick.jdbc.SetParameter

implicit val SetDateTime = SetParameter[DateTime](

(dt, pp) => pp.setTimestamp(new Timestamp(dt.getMillis))

)

https://en.wikipedia.org/wiki/SQL_injection

7.3. TYPED CHECKED PLAIN SQL 169

// SetDateTime: AnyRef with SetParameter[DateTime] = <function2>

The value pp is a PositionedParameters. This is an implementaঞon detail of Slick,
wrapping a SQL statement and a placeholder for a value. Effecঞvely we’re saying how
to treat a DateTime regardless of where it appears in the update statement.

In addiঞon to a Timestamp (via setTimestamp), you can set: Boolean, Byte, Short,
Int, Long, Float, Double, BigDecimal, Array[Byte], Blob, Clob, Date, Time, as
well as Object and null. There are setXXX methods on PositionedParameters
for Option types, too.

There’s further symmetry with GetResuts in that we could have used >> in our
SetParameter:

implicit val SetDateTime = SetParameter[DateTime](

(dt, pp) => pp >> new Timestamp(dt.getMillis))

// SetDateTime: AnyRef with SetParameter[DateTime] = <function2>

With this in place we can construct Plain SQL updates using DateTime instances:

val now =

sqlu"""UPDATE "message" SET "created" = ${DateTime.now}"""

// now: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@2be9956f

Without the SetParameter[DateTime] instance the compiler would tell you:

could not find implicit SetParameter[DateTime]

7.3 Typed Checked Plain SQL

We’ve menঞoned the risks of Plain SQL, which can be summarized as not discovering
a problem with your query unঞl runঞme. The tsql interpolator removes some of this
risk, but at the cost of requiring a connecঞon to a database at compile ঞme.

Run the Code

These examples won’t run in the REPL. To try these out, use the tsql.scala
file inside the chapter-07 folder. This is all in the example code base on
GitHub.

https://github.com/underscoreio/essential-slick-code/tree/3.3
https://github.com/underscoreio/essential-slick-code/tree/3.3

170 CHAPTER 7. PLAIN SQL

7.3.1 Compile Time Database Connecঞons

To get started with tsql we provide a database configuraঞon informaঞon on a class:

import slick.backend.StaticDatabaseConfig

@StaticDatabaseConfig("file:src/main/resources/application.conf#tsql")

object TsqlExample {

// queries go here

}

The @StaticDatabaseConfig syntax is called an annotaࢼon. This parঞcular
StaticDatabaseConfig annotaঞon is telling Slick to use the connecঞon called
“tsql” in our configuraঞon file. That entry will look like this:

tsql {

profile = "slick.jdbc.H2Profile$"

db {

connectionPool = disabled

url = "jdbc:h2:mem:chapter06; INIT=

runscript from 'src/main/resources/integration-schema.sql'"

driver = "org.h2.Driver"

keepAliveConnection = false

}

}

Note the $ in the profile class name is not a typo. The class name is being passed to
Java’s Class.forName, but of course Java doesn’t have a singleton as such. The Slick
configuraঞon does the right thing to load $MODULEwhen it sees $. This interoperabil-
ity with Java is described in Chapter 29 of Programming in Scala.

You won’t have seen this when we introduced the database configuraঞon in Chapter
1. That’s because this tsql configuraঞon has a different format, and combines the
Slick profile (slick.jdbc.H2Profile) and the JDBC driver (org.h2.Drvier) in one
entry.

A consequence of supplying a @StaticDatabaseConfig is that you can define one
databases configuraঞon for your applicaঞon and a different one for the compiler
to use. That is, perhaps you are running an applicaঞon, or test suite, against an in-
memory database, but validaঞng the queries at compile ঞme against a full-populated
producঞon-like integraঞon database.

In the example above, and the accompanying example code, we use an in-memory
database to make Slick easy to get started with. However, an in-memory database
is empty by default, and that would be no use for checking queries against. To work

https://www.artima.com/pins1ed/combining-scala-and-java.html#i-855208314-1

7.3. TYPED CHECKED PLAIN SQL 171

around that we provide an INIT script to populate the in-memory database. For our
purposes, the integration-schema.sql file only needs to contain one line:

create table "message" (

"content" VARCHAR NOT NULL,

"id" BIGSERIAL NOT NULL PRIMARY KEY

);

7.3.2 Type Checked Plain SQL

With the @StaticDatabaseConfig in place we can use tsql:

val action: DBIO[Seq[String]] = tsql""" select "content" from "message" """

You can run that query as you would sql or sqlu query. You can also use custom
types via SetParameter type class. However, GetResult type classes are not sup-
ported for tsql.

Let’s get the query wrong and see what happens:

val action: DBIO[Seq[String]] =

tsql"""select "content", "id" from "message""""

Do you see what’s wrong? If not, don’t worry because the compiler will find the
problem:

type mismatch;

[error] found : SqlStreamingAction[

Vector[(String, Int)],

(String, Int),Effect]

[error] required : DBIO[Seq[String]]

The compiler wants a String for each row, because that’s what we’ve declared
the result to be. However it has found, via the database, that the query will return
(String,Int) rows.

If we had omi�ed the type declaraঞon, the acঞon would have the inferred type of
DBIO[Seq[(String,Int)]]. So if you want to catch these kinds of mismatches, it’s
good pracঞce to declare the type you expect when using tsql.

Let’s see other kinds of errors the compiler will find.

How about if the SQL is just wrong:

172 CHAPTER 7. PLAIN SQL

val action: DBIO[Seq[String]] =

tsql"""select "content" from "message" where"""

This is incomplete SQL, and the compiler tells us:

exception during macro expansion: ERROR: syntax error at end of input

[error] Position: 38

[error] tsql"""select "content" from "message" WHERE"""

[error] ^

And if we get a column name wrong…

val action: DBIO[Seq[String]] =

tsql"""select "text" from "message" where"""

…that’s also a compile error too:

Exception during macro expansion: ERROR: column "text" does not exist

[error] Position: 8

[error] tsql"""select "text" from "message""""

[error] ^

Of course, in addiঞon to selecঞng rows, you can insert:

val greeting = "Hello"

val action: DBIO[Seq[Int]] =

tsql"""insert into "message" ("content") values ($greeting)"""

Note that at run ঞme, when we execute the query, a new row will be inserted. At
compile ঞme, Slick uses a facility in JDBC to compile the query and retrieve the meta
data without having to run the query. In other words, at compile ঞme the database is
not mutated.

7.4 Take Home Points

Plain SQL allows you away out of any limitaঞons you findwith Slick’s li[ed embedded
style of querying.

Two main string interpolators for SQL are provided: sql and sqlu:

• Values can be safely subsঞtuted into Plain SQL queries using ${expression}.

7.5. EXERCISES 173

• Custom types can be used with the interpolators providing an implicit
GetResult (select) or SetParameter (update) is in scope for the type.

