
Essen al Slick
Richard Dallaway and
Jonathan Ferguson

underscore

Copyright 2019 Richard Dallaway and Jonathan Ferguson.

Essen al Slick
Copyright 2019 Richard Dallaway and Jonathan Ferguson.

Published by Underscore Consul ng LLP, Brighton, UK.

Copies of this, and related topics, can be found at h ps://underscore.io/training.
Team discounts, when available, may also be found at that address. Contact the

authors at hello@underscore.io.

Underscore provides consul ng, so ware development, and training in Scala and
func onal programming. You can find us on the web at h ps://underscore.io and on

Twi er at @underscoreio.

In addi on to wri ng so ware, we provide other training courses, workshops,
books, and mentoring to help you and your team create be er so ware and have

more fun. For more informa on please visit h ps://underscore.io/training.

2

https://underscore.io
https://underscore.io/training
mailto:hello@underscore.io
https://underscore.io
https://twitter.com/underscoreio
https://underscore.io/training

CONTENTS 3

Contents

Preface 11
What is Slick? . 11
How to Contact Us . 12
Ge ng help using Slick . 12
Acknowledgements . 12
Backers . 12
Conven ons Used in This Book . 13

Typographical Conven ons . 13
Source Code . 13
REPL Output . 14
Callout Boxes . 14

1 Basics 15
1.1 Orienta on . 15
1.2 Running the Examples and Exercises 16
1.3 Working Interac vely in the sbt Console 18
1.4 Example: A Sequel Odyssey . 19

1.4.1 Library Dependencies . 19
1.4.2 Impor ng Library Code . 20
1.4.3 Defining our Schema . 21
1.4.4 Example Queries . 22
1.4.5 Configuring the Database 22
1.4.6 Crea ng the Schema . 24
1.4.7 Inser ng Data . 25
1.4.8 Selec ng Data . 26
1.4.9 Combining Queries with For Comprehensions 28
1.4.10 Ac ons Combine . 29

1.5 Take Home Points . 30
1.6 Exercise: Bring Your Own Data . 31

4 CONTENTS

2 Selec ng Data 33
2.1 Select All The Rows! . 33
2.2 Filtering Results: The filterMethod 34
2.3 The Query and TableQuery Types 35
2.4 Transforming Results . 37

2.4.1 The mapMethod . 38
2.4.2 exists . 40

2.5 Conver ng Queries to Ac ons . 40
2.6 Execu ng Ac ons . 41
2.7 Column Expressions . 43

2.7.1 Equality and Inequality Methods 43
2.7.2 String Methods . 44
2.7.3 Numeric Methods . 45
2.7.4 Boolean Methods . 45
2.7.5 Date and Time Methods 46
2.7.6 Op on Methods and Type Equivalence 46

2.8 Controlling Queries: Sort, Take, and Drop 48
2.9 Condi onal Filtering . 50
2.10 Take Home Points . 52
2.11 Exercises . 53

2.11.1 Count the Messages . 53
2.11.2 Selec ng a Message . 54
2.11.3 One Liners . 54
2.11.4 Checking the SQL . 54
2.11.5 Is HAL Real? . 54
2.11.6 Selec ng Columns . 54
2.11.7 First Result . 55
2.11.8 Then the Rest . 55
2.11.9 The Start of Something . 55
2.11.10 Liking . 55
2.11.11 Client-Side or Server-Side? 55

3 Crea ng and Modifying Data 57
3.1 Inser ng Rows . 57

3.1.1 Inser ng Single Rows . 57
3.1.2 Primary Key Alloca on . 58
3.1.3 Retrieving Primary Keys on Insert 60
3.1.4 Retrieving Rows on Insert 60
3.1.5 Inser ng Specific Columns 62
3.1.6 Inser ng Mul ple Rows 64
3.1.7 More Control over Inserts 65

CONTENTS 5

3.2 Dele ng Rows . 66
3.3 Upda ng Rows . 67

3.3.1 Upda ng a Single Field . 68
3.3.2 Upda ng Mul ple Fields 69
3.3.3 Upda ng with a Computed Value 70

3.4 Take Home Points . 71
3.5 Exercises . 72

3.5.1 Get to the Specifics . 72
3.5.2 Bulk All the Inserts . 73
3.5.3 No Apologies . 73
3.5.4 Update Using a For Comprehension 73
3.5.5 Selec ve Memory . 74

4 Combining Ac ons 75
4.1 Combinators Summary . 75
4.2 Combinators in Detail . 76

4.2.1 andThen (or >>) . 76
4.2.2 DBIO.seq . 77
4.2.3 map . 77
4.2.4 DBIO.successful and DBIO.failed 79
4.2.5 flatMap . 80
4.2.6 DBIO.sequence . 82
4.2.7 DBIO.fold . 83
4.2.8 zip . 84
4.2.9 andFinally and cleanUp 85
4.2.10 asTry . 86

4.3 Logging Queries and Results . 86
4.4 Transac ons . 88
4.5 Take Home Points . 89
4.6 Exercises . 89

4.6.1 And Then what? . 89
4.6.2 First! . 90
4.6.3 There Can be Only One 90
4.6.4 Let’s be Reasonable . 91
4.6.5 Filtering . 92
4.6.6 Unfolding . 92

5 Data Modelling 95
5.1 Applica on Structure . 95

5.1.1 Abstrac ng over Databases 96
5.1.2 Scaling to Larger Codebases 97

6 CONTENTS

5.2 Representa ons for Rows . 98
5.2.1 Projec ons, ProvenShapes, mapTo, and <> 98
5.2.2 Tuples versus Case Classes 101
5.2.3 Heterogeneous Lists . 102

5.3 Table and Column Representa on 108
5.3.1 Nullable Columns . 108
5.3.2 Primary Keys . 110
5.3.3 Compound Primary Keys 111
5.3.4 Indices . 113
5.3.5 Foreign Keys . 114
5.3.6 Column Op ons . 118

5.4 Custom Column Mappings . 119
5.4.1 Value Classes . 122
5.4.2 Modelling Sum Types . 125

5.5 Take Home Points . 128
5.6 Exercises . 129

5.6.1 Filtering Op onal Columns 129
5.6.2 Matching or Undecided . 130
5.6.3 Enforcement . 131
5.6.4 Mapping Enumera ons . 131
5.6.5 Alterna ve Enumera ons 131
5.6.6 Custom Boolean . 132
5.6.7 Turning a Row into Many Case Classes 132

6 Joins and Aggregates 133
6.1 Two Kinds of Join . 133
6.2 Chapter Schema . 133
6.3 Monadic Joins . 135
6.4 Applica ve Joins . 137

6.4.1 More Tables, Longer Joins 138
6.4.2 Inner Join . 141
6.4.3 Le Join . 143
6.4.4 Right Join . 146
6.4.5 Full Outer Join . 146
6.4.6 Cross Joins . 147

6.5 Zip Joins . 148
6.6 Joins Summary . 150
6.7 Seen Any Strange Queries? . 150
6.8 Aggrega on . 151

6.8.1 Func ons . 151
6.8.2 Grouping . 152

CONTENTS 7

6.9 Take Home Points . 157
6.10 Exercises . 157

6.10.1 Name of the Sender . 158
6.10.2 Messages of the Sender 158
6.10.3 Having Many Messages 158
6.10.4 Collec ng Results . 159

7 Plain SQL 161
7.1 Selects . 162

7.1.1 Select with Custom Types 165
7.1.2 Case Classes . 166

7.2 Updates . 167
7.2.1 Upda ng with Custom Types 168

7.3 Typed Checked Plain SQL . 169
7.3.1 Compile Time Database Connec ons 170
7.3.2 Type Checked Plain SQL 171

7.4 Take Home Points . 172
7.5 Exercises . 173

7.5.1 Plain Selects . 174
7.5.2 Conversion . 174
7.5.3 Subs tu on . 175
7.5.4 First and Last . 175
7.5.5 Plain Change . 176
7.5.6 Robert Tables . 176

A Using Different Database Products 179
A.1 Changes . 179
A.2 PostgreSQL . 180

A.2.1 Create a Database . 180
A.2.2 Update build.sbt Dependencies 180
A.2.3 Update JDBC References 181
A.2.4 Update Slick Profile . 181

A.3 MySQL . 181
A.3.1 Create a Database . 181
A.3.2 Update build.sbt Dependencies 182
A.3.3 Update JDBC References 182
A.3.4 Update Slick DriverProfile 182