• Raw values can be spliced into a query with #$. Use this with care: end-user
supplied informaঞon should never be spliced into a query.

The tsql interpolator will check Plain SQL queries against a database at compile ঞme.
The database connecঞon is used to validate the query syntax, and also discover the
types of the columns being selected. To make best use of this, always declare the
type of the query you expect from tsql.

7.5 Exercises

For these exercises we will use a combinaঞon of messages and users. We’ll set this
up using the li[ed embedded style:

case class User(

name : String,

email : Option[String] = None,

id : Long = 0L

)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUsers = users returning users.map(_.id)

case class Message(senderId: Long, content: String, id: Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender_id")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

val setup = for {

_ <- (users.schema ++ messages.schema).create

174 CHAPTER 7. PLAIN SQL

daveId <- insertUsers += User("Dave")

halId <- insertUsers += User("HAL")

rowsAdded <- messages ++= Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

} yield rowsAdded

exec(setup)

7.5.1 Plain Selects

Let’s get warmed up with some simple exercises.

Write the following four queries as Plain SQL queries:

• Count the number of rows in the message table.

• Select the content from the messages table.

• Select the length of each message (“content”) in the messages table.

• Select the content and length of each message.

Tips:

• Remember that you need to use double quotes around table and column names
in the SQL.

• We gave the database tables names which are singular: message, user, etc.

See the soluঞon

7.5.2 Conversion

Convert the following li[ed embedded query to a Plain SQL query.

7.5. EXERCISES 175

val whoSaidThat =

messages.join(users).on(_.senderId === _.id).

filter{ case (message,user) =>

message.content === "Open the pod bay doors, HAL."}.

map{ case (message,user) => user.name }

// whoSaidThat: Query[Rep[String], String, Seq] = Rep(Bind)

exec(whoSaidThat.result)

// res15: Seq[String] = Vector("Dave")

Tips:

• If you’re not familiar with SQL syntax, peak at the statement generated for
whoSaidThat given above.

• Remember that strings in SQL are wrapped in single quotes, not double quotes.

• In the database, the sender’s ID is sender_id.

See the soluঞon

7.5.3 Subsঞtuঞon

Complete the implementaঞon of this method using a Plain SQL query:

def whoSaid(content: String): DBIO[Seq[String]] =

???

Running whoSaid("Open the pod bay doors, HAL.") should return a list of the
people who said that. Which should be Dave.

This should be a small change to your soluঞon to the last exercise.

See the soluঞon

7.5.4 First and Last

This H2 query returns the alphabeঞcally first and last messages:

176 CHAPTER 7. PLAIN SQL

exec(sql"""

select min("content"), max("content")

from "message" """.as[(String,String)]

)

// res19: Vector[(String, String)] = Vector(

// ("Affirmative, Dave. I read you.", "Open the pod bay doors, HAL.")

//)

In this exercise we want you to write a GetResult type class instance so that the
result of the query is one of these:

case class FirstAndLast(first: String, last: String)

The steps are:

1. Remember to import slick.jdbc.GetResult.

2. Provide an implicit value for GetResult[FirstAndLast]

3. Make the query use as[FirstAndLast]

See the soluঞon

7.5.5 Plain Change

We can use Plain SQL to modify the database. That means inserঞng rows, updaঞng
rows, deleঞng rows, and also modifying the schema.

Go ahead and create a new table, using Plain SQL, to store the crew’s jukebox playlist.
Just store a song ঞtle. Insert a row into the table.

See the soluঞon

7.5.6 Robert Tables

We’re building a web site that allows searching for users by their email address:

def lookup(email: String) =

sql"""select "id" from "user" where "email" = '#${email}'"""

// Example use:

7.5. EXERCISES 177

exec(lookup("dave@example.org").as[Long].headOption)

// res24: Option[Long] = None

What the problem with this code?

See the soluঞon

178 CHAPTER 7. PLAIN SQL

Appendix A

Using Different Database
Products

As menঞoned during the introducঞon, H2 is used throughout the book for exam-
ples. However Slick also supports PostgreSQL, MySQL, Derby, SQLite, Oracle, and
Microso[Access.

There was a ঞme when you needed a commercial license from Lightbend to use Slick
in producঞon with Oracle, SQL Server, or DB2. This restricঞon was removed in early
2016¹. However, there was an effort to build free and open profiles, resulঞng in the
FreeSlick project. These profiles conঞnue to be available, and you can find out more
about this from the FreeSlick GitHub page.

A.1 Changes

If you want to use a different database for the exercises in the book, you will need to
make changes detailed below.

In summary you will need to ensure that:

• you have installed the database (details beyond the scope of this book);
• a database is available with the correct name;
• the build.sbt file has the correct dependency;

¹https://scala-slick.org/news/2016/02/01/slick-extensions-licensing-change.html.

179

https://github.com/smootoo/freeslick
https://scala-slick.org/news/2016/02/01/slick-extensions-licensing-change.html

180 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

• the correct JDBC driver is referenced in the code; and
• the correct Slick profile is used.

Each chapter uses its own database—so these steps will need to be applied for each
chapter.

We’ve given detailed instrucঞons for two populated databases below.

A.2 PostgreSQL

A.2.1 Create a Database

Create a database named chapter-01with user essential. This will be used for all
examples and can be created with the following:

CREATE DATABASE "chapter-01" WITH ENCODING 'UTF8';

CREATE USER "essential" WITH PASSWORD 'trustno1';

GRANT ALL ON DATABASE "chapter-01" TO essential;

Confirm the database has been created and can be accessed:

$ psql -d chapter-01 essential

A.2.2 Update build.sbt Dependencies

Replace

"com.h2database" % "h2" % "1.4.185"

with

"org.postgresql" % "postgresql" % "9.3-1100-jdbc41"

If you are already in SBT, type reload to load this changed build file. If you are using
an IDE, don’t forget to regenerate any IDE project files.

A.3. MYSQL 181

A.2.3 Update JDBC References

Replace application.conf parameters with:

chapter01 = {

connectionPool = disabled

url = jdbc:postgresql:chapter-01

driver = org.postgresql.Driver

keepAliveConnection = true

users = essential

password = trustno1

}

A.2.4 Update Slick Profile

Change the import from

slick.jdbc.H2Profile.api._

to

slick.jdbc.PostgresProfile.api._

A.3 MySQL

A.3.1 Create a Database

Create a database named chapter-01with user essential. This will be used for all
examples and can be created with the following:

CREATE USER 'essential'@'localhost' IDENTIFIED BY 'trustno1';

CREATE DATABASE `chapter-01` CHARACTER SET utf8 COLLATE utf8_bin;

GRANT ALL ON `chapter-01`.* TO 'essential'@'localhost';

FLUSH PRIVILEGES;

Confirm the database has been created and can be accessed:

182 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

$ mysql -u essential chapter-01 -p

A.3.2 Update build.sbt Dependencies

Replace

"com.h2database" % "h2" % "1.4.185"

with

"mysql" % "mysql-connector-java" % "5.1.34"

If you are already in SBT, type reload to load this changed build file. If you are using
an IDE, don’t forget to regenerate any IDE project files.

A.3.3 Update JDBC References

Replace Database.forURL parameters with:

chapter01 = {

connectionPool = disabled

url = jdbc:mysql://localhost:3306/chapter-01

&useUnicode=true

&characterEncoding=UTF-8

&autoReconnect=true

driver = com.mysql.jdbc.Driver

keepAliveConnection = true

users = essential

password = trustno1

}

Note that we’ve forma�ed the connectionPool line to make it legible. In reality all
those & parameters will be on the same line.

A.3.4 Update Slick DriverProfile

Change the import from

A.3. MYSQL 183

slick.jdbc.H2Profile.api._

to

slick.jdbc.MySQLProfile.api._

184 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

Appendix B

Soluঞons to Exercises

B.1 Basics

B.1.1 Soluঞon to: Bring Your Own Data

Here’s the soluঞon:

exec(messages += Message("Dave","What if I say 'Pretty please'?"))

// res10: Int = 1

The return value indicates that 1 row was inserted. Because we’re using an auto-
incremenঞng primary key, Slick ignores the id field for our Message and asks the
database to allocate an id for the new row. It is possible to get the insert query to
return the new id instead of the row count, as we shall see next chapter.

Here are some things that might go wrong:

If you don’t pass the acঞon created by += to db to be run, you’ll get back the Action
object instead.

messages += Message("Dave","What if I say 'Pretty please'?")

// res11: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@f0d0df2

If you don’t wait for the future to complete, you’ll see just the future itself:

185

186 APPENDIX B. SOLUTIONS TO EXERCISES

val f = db.run(messages += Message("Dave","What if I say 'Pretty please'?"))

// f: Future[Int] = Future(Success(1))

Return to the exercise

B.1.2 Soluঞon to: Bring Your Own Data Part 2

Here’s the code:

exec(messages.filter(_.sender === "Dave").result)

// res13: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("Dave", "What if I say 'Pretty please'?", 5L)

//)

If that’s hard to read, we can print each message in turn. As the Future will evaluate
to a collecঞon of Message, we can foreach over that with a funcঞon of Message =>

Unit, such as println:

val sentByDave: Seq[Message] = exec(messages.filter(_.sender === "Dave").result

)

// sentByDave: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("Dave", "What if I say 'Pretty please'?", 5L)

//)

sentByDave.foreach(println)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

// Message(Dave,What if I say 'Pretty please'?,5)

Here are some things that might go wrong:

Note that the parameter to filter is built using a triple-equals operator, ===, not a
regular ==. If you use == you’ll get an interesঞng compile error:

exec(messages.filter(_.sender == "Dave").result)

// error: inferred type arguments [Boolean] do not conform to method filter's

type parameter bounds [T <: slick.lifted.Rep[_]]

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^

// error: type mismatch;

// found : repl.Session.App.MessageTable => Boolean

// required: repl.Session.App.MessageTable => T

// exec(messages.filter(_.sender == "Dave").result)

B.2. SELECTING DATA 187

// ^^^^^^^^^^^^^^^^^^

// error: Type T cannot be a query condition (only Boolean, Rep[Boolean] and

Rep[Option[Boolean]] are allowed

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The trick here is to noঞce that we’re not actually trying to compare _.sender and
"Dave". A regular equality expression evaluates to a Boolean, whereas === builds
an SQL expression of type Rep[Boolean] (Slick uses the Rep type to represent ex-
pressions over Columns as well as Columns themselves). The error message is baffling
when you first see it but makes sense once you understand what’s going on.

Finally, if you forget to call result, you’ll end up with a compilaঞon error as exec
and the call it is wrapping db.run both expect acঞons:

exec(messages.filter(_.sender === "Dave"))

// error: type mismatch;

// found : slick.lifted.Query[repl.Session.App.MessageTable,repl.Session.App

.MessageTable#TableElementType,Seq]

// (which expands to) slick.lifted.Query[repl.Session.App.MessageTable,

repl.Session.App.Message,Seq]

// required: slick.jdbc.H2Profile.api.DBIO[?]

// (which expands to) slick.dbio.DBIOAction[?,slick.dbio.NoStream,slick.

dbio.Effect.All]

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Query types tend to be verbose, which can be distracঞng from the actual cause of
the problem (which is that we’re not expecঞng a Query object at all). We will discuss
Query types in more detail next chapter.

Return to the exercise

B.2 Selecঞng Data

B.2.1 Soluঞon to: Count the Messages

val results = exec(messages.length.result)

// results: Int = 4

You could also use size, which is an alias for length.

Return to the exercise

188 APPENDIX B. SOLUTIONS TO EXERCISES

B.2.2 Soluঞon to: Selecঞng a Message

val id1query = for {

message <- messages if message.id === 1L

} yield message

// id1query: Query[MessageTable, Message, Seq] = Rep(Bind)

val id1result = exec(id1query.result)

// id1result: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L)

//)

Asking for 999, when there is no row with that ID, will give back an empty collecঞon.

Return to the exercise

B.2.3 Soluঞon to: One Liners
val filterResults = exec(messages.filter(_.id === 1L).result)

// filterResults: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L)

//)

Return to the exercise

B.2.4 Soluঞon to: Checking the SQL

The code you need to run is:

val sql = messages.filter(_.id === 1L).result.statements

// sql: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"id\" = 1"

//)

println(sql.head)

// select "sender", "content", "id" from "message" where "id" = 1

From this we see how filter corresponds to a SQL where clause.

Return to the exercise

B.2.5 Soluঞon to: Is HAL Real?

That’s right, we want to know if HAL exists:

B.2. SELECTING DATA 189

val queryHalExists = messages.filter(_.sender === "HAL").exists

// queryHalExists: Rep[Boolean] = Rep(Apply Function exists)

exec(queryHalExists.result)

// res39: Boolean = true

The query will return true as we do have records from HAL, and Slick will generate
the following SQL:

queryHalExists.result.statements.head

// res41: String = "select exists(select \"sender\", \"content\", \"id\" from

\"message\" where \"sender\" = 'HAL')"

Return to the exercise

B.2.6 Soluঞon to: Selecঞng Columns

val contents = messages.map(_.content)

// contents: Query[Rep[String], String, Seq] = Rep(Bind)

exec(contents.result)

// res42: Seq[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

You could have also said:

val altQuery = for { message <- messages } yield message.content

// altQuery: Query[Rep[String], String, Seq] = Rep(Bind)

The query will return only the content column from the database:

altQuery.result.statements.head

// res43: String = "select \"content\" from \"message\""

Return to the exercise

B.2.7 Soluঞon to: First Result

190 APPENDIX B. SOLUTIONS TO EXERCISES

val msg1 = messages.filter(_.sender === "HAL").map(_.content).result.head

// msg1: slick.sql.SqlAction[String, NoStream, Effect.Read] = slick.jdbc.