B Solu ons to Exercises 185
B.1 Basics . 185

B.1.1 Solu on to: Bring Your Own Data 185

8 CONTENTS

B.1.2 Solu on to: Bring Your Own Data Part 2 186
B.2 Selec ng Data . 187

B.2.1 Solu on to: Count the Messages 187
B.2.2 Solu on to: Selec ng a Message 188
B.2.3 Solu on to: One Liners 188
B.2.4 Solu on to: Checking the SQL 188
B.2.5 Solu on to: Is HAL Real? 188
B.2.6 Solu on to: Selec ng Columns 189
B.2.7 Solu on to: First Result 189
B.2.8 Solu on to: Then the Rest 190
B.2.9 Solu on to: The Start of Something 190
B.2.10 Solu on to: Liking . 191
B.2.11 Solu on to: Client-Side or Server-Side? 191

B.3 Crea ng and Modifying Data . 192
B.3.1 Solu on to: Get to the Specifics 192
B.3.2 Solu on to: Bulk All the Inserts 193
B.3.3 Solu on to: No Apologies 194
B.3.4 Solu on to: Update Using a For Comprehension 194
B.3.5 Solu on to: Selec ve Memory 194

B.4 Combining Ac ons . 195
B.4.1 Solu on to: And Then what? 195
B.4.2 Solu on to: First! . 195
B.4.3 Solu on to: There Can be Only One 196
B.4.4 Solu on to: Let’s be Reasonable 197
B.4.5 Solu on to: Filtering . 198
B.4.6 Solu on to: Unfolding . 198

B.5 Data Modelling . 199
B.5.1 Solu on to: Filtering Op onal Columns 199
B.5.2 Solu on to: Matching or Undecided 200
B.5.3 Solu on to: Enforcement 200
B.5.4 Solu on to: Mapping Enumera ons 200
B.5.5 Solu on to: Alterna ve Enumera ons 201
B.5.6 Solu on to: Custom Boolean 201
B.5.7 Solu on to: Turning a Row into Many Case Classes 202

B.6 Joins and Aggregates . 204
B.6.1 Solu on to: Name of the Sender 204
B.6.2 Solu on to: Messages of the Sender 205
B.6.3 Solu on to: Having Many Messages 205
B.6.4 Solu on to: Collec ng Results 206

B.7 Plain SQL . 207

CONTENTS 9

B.7.1 Solu on to: Plain Selects 207
B.7.2 Solu on to: Conversion 208
B.7.3 Solu on to: Subs tu on 208
B.7.4 Solu on to: First and Last 209
B.7.5 Solu on to: Plain Change 209
B.7.6 Solu on to: Robert Tables 210

10 CONTENTS

Preface

What is Slick?

Slick is a Scala library for working with rela onal databases. That means it allows you
to model a schema, run queries, insert data, and update data.

Using Slick, you can write queries in Scala, giving you typed-checked database access.
The style of queries makes working with a database similar to working with regular
Scala collec ons.

We’ve seen that developers using Slick for the first me o en need help ge ng the
most from it. For example, you need to know a few key concepts, such as:

• queries: which compose using combinators such as map, flatMap, and filter;

• ac ons: the things you can run against a database, which themselves compose;
and

• futures: which are the result of ac ons, and also support a set of combinators.

We’ve produced Essen al Slick as a guide for those whowant to get started using Slick.
This material is aimed at beginner-to-intermediate Scala developers. You need:

• a working knowledge of Scala (we recommend Essen al Scala or an equivalent
book);

• experience with rela onal databases (familiarity with concepts such as rows,
columns, joins, indexes, SQL);

• an installed JDK 8 or later, along with a programmer’s text editor or IDE; and

11

https://scala-slick.org/
https://underscore.io/training/courses/essential-scala

12 CONTENTS

• the sbt build tool.

Thematerial presented focuses on Slick version 3.3. Examples useH2 as the rela onal
database.

How to Contact Us

You can provide feedback on this text via:

• issues and pull requests on the source repository for this text;

• our Gi er channel; or

• email to hello@underscore.io using the subject line of “Essen al Slick”.

Ge ng help using Slick

If you have ques ons about using Slick, ask a ques on on the Slick Gi er channel or
use the “slick” tag at Stackoverflow.

Acknowledgements

Many thanks to the following people for their contribu ons to this book: Renato Cav-
alcan , Dave Gurnell, Kevin Meredith, Joseph O nger, Yann Simon, Trevor Sibanda,
Ma hias Braun, Konstan ne Gadyrka, Sabrina.

And of course huge thanks to the Slick team for crea ng such a cool piece of so ware.

Backers

We’d also like to extend special thanks to our backers—fine people who helped fund
the development of the book by buying a copy before we released it as open source.
This book wouldn’t exist without you:

@moliware, Aaron remick, Aguinaldo Possa o, Akash Suresh, alfogator, Antonio
Pacheco, ashugupt, Bar Shirtcliff, barabum, Brandon Hudgeons, Brian M. Clapper,

https://scala-sbt.org
https://www.h2database.com
https://github.com/underscoreio/essential-slick/issues
https://github.com/underscoreio/essential-slick/pulls
https://github.com/underscoreio/essential-slick/
https://gitter.im/underscoreio/scala
mailto:hello@underscore.io?subject=Essential%20Slick
https://gitter.im/slick/slick
https://stackoverflow.com/questions/tagged/slick
https://twitter.com/renatocaval
https://twitter.com/renatocaval
https://twitter.com/davegurnell
https://twitter.com/Gentmen
https://github.com/jottinger
https://github.com/yanns
https://github.com/trevorsibanda

CONTENTS 13

Brian Schlining, Calvin Fernandes, Ceschia (@6qat), Chris Llanwarne, Craig Tataryn,
Daniel Billsus, David Sinclair, Dennis Vriend, Dimitrios Liapis, Dirk Forier, Doug Clin-
ton, Elvis5566, Enrique Rodríguez, Fabian, Ganesh Chand, Geoffrey Gilmore, George
Ball, Graeme Ludwig, Harish Hurchurn, Igo Brilhante, Igor Lengvarsky, Ivano Pagano,
James Shade, Jamoliddin Daliev, Jeff Gentry, Jeremy Smith, Jonathan Steinhart,
Jules Ivanic, Karl-Aksel Puulmann, Keith Mannock, kipperjim, Kristof Jozsa, Mari-
anudo (Mariano Navas), Mar n Kneissl, DASGIP GmbH, Ma hew Edwards, Ma hew
Pflueger, Ma hias Braun, Ma hias Trüb, Me in the book!, Miguel A. Baldi Hörlle, nani-
tous, NavidMohaghegh, Nicolas F. Rouque e, Nicolas Sitbon, NikitaMoshensky, P7h,
Pascal Rodriguez, Pawel Wlodarski from JUG Lodz, prasadm80@gmail.com, Puneet,
Puneet Jhajj Bains, Remco Bos, Richard Opsal, Richard Searle, Robert Cheetham,
Azavea, Robin Taylor (@badgermind), Ruslan Kharitonov, Sander Zuidema, Sarav
Ramaswamy, Seoh Char, SJ Yoon, Sören Brunk, Spockz, Stein Fletcher, Thibault
Fouache, Thomas Toye, Tobias Lutz, Tom Hobbs (Arxality Ltd), Tony Murphy, Vladimir
Bacvanski, Wojciech Langiewicz, Zurab Kakabadze.

Conven ons Used in This Book

This book contains a lot of technical informa on and program code. We use the fol-
lowing typographical conven ons to reduce ambiguity and highlight important con-
cepts:

Typographical Conven ons

New terms and phrases are introduced in italics. A er their ini al introduc on they
are wri en in normal roman font.

Terms from program code, filenames, and file contents, are wri en in monospace

font.

References to external resources are wri en as hyperlinks. References to API doc-
umenta on are wri en using a combina on of hyperlinks and monospace font, for
example: scala.Option.

Source Code

Source code blocks are wri en as follows. Syntax is highlighted appropriately where
applicable:

https://underscore.io
https://www.scala-lang.org/api/current/scala/Option.html

14 CONTENTS

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

REPL Output

We use Scala comments to show REPL output. For example:

2 * 13

// res0: Int = 26

If you’re following along with the REPL, and copy and paste from the book we hope
this will be useful. It means if you accidentally copymore than you intended, the REPL
will ignore the commented output.