StreamingInvokerAction$HeadAction@1cceaa36

You should get an acঞon that produces “Affirmaঞve, Dave. I read you.”

For Alice, headwill throw a run-ঞme excepঞon as we are trying to return the head of
an empty collecঞon. Using headOption will prevent the excepঞon.

exec(messages.filter(_.sender === "Alice").result.headOption)

// res44: Option[Message] = None

Return to the exercise

B.2.8 Soluঞon to: Then the Rest

It’s drop and take to the rescue:

val msgs = messages.filter(_.sender === "HAL").drop(1).take(5).result

// msgs: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@3571bbb9

HAL has only two messages in total. Therefore our result set should contain one
messages

Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

And asking for any more messages will result in an empty collecঞon.

val allMsgs = exec(

messages.

filter(_.sender === "HAL").

drop(10).

take(10).

result

)

// allMsgs: Seq[MessageTable#TableElementType] = Vector()

Return to the exercise

B.2.9 Soluঞon to: The Start of Something

B.2. SELECTING DATA 191

messages.filter(_.content startsWith "Open")

// res47: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@785054318)

The query is implemented in terms of LIKE:

messages.filter(_.content startsWith "Open").result.statements.head

// res48: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"content\" like 'Open%' escape '^'"

Return to the exercise

B.2.10 Soluঞon to: Liking

If you have familiarity with SQL like expressions, it probably wasn’t too hard to find
a case-sensiঞve version of this query:

messages.filter(_.content like "%do%")

// res49: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@475220442)

To make it case sensiঞve you could use toLowerCase on the content field:

messages.filter(_.content.toLowerCase like "%do%")

// res50: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@1973804924)

We can do this because content is a Rep[String] and that Rep has implemented
toLowerCase. That means, the toLowerCasewill be translated into meaningful SQL.

There will be three results: “Do you read me”, “Open the pod bay doors”, and “I’m
afraid I can’t do that”.

Return to the exercise

B.2.11 Soluঞon to: Client-Side or Server-Side?

The query Slick generates looks something like this:

192 APPENDIX B. SOLUTIONS TO EXERCISES

select '(message Ref @421681221).content!' from "message"

That is a select expression for a strange constant string.

The _.content.toString + "!" expression converts content to a string and ap-
pends the exclamaঞon point. What is content? It’s a Rep[String], not a String of
the content. The end result is that we’re seeing something of the internal workings
of Slick.

It is possible to do this mapping in the database with Slick. We need to remember to
work in terms of Rep[T] classes:

messages.map(m => m.content ++ LiteralColumn("!"))

// res53: Query[Rep[String], String, Seq] = Rep(Bind)

Here LiteralColumn[T] is type of Rep[T] for holding a constant value to be in-
serted into the SQL. The ++method is one of the extension methods defined for any
Rep[String].

Using ++ will produce the desired query:

select "content"||'!' from "message"

You can also write:

messages.map(m => m.content ++ "!")

// res54: Query[Rep[String], String, Seq] = Rep(Bind)

…as "!" will be li[ed to a Rep[String].

This exercise highlights that inside of a map or filter you are working in terms of
Rep[T]. You should become familiar with the operaঞons available to you. The tables
we’ve included in this chapter should help with that.

Return to the exercise

B.3 Creaঞng and Modifying Data

B.3.1 Soluঞon to: Get to the Specifics

The requirements of the messages table is sender and content can not be null.
Given this, we can correct our query:

B.3. CREATING AND MODIFYING DATA 193

val senderAndContent = messages.map { m => (m.sender, m.content) }

// senderAndContent: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

val insertSenderContent = senderAndContent += (("HAL","Helllllo Dave"))

// insertSenderContent: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] =

slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@1159d251

exec(insertSenderContent)

// res30: Int = 1

We have used map to create a query that works on the two columns we care about.
To insert using that query, we supply the two field values.

In case you’re wondering, we’ve out the extra parentheses around the column values
to be clear it is a single value which is a tuple of two values.

Return to the exercise

B.3.2 Soluঞon to: Bulk All the Inserts

For this we need to use a batch insert (++=) and into:

val messageRows =

messages returning messages.map(_.id) into { (message, id) =>

message.copy(id = id)

}

// messageRows: slick.jdbc.H2Profile.IntoInsertActionComposer[MessageTable#

TableElementType, Message] = slick.jdbc.

JdbcActionComponent$ReturningInsertActionComposerImpl@62890c36

exec(messageRows ++= conversation).foreach(println)

// Message(Bob,Hi Alice,1018)

// Message(Alice,Hi Bob,1019)

// Message(Bob,Are you sure this is secure?,1020)

// Message(Alice,Totally, why do you ask?,1021)

// Message(Bob,Oh, nothing, just wondering.,1022)

// Message(Alice,Ten was too many messages,1023)

// Message(Bob,I could do with a sleep,1024)

// Message(Alice,Let's just get to the point,1025)

// Message(Bob,Okay okay, no need to be tetchy.,1026)

// Message(Alice,Humph!,1027)

Return to the exercise

194 APPENDIX B. SOLUTIONS TO EXERCISES

B.3.3 Soluঞon to: No Apologies

The pa�ern is to define a query to select the data, and then use it with delete:

messages.filter(_.content like "%sorry%").delete

// res32: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write] =

slick.jdbc.JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@

17989f71

Return to the exercise

B.3.4 Soluঞon to: Update Using a For Comprehension

We’ve split this into a query and then an update:

val halMessages = for {

message <- messages if message.sender === "HAL"

} yield (message.sender, message.content)

// halMessages: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(

Bind)

val rebootLoopUpdate = halMessages.update(("HAL 9000", "Rebooting, please wait

..."))

// rebootLoopUpdate: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.

Write] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@bf41744

Return to the exercise

B.3.5 Soluঞon to: Selecঞve Memory

We’ve selected HAL’s message IDs, sorted by the ID, and used this query inside a
filter:

val selectiveMemory =

messages.filter{

_.id in messages.

filter { _.sender === "HAL" }.

sortBy { _.id.asc }.

map {_.id}.

take(2)

}.delete

// selectiveMemory: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.

Write] = slick.jdbc.

B.4. COMBINING ACTIONS 195

JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@213642b0

selectiveMemory.statements.head

// res33: String = "delete from \"message\" where \"message\".\"id\" in (select

\"id\" from \"message\" where \"sender\" = 'HAL' order by \"id\" limit 2)

"

Return to the exercise

B.4 Combining Acঞons

B.4.1 Soluঞon to: And Then what?

Using the values we’ve provided, you can create a new database with a single acঞon:

exec(drop andThen create andThen populate)

// res20: Option[Int] = Some(4)

If we don’t care about any of the values we could also use DBIO.seq:

val allInOne = DBIO.seq(drop,create,populate)

// allInOne: DBIOAction[Unit, NoStream, Effect.All] = slick.dbio.