We use the mdoc to compile the majority of code in this text. The REPL output is
wrapped by LaTeX. This can be tricky to read, especially with long type signatures. So
in some places we also duplicate and reformat the output. But the best way is to try
the code out in the REPL for yourself.

Callout Boxes

We use three types of callout box to highlight par cular content:

Tip callouts indicate handy summaries, recipes, or best prac ces.

Advanced callouts provide addi onal informa on on corner cases or underly-
ing mechanisms. Feel free to skip these on your first read-through—come back
to them later for extra informa on.

Warning callouts indicate common pi alls and gotchas. Make sure you read
these to avoid problems, and comeback to them if you’re having trouble ge ng
your code to run.

https://scalameta.org/mdoc/

Chapter 1

Basics

1.1 Orienta on

Slick is a Scala library for accessing rela onal databases using an interface similar to
the Scala collec ons library. You can treat queries like collec ons, transforming and
combining themwithmethods like map, flatMap, and filter before sending them to
the database to fetch results. This is how we’ll be working with Slick for the majority
of this text.

Standard Slick queries are wri en in plain Scala. These are type safe expressions that
benefit from compile me error checking. They also compose, allowing us to build
complex queries from simple fragments before running them against the database. If
wri ng queries in Scala isn’t your style, you’ll be pleased to know that Slick also allows
you to write plain SQL queries.

In addi on to querying, Slick helps you with all the usual trappings of rela onal
database, including connec ng to a database, crea ng a schema, se ng up trans-
ac ons, and so on. You can even drop down below Slick to deal with JDBC (Java
Database Connec vity) directly, if that’s something you’re familiar with and find you
need.

This book provides a compact, no-nonsense guide to everything you need to know to
use Slick in a commercial se ng:

• Chapter 1 provides an abbreviated overview of the library as a whole, demon-
stra ng the fundamentals of data modelling, connec ng to the database, and
running queries.

15

16 CHAPTER 1. BASICS

• Chapter 2 covers basic select queries, introducing Slick’s query language and
delving into some of the details of type inference and type checking.

• Chapter 3 covers queries for inser ng, upda ng, and dele ng data.
• Chapter 4 discusses data modelling, including defining custom column and ta-
ble types.

• Chapter 5 looks at ac ons and how you combine mul ple ac ons together.
• Chapter 6 explores advanced select queries, including joins and aggregates.
• Chapter 7 provides a brief overview of Plain SQL queries—a useful tool when
you need fine control over the SQL sent to your database.

Slick isn’t an ORM

If you’re familiar with other database libraries such as Hibernate or Ac ve
Record, you might expect Slick to be an Object-Rela onal Mapping (ORM) tool.
It is not, and it’s best not to think of Slick in this way.

ORMs a empt to map object oriented data models onto rela onal database
backends. By contrast, Slick provides a more database-like set of tools such
as queries, rows and columns. We’re not going to argue the pros and cons of
ORMs here, but if this is an area that interests you, take a look at the Coming
from ORM to Slick ar cle in the Slick manual.

If you aren’t familiar with ORMs, congratula ons. You already have one less
thing to worry about!

1.2 Running the Examples and Exercises

The aim of this first chapter is to provide a high-level overview of the core concepts
involved in Slick, and get you up and running with a simple end-to-end example. You
can grab this example now by cloning the Git repo of exercises for this book:

bash$ git clone git@github.com:underscoreio/essential-slick-code.git

Cloning into 'essential-slick-code'...

bash$ cd essential-slick-code

bash$ ls -1

README.md

chapter-01

chapter-02

https://hibernate.org
https://guides.rubyonrails.org/active_record_basics.html
https://guides.rubyonrails.org/active_record_basics.html
https://scala-slick.org/doc/3.3.3/orm-to-slick.html
https://scala-slick.org/doc/3.3.3/orm-to-slick.html

1.2. RUNNING THE EXAMPLES AND EXERCISES 17

chapter-03

chapter-04

chapter-05

chapter-06

chapter-07

Each chapter of the book is associated with a separate sbt project that provides a
combina on of examples and exercises. We’ve bundled everything you need to run
sbt in the directory for each chapter.

We’ll be using a running example of a chat applica on similar to Slack, Gi er, or IRC.
The app will grow and evolve as we proceed through the book. By the end it will have
users, messages, and rooms, all modelled using tables, rela onships, and queries.

For now, we will start with a simple conversa on between two famous celebri es.
Change to the chapter-01 directory now, use the sbt command to start sbt, and
compile and run the example to see what happens:

bash$ cd chapter-01

bash$ sbt

sbt log messages...

> compile

More sbt log messages...

> run

Creating database table

Inserting test data

Selecting all messages:

Message("Dave","Hello, HAL. Do you read me, HAL?",1)

Message("HAL","Affirmative, Dave. I read you.",2)

Message("Dave","Open the pod bay doors, HAL.",3)

Message("HAL","I'm sorry, Dave. I'm afraid I can't do that.",4)

Selecting only messages from HAL:

Message("HAL","Affirmative, Dave. I read you.",2)

Message("HAL","I'm sorry, Dave. I'm afraid I can't do that.",4)

If you get output similar to the above, congratula ons! You’re all set up and ready
to run with the examples and exercises throughout the rest of this book. If you en-

18 CHAPTER 1. BASICS

counter any errors, let us know on our Gi er channel and we’ll do what we can to
help out.

New to sbt?

The first me you run sbt, it will download a lot of library dependencies from
the Internet and cache them on your hard drive. This means two things:

• you need a working Internet connec on to get started; and
• the first compile command you issue could take a while to complete.

If you haven’t used sbt before, you may find the sbt Ge ng Started Guide
useful.

1.3 Working Interac vely in the sbt Console

Slick queries run asynchronously as Future values. These are fiddly to work with in
the Scala REPL, but we do want you to be able to explore Slick via the REPL. So to
get you up to speed quickly, the example projects define an execmethod and import
the base requirements to run examples from the console.

You can see this by star ng sbt and then running the console command. Which will
give output similar to:

> console

[info] Starting scala interpreter...

[info]

Welcome to Scala 2.12.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112).

Type in expressions for evaluation. Or try :help.

scala> import slick.jdbc.H2Profile.api._

import Example._

import scala.concurrent.duration._

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.JdbcBackend$DatabaseDef@

ac9a820

exec: [T](program: slick.jdbc.H2Profile.api.DBIO[T])T

res0: Option[Int] = Some(4)

scala>

Our exec helper runs a query and waits for the output. There is a complete explana-
on of exec and these imports later in the chapter. For now, here’s a small example

https://gitter.im/underscoreio/scala
https://www.scala-sbt.org/1.x/docs/Getting-Started.html

1.4. EXAMPLE: A SEQUEL ODYSSEY 19

which fetches all the message rows:

exec(messages.result)

// res1: Seq[Example.MessageTable#TableElementType] =

// Vector(Message(Dave,Hello, HAL. Do you read me, HAL?,1),

// Message(HAL,Affirmative, Dave. I read you.,2),

// Message(Dave,Open the pod bay doors, HAL.,3),

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4))

But we’re ge ng ahead of ourselves. We’ll work through building up queries and
running them, and using exec, as we work through this chapter. If the above works
for you, great—you have a development environment set up and ready to go.

1.4 Example: A Sequel Odyssey

The test applica on we saw above creates an in-memory database using H2, creates
a single table, populates it with test data, and then runs some example queries. The
rest of this sec on will walk you through the code and provide an overview of things
to come. We’ll reproduce the essen al parts of the code in the text, but you can follow
along in the codebase for the exercises as well.

Choice of Database

All of the examples in this book use the H2 database. H2 is wri en in Java
and runs in-process beside our applica on code. We’ve picked H2 because it
allows us to forego any system administra on and skip to wri ng Scala.

You might prefer to useMySQL, PostgreSQL, or some other database—and you
can. In Appendix A we point you at the changes you’ll need to make to work
with other databases. However, we recommend s cking with H2 for at least
this first chapter so you can build confidence using Slick without running into
database-specific complica ons.

1.4.1 Library Dependencies

Before diving into Scala code, let’s look at the sbt configura on. You’ll find this in
build.sbt in the example:

https://www.h2database.com
https://www.h2database.com

20 CHAPTER 1. BASICS

name := "essential-slick-chapter-01"

version := "1.0.0"

scalaVersion := "2.13.3"

libraryDependencies ++= Seq(

"com.typesafe.slick" %% "slick" % "3.3.3",

"com.h2database" % "h2" % "1.4.200",

"ch.qos.logback" % "logback-classic" % "1.2.3"

)

This file declares the minimum library dependencies for a Slick project:

• Slick itself;

• the H2 database; and

• a logging library.

If we were using a separate database likeMySQL or PostgreSQL, we would subs tute
the H2 dependency for the JDBC driver for that database.

1.4.2 Impor ng Library Code

Database management systems are not created equal. Different systems support dif-
ferent data types, different dialects of SQL, and different querying capabili es. To
model these capabili es in a way that can be checked at compile me, Slick provides
most of its API via a database-specific profile. For example, we access most of the
Slick API for H2 via the following import:

import slick.jdbc.H2Profile.api._

Slick makes heavy use of implicit conversions and extension methods, so we gener-
ally need to include this import anywhere where we’re working with queries or the
database. Chapter 5 looks how you can keep a specific database profile out of your
code un l necessary.

1.4. EXAMPLE: A SEQUEL ODYSSEY 21

1.4.3 Defining our Schema

Our first job is to tell Slick what tables we have in our database and how to map them
onto Scala values and types. The most common representa on of data in Scala is a
case class, so we start by defining a Message class represen ng a row in our single
example table:

case class Message(

sender: String,

content: String,

id: Long = 0L)

Next we define a Table object, which corresponds to our database table and tells
Slick how to map back and forth between database data and instances of our case
class:

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

MessageTable defines three columns: id, sender, and content. It defines the
names and types of these columns, and any constraints on them at the database level.
For example, id is a column of Long values, which is also an auto-incremen ng pri-
mary key.

The * method provides a default projec on that maps between columns in the table
and instances of our case class. Slick’s mapTo macro creates a two-way mapping be-
tween the three columns and the three fields in Message.

We’ll cover projec ons and default projec ons in detail in Chapter 5. For now, all we
need to know is that this line allows us to query the database and get back Messages
instead of tuples of (String, String, Long).

The tag on the first line is an implementa on detail that allows Slick to manage mul-
ple uses of the table in a single query. Think of it like a table alias in SQL. We don’t
need to provide tags in our user code—Slick takes care of them automa cally.

22 CHAPTER 1. BASICS

1.4.4 Example Queries

Slick allows us to define and compose queries in advance of running them against the
database. We start by defining a TableQuery object that represents a simple SELECT
* style query on our message table:

val messages = TableQuery[MessageTable]

// messages: TableQuery[MessageTable] = Rep(TableExpansion)

Note that we’re not running this query at the moment—we’re simply defining it as a
means to build other queries. For example, we can create a SELECT * WHERE style
query using a combinator called filter:

val halSays = messages.filter(_.sender === "HAL")

// halSays: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2050731725)

Again, we haven’t run this query yet—we’ve defined it as a building block for yet more
queries. This demonstrates an important part of Slick’s query language—it is made
from composable elements that permit a lot of valuable code re-use.

Li ed Embedding

If you’re a fan of terminology, know that what we have discussed so far is called
the li ed embedding approach in Slick:

• define data types to store row data (case classes, tuples, or other types);
• define Table objects represen ng mappings between our data types
and the database;

• define TableQueries and combinators to build useful queries before
we run them against the database.

Li ed embedding is the standard way to work with Slick. We will discuss the
other approach, called Plain SQL querying, in Chapter 7.

1.4.5 Configuring the Database

We’ve wri en all of the code so far without connec ng to the database. Now it’s me
to open a connec on and run some SQL. We start by defining a Database object
which acts as a factory for managing connec ons and transac ons:

1.4. EXAMPLE: A SEQUEL ODYSSEY 23

val db = Database.forConfig("chapter01")

// db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.

JdbcBackend$DatabaseDef@16d23447

The parameter to Database.forConfig determines which configura on to use from
the application.conf file. This file is found in src/main/resources. It looks like
this:

chapter01 {

driver = "org.h2.Driver"

url = "jdbc:h2:mem:chapter01"

keepAliveConnection = true

connectionPool = disabled

}

This syntax comes from the Typesafe Config library, which is also used by Akka and
the Play framework.

The parameters we’re providing are intended to configure the underlying JDBC layer.
The driver parameter is the fully qualified class name of the JDBC driver for our
chosen DBMS.

The url parameter is the standard JDBC connec on URL, and in this case we’re cre-
a ng an in-memory database called "chapter01".

By default the H2 in-memory database is deleted when the last connec on is closed.
As we will be running mul ple connec ons in our examples, we enable keepAlive-
Connection to keep the data around un l our program completes.

Slick manages database connec ons and transac ons using auto-commit. We’ll look
at transac ons in Chapter 4.

JDBC

If you don’t have a background working with Java, you may not have heard of
Java Database Connec vity (JDBC). It’s a specifica on for accessing databases
in a vendor neutral way. That is, it aims to be independent of the specific
database you are connec ng to.

The specifica on is mirrored by a library implemented for each database you
want to connect to. This library is called the JDBC driver.

JDBCworks with connec on strings, which are URLs like the one above that tell
the driver where your database is and how to connect to it (e.g. by providing

https://github.com/typesafehub/config
https://docs.oracle.com/javase/tutorial/jdbc/basics/connecting.html

24 CHAPTER 1. BASICS

login creden als).

1.4.6 Crea ng the Schema

Now that we have a database configured as db, we can use it.

Let’s start with a CREATE statement for MessageTable, whichwe build usingmethods
of our TableQuery object, messages. The Slick method schema gets the schema
descrip on. We can see what that would be via the createStatements method:

messages.schema.createStatements.mkString

// res0: String = "create table \"message\" (\"sender\" VARCHAR NOT NULL,\"

content\" VARCHAR NOT NULL,\"id\" BIGINT NOT NULL PRIMARY KEY

AUTO_INCREMENT)"

But we’ve not sent this to the database yet. We’ve just printed the statement, to
check it is what we think it should be.

In Slick, what we run against the database is an ac on. This is howwe create an ac on
for the messages schema:

val action: DBIO[Unit] = messages.schema.create

// action: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@42e7704a

The result of this messages.schema.create expression is a DBIO[Unit]. This is an
object represen ng a DB ac on that, when run, completes with a result of type Unit.
Anything we run against a database is a DBIO[T] (or a DBIOAction, more generally).
This includes queries, updates, schema altera ons, and so on.

DBIO and DBIOAc on

In this book we will talk about ac ons as having the type DBIO[T].

This is a simplifica on. The more general type is DBIOAction, and specifically
for this example, it is a DBIOAction[Unit, NoStream, Effect.Schema].
The details of all of this we will get to later in the book.

But DBIO[T] is a type alias supplied by Slick, and is perfectly fine to use.

Let’s run this ac on:

1.4. EXAMPLE: A SEQUEL ODYSSEY 25

import scala.concurrent.Future

val future: Future[Unit] = db.run(action)

// future: Future[Unit] = Future(Success(()))

The result of run is a Future[T], where T is the type of result returned by the
database. Crea ng a schema is a side-effec ng opera on so the result type is Fu-
ture[Unit]. This matches the type DBIO[Unit] of the ac on we started with.

Futures are asynchronous. That’s to say, they are placeholders for values that will
eventually appear. We say that a future completes at some point. In produc on code,
futures allow us to chain together computa ons without blocking to wait for a result.
However, in simple examples like this we can block un l our ac on completes:

import scala.concurrent.Await

import scala.concurrent.duration._

val result = Await.result(future, 2.seconds)

1.4.7 Inser ng Data

Once our table is set up, we need to insert some test data. We’ll define a helper
method to create a few test Messages for demonstra on purposes:

def freshTestData = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

The insert of this test data is an ac on:

val insert: DBIO[Option[Int]] = messages ++= freshTestData

// insert: DBIO[Option[Int]] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$MultiInsertAction@fee4bd2

The ++= method of message accepts a sequence of Message objects and translates
them to a bulk INSERT query (freshTestData is a regular Scala Seq[Message]). We
run the insert via db.run, and when the future completes our table is populated
with data:

val insertAction: Future[Option[Int]] = db.run(insert)

// insertAction: Future[Option[Int]] = Future(Success(Some(4)))

26 CHAPTER 1. BASICS

The result of an insert opera on is the number of rows inserted. The freshTest-
Data contains four messages, so in this case the result is Some(4) when the future
completes:

val rowCount = Await.result(insertAction, 2.seconds)

// rowCount: Option[Int] = Some(4)

The result is op onal because the underlying Java APIs do not guarantee a count of
rows for batch inserts—some databases simply return None. We discuss single and
batch inserts and updates further in Chapter 3.