DBIOAction$$anon$4@63077e18

val result = exec(allInOne)

Return to the exercise

B.4.2 Soluঞon to: First!

There are two elements to this problem:

1. being able to use the result of a count, which is what flatMap gives us; and

2. combining two inserts via andThen.

import scala.concurrent.ExecutionContext.Implicits.global

def prefixFirst(m: Message): DBIO[Int] =

messages.size.result.flatMap {

case 0 =>

(messages += Message(m.sender, "First!")) andThen (messages += m)

case n =>

196 APPENDIX B. SOLUTIONS TO EXERCISES

messages += m

}

// Throw away all the messages:

exec(messages.delete)

// res21: Int = 4

// Try out the method:

exec {

prefixFirst(Message("Me", "Hello?"))

}

// res22: Int = 1

// What's in the database?

exec(messages.result).foreach(println)

// Message(Me,First!,5)

// Message(Me,Hello?,6)

Return to the exercise

B.4.3 Soluঞon to: There Can be Only One

The basis of our soluঞon is to flatMap the acঞon we’re given into a new acঞon with
the type we want:

def onlyOne[T](action: DBIO[Seq[T]]): DBIO[T] = action.flatMap { ms =>

ms match {

case m +: Nil => DBIO.successful(m)

case ys => DBIO.failed(

new RuntimeException(s"Expected 1 result, not ${ys.length}")

)

}

}

If you’ve not seen +: before: it is “cons” for Seq (a standard part of Scala, equivalent
to :: for List).

Our flatMap is taking the results from the acঞon, ms, and in the case it is a single
message, we return it. In the case it’s something else, we fail with an informaঞve
message.

exec(populate)

// res24: Option[Int] = Some(4)

exec(onlyOne(boom))

// java.lang.RuntimeException: Expected 1 result, not 2

B.4. COMBINING ACTIONS 197

// at repl.Session$App$$anonfun$onlyOne$1.apply(4-combining-actions.md:403)

// at repl.Session$App$$anonfun$onlyOne$1.apply(4-combining-actions.md:399)

// at slick.basic.BasicBackend$DatabaseDef.$anonfun$runInContextInline$1(

BasicBackend.scala:172)

// at scala.concurrent.impl.Promise$Transformation.run(Promise.scala:433)

// at scala.concurrent.BatchingExecutor$AbstractBatch.runN(BatchingExecutor.

scala:134)

// at scala.concurrent.BatchingExecutor$AsyncBatch.apply(BatchingExecutor.

scala:163)

// at scala.concurrent.BatchingExecutor$AsyncBatch.apply(BatchingExecutor.

scala:146)

// at scala.concurrent.BlockContext$.usingBlockContext(BlockContext.scala:107)

// at scala.concurrent.BatchingExecutor$AsyncBatch.run(BatchingExecutor.scala

:154)

// at java.util.concurrent.ForkJoinTask$RunnableExecuteAction.exec(

ForkJoinTask.java:1402)

// at java.util.concurrent.ForkJoinTask.doExec(ForkJoinTask.java:289)

// at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java

:1056)

// at java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1692)

// at java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java

:157)

exec(onlyOne(happy))

// res25: MessageTable#TableElementType = Message(

// "HAL",

// "I'm sorry, Dave. I'm afraid I can't do that.",

// 10L

//)

Return to the exercise

B.4.4 Soluঞon to: Let’s be Reasonable

There are several ways we could have implemented this. Perhaps the simplest is using
asTry:

import scala.util.Try

def exactlyOne[T](action: DBIO[Seq[T]]): DBIO[Try[T]] = onlyOne(action).asTry

exec(exactlyOne(happy))

// res26: Try[MessageTable#TableElementType] = Success(

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 10L)

//)

exec(exactlyOne(boom))

// res27: Try[MessageTable#TableElementType] = Failure(

198 APPENDIX B. SOLUTIONS TO EXERCISES

// java.lang.RuntimeException: Expected 1 result, not 2

//)

Return to the exercise

B.4.5 Soluঞon to: Filtering

This is a fairly straigh�orward example of using map:

def myFilter[T](action: DBIO[T])(p: T => Boolean)(alternative: => T) =

action.map {

case t if p(t) => t

case _ => alternative

}

Return to the exercise

B.4.6 Soluঞon to: Unfolding

The trick here is to recognize that:

1. this is a recursive problem, so we need to define a stopping condiঞon;

2. we need flatMap to sequence queries ; and

3. we need to accumulate results from each step.

In code…

def unfold(

z: String,

f: String => DBIO[Option[String]],

acc: Seq[String] = Seq.empty

): DBIO[Seq[String]] =

f(z).flatMap {

case None => DBIO.successful(acc :+ z)

case Some(r) => unfold(r, f, acc :+ z)

}

The basic idea is to call our acঞon (f) on the first room name (z). If there’s no result
from the query, we’re done. Otherwise we add the room to the list of rooms, and
recurse starঞng from the room we just found.

Here’s how we’d use it:

B.5. DATA MODELLING 199

def nextRoom(roomName: String): DBIO[Option[String]] =

floorplan.filter(_.name === roomName).map(_.connectsTo).result.headOption

val path: DBIO[Seq[String]] = unfold("Podbay", nextRoom)

// path: DBIO[Seq[String]] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@1c0c21bd,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(path)

// res29: Seq[String] = List("Podbay", "Galley", "Computer", "Engine Room")

Return to the exercise

B.5 Data Modelling

B.5.1 Soluঞon to: Filtering Opঞonal Columns

We can decide on the query to run in the two cases from inside our applicaঞon:

def filterByEmail(email: Option[String]) =

email.isEmpty match {

case true => users

case false => users.filter(_.email === email)

}

You don’t always have to do everything at the SQL level.

exec(

filterByEmail(Some("dave@example.org")).result

).foreach(println)

// User(Dave,Some(dave@example.org),1)

exec(

filterByEmail(None).result

).foreach(println)

// User(Dave,Some(dave@example.org),1)

// User(HAL ,None,2)

Return to the exercise

200 APPENDIX B. SOLUTIONS TO EXERCISES

B.5.2 Soluঞon to: Matching or Undecided

This problem we can represent in SQL, so we can do it with one query:

def filterByEmail(email: Option[String]) =

users.filter(u => u.email.isEmpty || u.email === email)

In this implementaঞon we’ve decided that if you search for email addresses matching
None, we only return NULL email address. But you could switch on the value of email
and do something different, as we did in previous exercises.

Return to the exercise

B.5.3 Soluঞon to: Enforcement

We get a runঞme excepঞon as we have violated referenঞal integrity. There is no row
in the user table with a primary id of 3000.

val action = messages += Message(UserPK(3000L), "Hello HAL!")

// action: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@30b06f80

exec(action.asTry)

// res41: util.Try[Int] = Failure(

// org.h2.jdbc.JdbcSQLIntegrityConstraintViolationException: Referential

integrity constraint violation: "sender_fk2: PUBLIC.msg_table FOREIGN KEY(

sender) REFERENCES PUBLIC.user(id) (3000)"; SQL statement:

// insert into "msg_table" ("sender","content") values (?,?) [23506-200]

//)

Return to the exercise

B.5.4 Soluঞon to: Mapping Enumeraঞons

The first step is to supply an implicit to and from the database values:

object UserRole extends Enumeration {

type UserRole = Value

val Owner = Value("O")

val Regular = Value("R")

}

import UserRole._

implicit val userRoleMapper =

MappedColumnType.base[UserRole, String](_.toString, UserRole.withName(_))

B.5. DATA MODELLING 201

// userRoleMapper: slick.jdbc.H2Profile.BaseColumnType[UserRole] =

MappedJdbcType[scala.Enumeration$Value -> String']

Then we can use the UserRole in the table definiঞon:

case class User(

name : String,

userRole : UserRole = Regular,

id : UserPK = UserPK(0L)

)

class UserTable(tag: Tag) extends Table[User](tag, "user_with_role") {

def id = column[UserPK]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def role = column[UserRole]("role", O.Length(1,false))

def * = (name, role, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

We’ve made the role column exactly 1 character in size.

Return to the exercise

B.5.5 Soluঞon to: Alternaঞve Enumeraঞons

The only change to make is to the mapper, to go from a UserRole and String, to a
UserRole and Int:

implicit val userRoleIntMapper =

MappedColumnType.base[UserRole, Int](

_.id,

v => UserRole.values.find(_.id == v) getOrElse Regular

)

// userRoleIntMapper: slick.jdbc.H2Profile.BaseColumnType[UserRole] =

MappedJdbcType[scala.Enumeration$Value -> Int']

Return to the exercise

B.5.6 Soluঞon to: Custom Boolean

This is similar to the Flag example above, except we need to handle mulঞple values
from the database.

202 APPENDIX B. SOLUTIONS TO EXERCISES

sealed trait Priority

case object HighPriority extends Priority

case object LowPriority extends Priority

implicit val priorityType =

MappedColumnType.base[Priority, String](

flag => flag match {

case HighPriority => "y"

case LowPriority => "n"

},

str => str match {

case "Y" | "y" | "+" | "high" => HighPriority

case "N" | "n" | "-" | "lo" | "low" => LowPriority

})

// priorityType: slick.jdbc.H2Profile.BaseColumnType[Priority] = MappedJdbcType

[repl.Session$App44$Priority -> String']

The table definiঞon would need a column[Priority].

Return to the exercise

B.5.7 Soluঞon to: Turning a Row into Many Case Classes

In our huge legacy table we will use custom funcঞons with <>…

class LegacyUserTable(tag: Tag) extends Table[User](tag, "legacy") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def age = column[Int]("age")

def gender = column[Char]("gender")

def height = column[Float]("height")

def weight = column[Float]("weight_kg")

def shoeSize = column[Int]("shoe_size")

def email = column[String]("email_address")

def phone = column[String]("phone_number")

def accepted = column[Boolean]("terms")

def sendNews = column[Boolean]("newsletter")

def street = column[String]("street")

def city = column[String]("city")

def country = column[String]("country")

def faveColor = column[String]("fave_color")

def faveFood = column[String]("fave_food")

def faveDrink = column[String]("fave_drink")

def faveTvShow = column[String]("fave_show")

def faveMovie = column[String]("fave_movie")

def faveSong = column[String]("fave_song")

def lastPurchase = column[String]("sku")

B.5. DATA MODELLING 203

def lastRating = column[Int]("service_rating")

def tellFriends = column[Boolean]("recommend")

def petName = column[String]("pet")

def partnerName = column[String]("partner")

// The tuple representation we will use:

type Row = (String, String, String, String, String, Long)

// One function from Row to User

def pack(row: Row): User = User(

EmailContact(row._1, row._2),

Address(row._3, row._4, row._5),

row._6

)

// Another method from User to Row:

def unpack(user: User): Option[Row] = Some(

(user.contact.name, user.contact.email, user.address.street,

user.address.city, user.address.country, user.id)

)

def * = (name, email, street, city, country, id).<>(pack, unpack)

}

lazy val legacyUsers = TableQuery[LegacyUserTable]

We can insert and query as normal:

exec(legacyUsers.schema.create)

exec(

legacyUsers += User(

EmailContact("Dr. Dave Bowman", "dave@example.org"),

Address("123 Some Street", "Any Town", "USA")

)

)

// res46: Int = 1

And we can fetch results:

exec(legacyUsers.result)

// res47: Seq[LegacyUserTable#TableElementType] = Vector(

// User(

// EmailContact("Dr. Dave Bowman", "dave@example.org"),

// Address("123 Some Street", "Any Town", "USA"),

// 1L

//)

//)

204 APPENDIX B. SOLUTIONS TO EXERCISES

You can conঞnue to select just some fields:

exec(legacyUsers.map(_.email).result)

// res48: Seq[String] = Vector("dave@example.org")

However, noঞce that if you used legacyUsers.schema.create, only the columns
defined in the default projecঞon were created in the H2 database:

legacyUsers.schema.createStatements.foreach(println)

// create table "legacy" ("name" VARCHAR NOT NULL,"email_address" VARCHAR NOT

NULL,"street" VARCHAR NOT NULL,"city" VARCHAR NOT NULL,"country" VARCHAR

NOT NULL,"id" BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT)

Return to the exercise

B.6 Joins and Aggregates

B.6.1 Soluঞon to: Name of the Sender

These queries are all items we’ve covered in the text:

val ex1 = for {

m <- messages

u <- users

if u.id === m.senderId

} yield (m, u)

// ex1: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(Bind)

val ex2 = for {

m <- messages

u <- users

if u.id === m.senderId

} yield (m.content, u.name)

// ex2: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

val ex3 = ex2.sortBy{ case (content, name) => name }

// ex3: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(SortBy

Ordering(Asc,NullsDefault))

val ex4 =

messages.

join(users).on(_.senderId === _.id).

map { case (msg, usr) => (msg.content, usr.name) }.

sortBy { case (content,name) => name }

// ex4: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(SortBy

B.6. JOINS AND AGGREGATES 205

Ordering(Asc,NullsDefault))

Return to the exercise

B.6.2 Soluঞon to: Messages of the Sender

This is a filter, a join, and a map:

def findByNameMonadic(name: String): Query[Rep[Message], Message, Seq] = for {

u <- users if u.name === name

m <- messages if m.senderId === u.id

} yield m

…or…

def findByNameApplicative(name: String): Query[Rep[Message], Message, Seq] =

users.filter(_.name === name).

join(messages).on(_.id === _.senderId).

map{ case (user, msg) => msg }

Return to the exercise

B.6.3 Soluঞon to: Having Many Messages

SQL disঞnguishes between WHERE and HAVING. In Slick you use filter for both:

val modifiedMsgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }.