1.4.8 Selec ng Data

Now our database has a few rows in it, we can start selec ng data. We do this by
taking a query, such as messages or halSays, and turning it into an ac on via the
result method:

val messagesAction: DBIO[Seq[Message]] = messages.result

// messagesAction: DBIO[Seq[Message]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@c2b516c

val messagesFuture: Future[Seq[Message]] = db.run(messagesAction)

// messagesFuture: Future[Seq[Message]] = Future(Success(Vector(Message(Dave,

Hello, HAL. Do you read me, HAL?,1), Message(HAL,Affirmative, Dave. I read

you.,2), Message(Dave,Open the pod bay doors, HAL.,3), Message(HAL,I'm

sorry, Dave. I'm afraid I can't do that.,4))))

val messagesResults = Await.result(messagesFuture, 2.seconds)

// messagesResults: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

We can see the SQL issued to H2 using the statements method on the ac on:

val sql = messages.result.statements.mkString

// sql: String = "select \"sender\", \"content\", \"id\" from \"message\""

1.4. EXAMPLE: A SEQUEL ODYSSEY 27

The exec Helper Method

In our applica ons we should avoid blocking on Futures whenever possi-
ble. However, in the examples in this book we’ll be making heavy use of
Await.result. We will introduce a helper method called exec to make the
examples easier to read:

def exec[T](action: DBIO[T]): T =

Await.result(db.run(action), 2.seconds)

All exec does is run the supplied ac on and wait for the result. For example,
to run a select query we can write:

exec(messages.result)

Use of Await.result is strongly discouraged in produc on code. Many web
frameworks provide direct means of working with Futures without blocking.
In these cases, the best approach is simply to transform the Future query
result to a Future of an HTTP response and send that to the client.

If we want to retrieve a subset of the messages in our table, we can run a modified
version of our query. For example, calling filter on messages creates a modified
query with a WHERE expression that retrieves the expected rows:

messages.filter(_.sender === "HAL").result.statements.mkString

// res3: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'HAL'"

To run this query, we convert it to an ac on using result, run it against the database
with db.run, and await the final result with exec:

exec(messages.filter(_.sender === "HAL").result)

// res4: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

We actually generated this query earlier and stored it in the variable halSays. We
can get exactly the same results from the database by running this variable instead:

28 CHAPTER 1. BASICS

exec(halSays.result)

// res5: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

No ce that we created our original halSays before connec ng to the database. This
demonstrates perfectly the no on of composing a query from small parts and running
it later on.

We can even stack modifiers to create queries with mul ple addi onal clauses. For
example, we can map over the query to retrieve a subset of the columns. This modifies
the SELECT clause in the SQL and the return type of the result:

halSays.map(_.id).result.statements.mkString

// res6: String = "select \"id\" from \"message\" where \"sender\" = 'HAL'"

exec(halSays.map(_.id).result)

// res7: Seq[Long] = Vector(2L, 4L)

1.4.9 Combining Queries with For Comprehensions

Query is a monad. It implements the methods map, flatMap, filter, and withFil-
ter, making it compa ble with Scala for comprehensions. For example, you will o en
see Slick queries wri en in this style:

val halSays2 = for {

message <- messages if message.sender === "HAL"

} yield message

// halSays2: Query[MessageTable, Message, Seq] = Rep(Bind)

Remember that for comprehensions are aliases for chains of method calls. All we are
doing here is building a query with a WHERE clause on it. We don’t touch the database
un l we execute the query:

exec(halSays2.result)

// res8: Seq[Message] = Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 2L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 4L)

//)

1.4. EXAMPLE: A SEQUEL ODYSSEY 29

1.4.10 Ac ons Combine

Like Query, DBIOAction is also a monad. It implements the same methods described
above, and shares the same compa bility with for comprehensions.

We can combine the ac ons to create the schema, insert the data, and query results
into one ac on. We can do this beforewe have a database connec on, andwe run the
ac on like any other. To do this, Slick provides a number of useful ac on combinators.
We can use andThen, for example:

val actions: DBIO[Seq[Message]] = (

messages.schema.create andThen

(messages ++= freshTestData) andThen

halSays.result

)

// actions: DBIO[Seq[Message]] = slick.dbio.

SynchronousDatabaseAction$FusedAndThenAction@b5c3ca2

What andThen does is combine two ac ons so that the result of the first ac on is
thrown away. The end result of the above actions is the last ac on in the andThen
chain.

If you want to get funky, >> is another name for andThen:

val sameActions: DBIO[Seq[Message]] = (

messages.schema.create >>

(messages ++= freshTestData) >>

halSays.result

)

// sameActions: DBIO[Seq[Message]] = slick.dbio.

SynchronousDatabaseAction$FusedAndThenAction@72c068a3

Combining ac ons is an important feature of Slick. For example, one reason for com-
bining ac ons is to wrap them inside a transac on. In Chapter 4 we’ll see this, and
also that ac ons can be composed with for comprehensions, just like queries.

Queries, Ac ons, Futures… Oh My!

The difference between queries, ac ons, and futures is a big point of confusion
for newcomers to Slick 3. The three types share many proper es: they all
have methods like map, flatMap, and filter, they are all compa ble with
for comprehensions, and they all flow seamlessly into one another through
methods in the Slick API. However, their seman cs are quite different:

30 CHAPTER 1. BASICS

• Query is used to build SQL for a single query. Calls to map and filter
modify clauses to the SQL, but only one query is created.

• DBIOAction is used to build sequences of SQL queries. Calls to map and
filter chain queries together and transform their results once they
are retrieved in the database. DBIOAction is also used to delineate
transac ons.

• Future is used to transform the asynchronous result of running a
DBIOAction. Transforma ons on Futures happen a er we have
finished speaking to the database.

In many cases (for example select queries) we create a Query first and convert
it to a DBIOAction using the result method. In other cases (for example
insert queries), the Slick API gives us a DBIOAction immediately, bypassing
Query. In all cases, we run a DBIOAction using db.run(...), turning it into
a Future of the result.

We recommend taking the me to thoroughly understand Query, DBIOAction,
and Future. Learn how they are used, how they are similar, how they differ,
what their type parameters represent, and how they flow into one another.
This is perhaps the single biggest step you can take towards demys fying Slick
3.

1.5 Take Home Points

In this chapter we’ve seen a broad overview of the main aspects of Slick, including
defining a schema, connec ng to the database, and issuing queries to retrieve data.

We typically model data from the database as case classes and tuples that map to
rows from a table. We define the mappings between these types and the database
using Table classes such as MessageTable.

We define queries by crea ng TableQuery objects such as messages and transform-
ing them with combinators such as map and filter. These transforma ons look like
transforma ons on collec ons, but they are used to build SQL code rather than ma-
nipulate the results returned.

We execute a query by crea ng an ac on object via its result method. Ac ons are
used to build sequences of related queries and wrap them in transac ons.

Finally, we run the ac on against the database by passing it to the run method of

1.6. EXERCISE: BRING YOUR OWN DATA 31

the database object. We are given back a Future of the result. When the future
completes, the result is available.

The query language is the one of the richest and most significant parts of Slick. We
will spend the en re next chapter discussing the various queries and transforma ons
available.

1.6 Exercise: Bring Your Own Data

Let’s get some experience with Slick by running queries against the example database.
Start sbt using the sbt command and type console to enter the interac ve Scala con-
sole. We’ve configured sbt to run the example applica on before giving you control,
so you should start off with the test database set up and ready to go:

bash$ sbt

sbt logging...

> console

More sbt logging...

Application runs...

scala>

Start by inser ng an extra line of dialog into the database. This line hit the cu ng
room floor late in the development of the film 2001, but we’re happy to reinstate it
here:

Message("Dave","What if I say 'Pretty please'?")

// res9: Message = Message("Dave", "What if I say 'Pretty please'?", 0L)

You’ll need to insert the row using the += method on messages. Alterna vely you
could put the message in a Seq and use ++=. We’ve included some common pi alls
in the solu on in case you get stuck.

See the solu on

Now retrieve the new dialog by selec ng all messages sent by Dave. You’ll need to
build the appropriate query using messages.filter, and create the ac on to be run
by using its result method. Don’t forget to run the query by using the exec helper
method we provided.

Again, we’ve included some common pi alls in the solu on.

See the solu on

32 CHAPTER 1. BASICS

Chapter 2

Selec ng Data

The last chapter provided a shallow end-to-end overview of Slick. We saw how to
model data, create queries, convert them to ac ons, and run those ac ons against a
database. In the next two chapters we will look in more detail at the various types of
query we can perform in Slick.

This chapter covers selec ng data using Slick’s rich type-safe Scala reflec on of SQL.
Chapter 3 covers modifying data by inser ng, upda ng, and dele ng records.

Select queries are our main means of retrieving data. In this chapter we’ll limit our-
selves to simple select queries that operate on a single table. In Chapter 6 we’ll look
at more complex queries involving joins, aggregates, and grouping clauses.

2.1 Select All The Rows!

The simplest select query is the TableQuery generated froma Table. In the following
example, messages is a TableQuery for MessageTable:

import slick.jdbc.H2Profile.api._

case class Message(

sender: String,

content: String,

id: Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

33

34 CHAPTER 2. SELECTING DATA

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

The type of messages is TableQuery[MessageTable], which is a subtype of a more
general Query type that Slick uses to represent select, update, and delete queries.
We’ll discuss these types in the next sec on.

We can see the SQL of the select query by calling result.statements:

messages.result.statements.mkString

// res0: String = "select \"sender\", \"content\", \"id\" from \"message\""

Our TableQuery is the equivalent of the SQL select * from message.

Query Extension Methods

Like many of the methods discussed below, the result method is actually an
extension method applied to Query via an implicit conversion. You’ll need to
have everything from H2Profile.api in scope for this to work:

import slick.jdbc.H2Profile.api._

2.2 Filtering Results: The filterMethod

We can create a query for a subset of rows using the filter method:

messages.filter(_.sender === "HAL")

// res1: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter @

47843698)

The parameter to filter is a func on from an instance of MessageTable to a value
of type Rep[Boolean] represen ng a WHERE clause for our query:

2.3. THE QUERY AND TABLEQUERY TYPES 35

messages.filter(_.sender === "HAL").result.statements.mkString

// res2: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'HAL'"

Slick uses the Rep type to represent expressions over columns as well as individual
columns. A Rep[Boolean] can either be a Boolean-valued column in a table, or a
Boolean expression involving mul ple columns. Slick can automa cally promote a
value of type A to a constant Rep[A], and provides a suite of methods for building
expressions as we shall see below.

2.3 The Query and TableQuery Types

The types in our filter expression deserve some deeper explana on. Slick repre-
sents all queries using a trait Query[M, U, C] that has three type parameters:

• M is called the mixed type. This is the func on parameter type we see when
calling methods like map and filter.

• U is called the unpacked type. This is the type we collect in our results.

• C is called the collec on type. This is the type of collec on we accumulate
results into.

In the examples above, messages is of a subtype of Query called TableQuery. Here’s
a simplified version of the defini on in the Slick codebase:

trait TableQuery[T <: Table[_]] extends Query[T, T#TableElementType, Seq] {

// ...

}

A TableQuery is actually a Query that uses a Table (e.g. MessageTable) as its
mixed type and the table’s element type (the type parameter in the constructor, e.g.
Message) as its unpacked type. In other words, the func on we provide to mes-

sages.filter is actually passed a parameter of type MessageTable:

messages.filter { messageTable: MessageTable =>

messageTable.sender === "HAL"

}

// res3: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter @

218287179)

36 CHAPTER 2. SELECTING DATA

This makes sense: messageTable.sender is one of the columns we defined in Mes-
sageTable above, and messageTable.sender === "HAL" creates a Scala value
represen ng the SQL expression message.sender = 'HAL'.

This is the process that allows Slick to type-check our queries. Querys have access
to the type of the Table used to create them, allowing us to directly reference the
columns on the Table when we’re using combinators like map and filter. Every
column knows its own data type, so Slick can ensure we only compare columns of
compa ble types. If we try to compare sender to an Int, for example, we get a type
error:

messages.filter(_.sender === 123)

// error: Cannot perform option-mapped operation

// with type: (String, Int) => R

// for base type: (String, String) => Boolean

// messages.filter(_.sender === "Dave").result.statements

// ^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// exec(messages.schema.create andThen (messages ++= freshTestData))

// ^

Constant Queries

So far we’ve built up queries from a TableQuery, and this is the common case
we use in most of this book. However you should know that you can also
construct constant queries, such as select 1, that are not related to any table.

We can use the Query companion object for this. So…

Query(1)

will produce this query:

Query(1).result.statements.mkString

// res6: String = "select 1"

2.4. TRANSFORMING RESULTS 37

The apply method of the Query object allows us to li a scalar value to a
Query.

A constant query such as select 1 can be used to confirm we have database
connec vity. This could be a useful thing to do as an applica on is star ng up,
or a heartbeat system check that will consume minimal resources.

We’ll see another example of using a from-less query in Chapter 3.

2.4 Transforming Results

exec

Just as we did in Chapter 1, we’re using a helper method to run queries in the
REPL:

import scala.concurrent.{Await,Future}

import scala.concurrent.duration._

val db = Database.forConfig("chapter02")

// db: slick.jdbc.H2Profile.backend.Database = slick.jdbc.

JdbcBackend$DatabaseDef@50b84fa7

def exec[T](action: DBIO[T]): T =

Await.result(db.run(action), 4.seconds)

This is included in the example source code for this chapter, in the main.scala
file. You can run these examples in the REPL to follow along with the text.

We have also set up the schema and sample data:

def freshTestData = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

exec(messages.schema.create andThen (messages ++= freshTestData))

// res7: Option[Int] = Some(4)

38 CHAPTER 2. SELECTING DATA

2.4.1 The mapMethod

Some mes we don’t want to select all of the columns in a Table. We can use the
map method on a Query to select specific columns for inclusion in the results. This
changes both the mixed type and the unpacked type of the query:

messages.map(_.content)

// res8: Query[Rep[String], String, Seq] = Rep(Bind)

Because the unpacked type (second type parameter) has changed to String, we now
have a query that selects Strings when run. If we run the query we see that only
the content of each message is retrieved:

val query = messages.map(_.content)

// query: Query[Rep[String], String, Seq] = Rep(Bind)

exec(query.result)

// res9: Seq[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

Also no ce that the generated SQL has changed. Slick isn’t chea ng: it is actually
telling the database to restrict the results to that column in the SQL:

messages.map(_.content).result.statements.mkString

// res10: String = "select \"content\" from \"message\""

Finally, no ce that themixed type (first type parameter) of our newquery has changed
to Rep[String]. This means we are only passed the content column when we
filter or map over this query:

val pods = messages.

map(_.content).

filter{content:Rep[String] => content like "%pod%"}

// pods: Query[Rep[String], String, Seq] = Rep(Filter @1865775633)

exec(pods.result)

// res11: Seq[String] = Vector("Open the pod bay doors, HAL.")

This change of mixed type can complicate query composi on with map. We recom-
mend calling map only as the final step in a sequence of transforma ons on a query,
a er all other opera ons have been applied.

2.4. TRANSFORMING RESULTS 39

It is worth no ng that we can map to anything that Slick can pass to the database as
part of a select clause. This includes individual Reps and Tables, as well as Tuples
of the above. For example, we can use map to select the id and content columns of
messages:

messages.map(t => (t.id, t.content))

// res12: Query[(Rep[Long], Rep[String]), (Long, String), Seq] = Rep(Bind)

The mixed and unpacked types change accordingly, and the SQL is modified as we
might expect:

messages.map(t => (t.id, t.content)).result.statements.mkString

// res13: String = "select \"id\", \"content\" from \"message\""

We can even map sets of columns to Scala data structures using mapTo:

case class TextOnly(id: Long, content: String)

val contentQuery = messages.

map(t => (t.id, t.content).mapTo[TextOnly])

// contentQuery: Query[slick.lifted.MappedProjection[TextOnly, (Long, String)],

TextOnly, Seq] = Rep(Bind)

exec(contentQuery.result)

// res14: Seq[TextOnly] = Vector(

// TextOnly(1L, "Hello, HAL. Do you read me, HAL?"),

// TextOnly(2L, "Affirmative, Dave. I read you."),

// TextOnly(3L, "Open the pod bay doors, HAL."),

// TextOnly(4L, "I'm sorry, Dave. I'm afraid I can't do that.")