filter { case (name, count) => count > 2 }

// modifiedMsgsPerUser: Query[(Rep[String], Rep[Int]), (String, Int), Seq] =

Rep(Filter @778091124)

At this point in the book, only Frank has more than two messages:

exec(modifiedMsgsPerUser.result)

// res25: Seq[(String, Int)] = Vector(("Frank", 3))

// Let's check:

val frankMsgs =

messages.join(users).on {

case (msg,user) => msg.senderId === user.id && user.name === "Frank"

}

206 APPENDIX B. SOLUTIONS TO EXERCISES

// frankMsgs: Query[(MessageTable, UserTable), (MessageTable#TableElementType,

UserTable#TableElementType), Seq] = Rep(Join Inner)

exec(frankMsgs.result).foreach(println)

// (Message(3,Hello?,Some(3),5),User(Frank,3))

// (Message(3,Helloooo?,Some(3),6),User(Frank,3))

// (Message(3,HELLO!?,Some(3),7),User(Frank,3))

…although if you’ve been experimenঞng with the database, your results could be dif-
ferent.

Return to the exercise

B.6.4 Soluঞon to: Collecঞng Results

You need all the code in the quesঞon and also what you know about acঞon combina-
tors:

def userMessages: DBIO[Map[User,Seq[Message]]] =

users.join(messages).on(_.id === _.senderId).result.

map { rows => rows

.groupBy{ case (user, message) => user }

.view

.mapValues(values => values.map{ case (name, msg) => msg })

.toMap

}

exec(userMessages).foreach(println)

// (User(Dave,1),Vector(Message(1,Hello, HAL. Do you read me, HAL?,Some(1),1),

Message(1,Open the pod bay doors, HAL.,None,3)))

// (User(HAL,2),Vector(Message(2,Affirmative, Dave. I read you.,Some(1),2),

Message(2,I'm sorry, Dave. I'm afraid I can't do that.,None,4)))

// (User(Frank,3),Vector(Message(3,Hello?,Some(3),5), Message(3,Helloooo?,Some

(3),6), Message(3,HELLO!?,Some(3),7)))

You may have been tripped up on the call to toMap at the end. We didn’t need this
in the examples in the text because we were not being explicit that we wanted a
Map[User,Seq[Message]]. However, userMessages does define the result type,
and as such we need to explicitly covert the sequence of tuples into a Map.

Return to the exercise

B.7. PLAIN SQL 207

B.7 Plain SQL

B.7.1 Soluঞon to: Plain Selects

The SQL statements are relaঞvely simple. You need to take care to make the as[T]
align to the result of the query.

val q1 = sql""" select count(*) from "message" """.as[Int]

// q1: slick.sql.SqlStreamingAction[Vector[Int], Int, Effect] = slick.jdbc.

SQLActionBuilder$$anon$1@21875721

val a1 = exec(q1)

// a1: Vector[Int] = Vector(4)

val q2 = sql""" select "content" from "message" """.as[String]

// q2: slick.sql.SqlStreamingAction[Vector[String], String, Effect] = slick.

jdbc.SQLActionBuilder$$anon$1@2c2bb6e2

val a2 = exec(q2)

// a2: Vector[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

a2.foreach(println)

// Hello, HAL. Do you read me, HAL?

// Affirmative, Dave. I read you.

// Open the pod bay doors, HAL.

// I'm sorry, Dave. I'm afraid I can't do that.

val q3 = sql""" select length("content") from "message" """.as[Int]

// q3: slick.sql.SqlStreamingAction[Vector[Int], Int, Effect] = slick.jdbc.

SQLActionBuilder$$anon$1@4177db71

val a3 = exec(q3)

// a3: Vector[Int] = Vector(32, 30, 28, 44)

val q4 = sql""" select "content", length("content") from "message" """.as[(

String,Int)]

// q4: slick.sql.SqlStreamingAction[Vector[(String, Int)], (String, Int),

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@26527cdd

val a4 = exec(q4)

// a4: Vector[(String, Int)] = Vector(

// ("Hello, HAL. Do you read me, HAL?", 32),

// ("Affirmative, Dave. I read you.", 30),

// ("Open the pod bay doors, HAL.", 28),

// ("I'm sorry, Dave. I'm afraid I can't do that.", 44)

//)

a4.foreach(println)

// (Hello, HAL. Do you read me, HAL?,32)

208 APPENDIX B. SOLUTIONS TO EXERCISES

// (Affirmative, Dave. I read you.,30)

// (Open the pod bay doors, HAL.,28)

// (I'm sorry, Dave. I'm afraid I can't do that.,44)

Return to the exercise

B.7.2 Soluঞon to: Conversion

There are various ways to implement this query in SQL. Here’s one of them…

val whoSaidThatPlain = sql"""

select

"name" from "user" u

join

"message" m on u."id" = m."sender_id"

where

m."content" = 'Open the pod bay doors, HAL.'

""".as[String]

// whoSaidThatPlain: slick.sql.SqlStreamingAction[Vector[String], String,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@3d771969

exec(whoSaidThatPlain)

// res16: Vector[String] = Vector("Dave")

Return to the exercise

B.7.3 Soluঞon to: Subsঞtuঞon

The soluঞon requires the use of a $ subsঞtuঞon:

def whoSaid(content: String): DBIO[Seq[String]] =

sql"""

select

"name" from "user" u

join

"message" m on u."id" = m."sender_id"

where

m."content" = $content

""".as[String]

exec(whoSaid("Open the pod bay doors, HAL."))

// res17: Seq[String] = Vector("Dave")

B.7. PLAIN SQL 209

exec(whoSaid("Affirmative, Dave. I read you."))

// res18: Seq[String] = Vector("HAL")

Return to the exercise

B.7.4 Soluঞon to: First and Last

import slick.jdbc.GetResult

implicit val GetFirstAndLast =

GetResult[FirstAndLast](r => FirstAndLast(r.nextString(), r.nextString()))

// GetFirstAndLast: AnyRef with GetResult[FirstAndLast] = <function1>

val query = sql""" select min("content"), max("content")

from "message" """.as[FirstAndLast]

// query: slick.sql.SqlStreamingAction[Vector[FirstAndLast], FirstAndLast,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@4c9a2483

exec(query)

// res20: Vector[FirstAndLast] = Vector(

// FirstAndLast("Affirmative, Dave. I read you.", "Open the pod bay doors,

HAL.")

//)

Return to the exercise

B.7.5 Soluঞon to: Plain Change

For modificaঞons we use sqlu, not sql:

exec(sqlu""" create table "jukebox" ("title" text) """)

// res21: Int = 0

exec(sqlu""" insert into "jukebox"("title")

values ('Bicycle Built for Two') """)

// res22: Int = 1

exec(sql""" select "title" from "jukebox" """.as[String])

// res23: Vector[String] = Vector("Bicycle Built for Two")

Return to the exercise

210 APPENDIX B. SOLUTIONS TO EXERCISES

B.7.6 Soluঞon to: Robert Tables

If you are familiar with xkcd’s Li�le Bobby Tables, the ঞtle of the exercise has probably
ঞpped you off: #$ does not escape input.