//)

We can also select column expressions as well as single columns:

messages.map(t => t.id * 1000L).result.statements.mkString

// res15: String = "select \"id\" * 1000 from \"message\""

This all means that map is a powerful combinator for controlling the SELECT part of
your query.

Query’s flatMapMethod

Query also has a flatMap method with similar monadic seman cs to that of
Option or Future. flatMap is mostly used for joins, so we’ll cover it in Chap-
ter 6.

40 CHAPTER 2. SELECTING DATA

2.4.2 exists

Some mes we are less interested in the contents of a queries result than if results
exist at all. For this we have exists, which will return true if the result set is not
empty and false otherwise.

Let’s look at a quick example to show how we can use an exis ng query with the
exists keyword:

val containsBay = for {

m <- messages

if m.content like "%bay%"

} yield m

// containsBay: Query[MessageTable, Message, Seq] = Rep(Bind)

val bayMentioned: DBIO[Boolean] =

containsBay.exists.result

// bayMentioned: DBIO[Boolean] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@41d45e5

The containsBay query returns all messages that men on “bay”. We can then use
this query in the bayMentioned expression to determine what to execute.

The above will generate SQL which looks similar to this:

select exists(

select "sender", "content", "id"

from "message"

where "content" like '%bay%'

)

We will see a more useful example in Chapter 3.

2.5 Conver ng Queries to Ac ons

Before running a query, we need to convert it to an ac on. We typically do this by
calling the resultmethod on the query. Ac ons represent sequences of queries. We
start with ac ons represen ng single queries and compose them to formmul -ac on
sequences.

Ac ons have the type signature DBIOAction[R, S, E]. The three type parameters
are:

2.6. EXECUTING ACTIONS 41

• R is the type of data we expect to get back from the database (Message, Per-
son, etc);

• S indicates whether the results are streamed (Streaming[T]) or not
(NoStream); and

• E is the effect type and will be inferred.

In many cases we can simplify the representa on of an ac on to just DBIO[T], which
is an alias for DBIOAction[T, NoStream, Effect.All].

Effects

Effects are not part of Essen al Slick, and we’ll be working in terms of DBIO[T]
for most of this text.

However, broadly speaking, an Effect is a way to annotate an ac on. For
example, you can write a method that will only accept queries marked as Read
or Write, or a combina on such as Read with Transactional.

The effects defined in Slick under the Effect object are:

• Read for queries that read from the database.
• Write for queries that have a write effect on the database.
• Schema for schema effects.
• Transactional for transac on effects.
• All for all of the above.

Slick will infer the effect for your queries. For example, messages.resultwill
be:

DBIOAction[Seq[String], NoStream, Effect.Read]

In the next chapter we will look at inserts and updates. The inferred effect for
an update in this case is: DBIOAction[Int, NoStream, Effect.Write].

You can also add your own Effect types by extending the exis ng types.

2.6 Execu ng Ac ons

To execute an ac on, we pass it to one of two methods on our db object:

42 CHAPTER 2. SELECTING DATA

• db.run(...) runs the ac on and returns all the results in a single collec on.
These are known as a materialized result.

• db.stream(...) runs the ac on and returns its results in a Stream, allowing
us to process large datasets incrementally without consuming large amounts
of memory.

In this book we will deal exclusively with materialized queries. db.run returns a Fu-
ture of the final result of our ac on. We need to have an ExecutionContext in
scope when we make the call:

import scala.concurrent.ExecutionContext.Implicits.global

val futureMessages = db.run(messages.result)

// futureMessages: Future[Seq[MessageTable#TableElementType]] = Future(Success(

Vector(Message(Dave,Hello, HAL. Do you read me, HAL?,1), Message(HAL,

Affirmative, Dave. I read you.,2), Message(Dave,Open the pod bay doors,

HAL.,3), Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4))))

Streaming

In this bookwewill deal exclusivelywithmaterialized queries. Let’s take a quick
look at streams now, so we are aware of the alterna ve.

Calling db.stream returns a DatabasePublisher object instead of a Future.
This exposes three methods to interact with the stream:

• subscribe which allows integra on with Akka;
• mapResult which creates a new Publisher that maps the supplied
func on on the result set from the original publisher; and

• foreach, to perform a side-effect with the results.

Streaming results can be used to feed reac ve streams, or Akka streams or ac-
tors. Alterna vely, we can do something simple like use foreach to println
our results:

db.stream(messages.result).foreach(println)

…which will eventually print each row.

https://scala-slick.org/doc/3.3.3/api/index.html#slick.basic.DatabasePublisher
https://www.reactive-streams.org/
https://akka.io/docs/
https://akka.io/docs/

2.7. COLUMN EXPRESSIONS 43

If you want to explore this area, start with the Slick documenta on on stream-
ing.

2.7 Column Expressions

Methods like filter and map require us to build expressions based on columns in our
tables. The Rep type is used to represent expressions as well as individual columns.
Slick provides a variety of extension methods on Rep for building expressions.

We will cover the most common methods below. You can find a complete list in Ex-
tensionMethods.scala in the Slick codebase.

2.7.1 Equality and Inequality Methods

The === and =!=methods operate on any type of Rep and produce a Rep[Boolean].
Here are some examples:

messages.filter(_.sender === "Dave").result.statements

// res16: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

= 'Dave'"

//)

messages.filter(_.sender =!= "Dave").result.statements.mkString

// res17: String = "select \"sender\", \"content\", \"id\" from \"message\"

where not (\"sender\" = 'Dave')"

The <, >, <=, and >= methods can operate on any type of Rep (not just numeric
columns):

messages.filter(_.sender < "HAL").result.statements

// res18: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

< 'HAL'"

//)

messages.filter(m => m.sender >= m.content).result.statements

// res19: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"sender\"

>= \"content\""

//)

https://scala-slick.org/doc/3.3.3/dbio.html#streaming
https://scala-slick.org/doc/3.3.3/dbio.html#streaming
https://github.com/slick/slick/blob/v3.3.3/slick/src/main/scala/slick/lifted/ExtensionMethods.scala
https://github.com/slick/slick/blob/v3.3.3/slick/src/main/scala/slick/lifted/ExtensionMethods.scala

44 CHAPTER 2. SELECTING DATA

Table 2.1: Rep comparison methods. Operand and result types should be inter-
preted as parameters to Rep[_].

Scala Code Operand Types Result Type SQL Equivalent

col1 === col2 A or Option[A] Boolean col1 = col2

col1 =!= col2 A or Option[A] Boolean col1 <> col2

col1 < col2 A or Option[A] Boolean col1 < col2

col1 > col2 A or Option[A] Boolean col1 > col2

col1 <= col2 A or Option[A] Boolean col1 <= col2

col1 >= col2 A or Option[A] Boolean col1 >= col2

2.7.2 String Methods

Slick provides the ++ method for string concatena on (SQL’s || operator):

messages.map(m => m.sender ++ "> " ++ m.content).result.statements.mkString

// res20: String = "select (\"sender\"||'> ')||\"content\" from \"message\""

and the like method for SQL’s classic string pa ern matching:

messages.filter(_.content like "%pod%").result.statements.mkString

// res21: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"content\" like '%pod%'"

Slick also provides methods such as startsWith, length, toUpperCase, trim, and
so on. These are implemented differently in different DBMSs—the examples below
are purely for illustra on:

Table 2.2: String column methods. Operand (e.g., col1, col2) must be String
or Option[String]. Operand and result types should be interpreted as pa-
rameters to Rep[_].

Scala Code Result Type SQL Equivalent

col1.length Int char_length(col1)

col1 ++ col2 String col1 || col2

c1 like c2 Boolean c1 like c2

c1 startsWith c2 Boolean c1 like (c2 || '%')

c1 endsWith c2 Boolean c1 like ('%' || c2)

c1.toUpperCase String upper(c1)

2.7. COLUMN EXPRESSIONS 45

Scala Code Result Type SQL Equivalent

c1.toLowerCase String lower(c1)

col1.trim String trim(col1)

col1.ltrim String ltrim(col1)

col1.rtrim String rtrim(col1)

2.7.3 Numeric Methods

Slick provides a comprehensive set of methods that operate on Reps with numeric
values: Ints, Longs, Doubles, Floats, Shorts, Bytes, and BigDecimals.