This means a user could use a carefully cra[ed email address to do evil:

val evilAction = lookup("""';DROP TABLE "user";--- """).as[Long]

// evilAction: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] = slick

.jdbc.SQLActionBuilder$$anon$1@33c9d232

exec(evilAction)

// res25: Vector[Long] = Vector()

This “email address” turns into two queries:

SELECT * FROM "user" WHERE "email" = '';

and

DROP TABLE "user";

Trying to access the users table a[er this will produce:

exec(users.result.asTry)

// res26: util.Try[Seq[UserTable#TableElementType]] = Failure(

// org.h2.jdbc.JdbcSQLSyntaxErrorException: Table "user" not found; SQL

statement:

// select "name", "email", "id" from "user" [42102-200]

//)

Yes, the table was dropped by the query.

Never use #$ with user supplied input.

Return to the exercise

http://xkcd.com/327/

	Preface
	What is Slick?
	How to Contact Us
	Getting help using Slick
	Acknowledgements
	Backers
	Conventions Used in This Book
	Typographical Conventions
	Source Code
	REPL Output
	Callout Boxes

	Basics
	Orientation
	Running the Examples and Exercises
	Working Interactively in the sbt Console
	Example: A Sequel Odyssey
	Library Dependencies
	Importing Library Code
	Defining our Schema
	Example Queries
	Configuring the Database
	Creating the Schema
	Inserting Data
	Selecting Data
	Combining Queries with For Comprehensions
	Actions Combine

	Take Home Points
	Exercise: Bring Your Own Data

	Selecting Data
	Select All The Rows!
	Filtering Results: The filter Method
	The Query and TableQuery Types
	Transforming Results
	The map Method
	exists

	Converting Queries to Actions
	Executing Actions
	Column Expressions
	Equality and Inequality Methods
	String Methods
	Numeric Methods
	Boolean Methods
	Date and Time Methods
	Option Methods and Type Equivalence

	Controlling Queries: Sort, Take, and Drop
	Conditional Filtering
	Take Home Points
	Exercises
	Count the Messages
	Selecting a Message
	One Liners
	 Checking the SQL
	Is HAL Real?
	Selecting Columns
	First Result
	Then the Rest
	The Start of Something
	Liking
	Client-Side or Server-Side?

	Creating and Modifying Data
	Inserting Rows
	Inserting Single Rows
	Primary Key Allocation
	Retrieving Primary Keys on Insert
	Retrieving Rows on Insert
	Inserting Specific Columns
	Inserting Multiple Rows
	More Control over Inserts

	Deleting Rows
	Updating Rows
	Updating a Single Field
	Updating Multiple Fields
	Updating with a Computed Value

	Take Home Points
	Exercises
	Get to the Specifics
	Bulk All the Inserts
	No Apologies
	Update Using a For Comprehension
	Selective Memory

	Combining Actions
	Combinators Summary
	Combinators in Detail
	andThen (or >>)
	DBIO.seq
	map
	DBIO.successful and DBIO.failed
	flatMap
	DBIO.sequence
	DBIO.fold
	zip
	andFinally and cleanUp
	asTry

	Logging Queries and Results
	Transactions
	Take Home Points
	Exercises
	And Then what?
	First!
	There Can be Only One
	Let's be Reasonable
	Filtering
	Unfolding

	Data Modelling
	Application Structure
	Abstracting over Databases
	Scaling to Larger Codebases

	Representations for Rows
	Projections, ProvenShapes, mapTo, and <>
	Tuples versus Case Classes
	Heterogeneous Lists

	Table and Column Representation
	Nullable Columns
	Primary Keys
	Compound Primary Keys
	Indices
	Foreign Keys
	Column Options

	Custom Column Mappings
	Value Classes
	Modelling Sum Types

	Take Home Points
	Exercises
	Filtering Optional Columns
	Matching or Undecided
	Enforcement
	Mapping Enumerations
	Alternative Enumerations
	Custom Boolean
	Turning a Row into Many Case Classes

	Joins and Aggregates
	Two Kinds of Join
	Chapter Schema
	Monadic Joins
	Applicative Joins
	More Tables, Longer Joins
	Inner Join
	Left Join
	Right Join
	Full Outer Join
	Cross Joins

	Zip Joins
	Joins Summary
	Seen Any Strange Queries?
	Aggregation
	Functions
	Grouping

	Take Home Points
	Exercises
	Name of the Sender
	Messages of the Sender
	Having Many Messages
	Collecting Results

	Plain SQL
	Selects
	Select with Custom Types
	Case Classes

	Updates
	Updating with Custom Types

	Typed Checked Plain SQL
	Compile Time Database Connections
	Type Checked Plain SQL

	Take Home Points
	Exercises
	Plain Selects
	Conversion
	Substitution
	First and Last
	Plain Change
	Robert Tables

	Using Different Database Products
	Changes
	PostgreSQL
	Create a Database
	Update build.sbt Dependencies
	Update JDBC References
	Update Slick Profile

	MySQL
	Create a Database
	Update build.sbt Dependencies
	Update JDBC References
	Update Slick DriverProfile

	Solutions to Exercises
	Basics
	Solution to: Bring Your Own Data
	Solution to: Bring Your Own Data Part 2

	Selecting Data
	Solution to: Count the Messages
	Solution to: Selecting a Message
	Solution to: One Liners
	Solution to: Checking the SQL
	Solution to: Is HAL Real?
	Solution to: Selecting Columns
	Solution to: First Result
	Solution to: Then the Rest
	Solution to: The Start of Something
	Solution to: Liking
	Solution to: Client-Side or Server-Side?

	Creating and Modifying Data
	Solution to: Get to the Specifics
	Solution to: Bulk All the Inserts
	Solution to: No Apologies
	Solution to: Update Using a For Comprehension
	Solution to: Selective Memory

	Combining Actions
	Solution to: And Then what?
	Solution to: First!
	Solution to: There Can be Only One
	Solution to: Let's be Reasonable
	Solution to: Filtering
	Solution to: Unfolding

	Data Modelling
	Solution to: Filtering Optional Columns
	Solution to: Matching or Undecided
	Solution to: Enforcement
	Solution to: Mapping Enumerations
	Solution to: Alternative Enumerations
	Solution to: Custom Boolean
	Solution to: Turning a Row into Many Case Classes

	Joins and Aggregates
	Solution to: Name of the Sender
	Solution to: Messages of the Sender
	Solution to: Having Many Messages
	Solution to: Collecting Results

	Plain SQL
	Solution to: Plain Selects
	Solution to: Conversion
	Solution to: Substitution
	Solution to: First and Last
	Solution to: Plain Change
	Solution to: Robert Tables