Table 2.3: Numeric column methods. Operand and result types should be in-
terpreted as parameters to Rep[_].

Scala Code Operand Column Types Result Type SQL Equivalent

col1 + col2 A or Option[A] A col1 + col2

col1 - col2 A or Option[A] A col1 - col2

col1 * col2 A or Option[A] A col1 * col2

col1 / col2 A or Option[A] A col1 / col2

col1 % col2 A or Option[A] A mod(col1,

col2)

col1.abs A or Option[A] A abs(col1)

col1.ceil A or Option[A] A ceil(col1)

col1.floor A or Option[A] A floor(col1)

col1.round A or Option[A] A round(col1, 0)

2.7.4 Boolean Methods

Slick also provides a set of methods that operate on boolean Reps:

Table 2.4: Boolean column methods. Operand and result types should be inter-
preted as parameters to Rep[_].

Scala Code Operand Column Types Result Type SQL Equivalent

col1 && col2 Boolean or
Option[Boolean]

Boolean col1 and col2

46 CHAPTER 2. SELECTING DATA

Scala Code Operand Column Types Result Type SQL Equivalent

col1 || col2 Boolean or
Option[Boolean]

Boolean col1 or col2

!col1 Boolean or
Option[Boolean]

Boolean not col1

2.7.5 Date and Time Methods

Slick provides column mappings for: Instant, LocalDate, LocalTime, LocalDate-
Time, OffsetTime, OffsetDateTime, and ZonedDateTime. Thatmeans you can use
all of those types as columns in your table defini ons.

How your columns are mapped will depend on the database you’re using, as different
databases have different capabili es when it comes to me and date. The table below
shows the SQL types used for three common databases:

Table 2.5: Mapping from java.time types to SQL column types for three
databases. There’s a full list as part of the The Slick 3.3 Upgrade Guide.

Scala Type H2 Column Type PostgreSQL MySQL

Instant TIMESTAMP TIMESTAMP TEXT

LocalDate DATE DATE DATE

LocalTime VARCHAR TIME TEXT

LocalDateTime TIMESTAMP TIMESTAMP TEXT

OffsetTime VARCHAR TIMETZ TEXT

OffsetDateTime VARCHAR VARCHAR TEXT

ZonedDateTime VARCHAR VARCHAR TEXT

Unlike the String and Boolean types, there are no special methods for the
java.time types. However, as all types have the equality methods, you can use
===, >, <=, and so on with date and me types as you’d expect.

2.7.6 Op on Methods and Type Equivalence

Slick models nullable columns in SQL as Reps with Option types. We’ll discuss this
in some depth in Chapter 5. However, as a preview, know that if we have a nullable
column in our database, we declare it as op onal in our Table:

https://scala-slick.org/doc/3.3.3/upgrade.html

2.7. COLUMN EXPRESSIONS 47

final class PersonTable(tag: Tag) /* ... */ {

// ...

def nickname = column[Option[String]]("nickname")

// ...

}

When it comes to querying on op onal values, Slick is pre y smart about type equiv-
alence.

What do we mean by type equivalence? Slick type-checks our column expressions
to make sure the operands are of compa ble types. For example, we can compare
Strings for equality but we can’t compare a String and an Int:

messages.filter(_.id === "foo")

// error: Cannot perform option-mapped operation

// with type: (Long, String) => R

// for base type: (Long, Long) => Boolean

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Interes ngly, Slick is very finickity about numeric types. For example, comparing an
Int to a Long is considered a type error:

messages.filter(_.id === 123)

// error: Cannot perform option-mapped operation

// with type: (Long, Int) => R

// for base type: (Long, Long) => Boolean

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

48 CHAPTER 2. SELECTING DATA

// messages.filter(_.id === "foo")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

On the flip side of the coin, Slick is clever about the equivalence of op onal and non-
op onal columns. As long as the operands are some combina on of the types A and
Option[A] (for the same value of A), the query will normally compile:

messages.filter(_.id === Option(123L)).result.statements

// res24: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"id\" =

123"

//)

However, any op onal arguments must be strictly of type Option, not Some or None:

messages.filter(_.id === Some(123L)).result.statements

// error: type mismatch;

// found : Some[Long]

// required: slick.lifted.Rep[?]

// messages.filter(_.id === Some(123L)).result.statements

// ^^^^^^^^^^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// messages.filter(_.id === Some(123L)).result.statements

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you find yourself in this situa on, remember you can always provide a type ascrip-
on to the value:

messages.filter(_.id === (Some(123L): Option[Long]))

// res26: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@314842608)

2.8 Controlling Queries: Sort, Take, and Drop

There are a trio of func ons used to control the order and number of results returned
from a query. This is great for pagina on of a result set, but the methods listed in the
table below can be used independently.

2.8. CONTROLLING QUERIES: SORT, TAKE, AND DROP 49

Table 2.6: Methods for ordering, skipping, and limi ng the results of a query.

Scala Code SQL Equivalent

sortBy ORDER BY

take LIMIT

drop OFFSET

We’ll look at each in turn, star ng with an example of sortBy. Say we want messages
in order of the sender’s name:

exec(messages.sortBy(_.sender).result).foreach(println)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

// Message(HAL,Affirmative, Dave. I read you.,2)

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

Or the reverse order:

exec(messages.sortBy(_.sender.desc).result).foreach(println)

// Message(HAL,Affirmative, Dave. I read you.,2)

// Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

To sort by mul ple columns, return a tuple of columns:

messages.sortBy(m => (m.sender, m.content)).result.statements

// res29: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" order by \"sender

\", \"content\""

//)

Now we know how to sort results, perhaps we want to show only the first five rows:

messages.sortBy(_.sender).take(5)

// res30: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Take)

If we are presen ng informa on in pages, we’d need a way to show the next page
(rows 6 to 10):

50 CHAPTER 2. SELECTING DATA

messages.sortBy(_.sender).drop(5).take(5)

// res31: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Take)

This is equivalent to:

select "sender", "content", "id"

from "message"

order by "sender"

limit 5 offset 5

Sor ng on Null columns

We had a brief introduc on to nullable columns earlier in the chapter when we
looked at Op on Methods and Type Equivalence. Slick offers three modifiers
which can be used in conjunc on with desc and asc when sor ng on nul-
lable columns: nullFirst, nullsDefault and nullsLast. These do what
you expect, by including nulls at the beginning or end of the result set. The
nullsDefault behaviour will use the SQL engines preference.

We don’t have any nullable fields in our example yet. But here’s a look at what
sor ng a nullable column is like:

users.sortBy(_.name.nullsFirst)

The generated SQL for the above query would be:

select "name", "email", "id"

from "user"

order by "name" nulls first

We cover nullable columns in Chapter 5 and include an example of sor ng
on nullable columns in example project the code is in nulls.scala in the folder
chapter-05.

2.9 Condi onal Filtering

So far we’ve seen query opera ons such as map, filter, and take, and in later chap-
ters we’ll see joins and aggrega ons. Much of your work with Slick will likely be with
just these few opera ons.

https://github.com/underscoreio/essential-slick-code/tree/3.3

2.9. CONDITIONAL FILTERING 51

There are two other methods, filterOpt and filterIf, that help with dynamic
queries, where you may (or may not) want to filter rows based on some condi on.

For example, suppose we want to give our user the op on to filter by crew member
(message sender). That is, if you don’t specify a crew member, you’ll get everyone’s
messages.

Our first a empt at this might be:

def query1(name: Option[String]) =

messages.filter(msg => msg.sender === name)

That’s a valid query, but if you feed it None, you’ll get no results, rather than all results.
We could add more checks to the query, such as also adding || name.isEmpty. But
what we want to do is only filter when we have a value. And that’s what filterOpt
does:

def query2(name: Option[String]) =

messages.filterOpt(name)((row, value) => row.sender === value)

You can read this query as: we’re going to op onally filter on name, and if name has a
value, we can use the value to filter the rows in the query.

The upshot of that is, when there’s no crew member provided, there’s no condi on
on the SQL:

query2(None).result.statements.mkString

// res32: String = "select \"sender\", \"content\", \"id\" from \"message\""

And when there is, the condi on applies:

query2(Some("Dave")).result.statements.mkString

// res33: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"sender\" = 'Dave'"

Once you’re in the swing of using filterOpt, you may prefer to use a short-
hand version:

def queryShortHand(name: Option[String]) =

messages.filterOpt(name)(_.sender === _)

The behaviour of query is the same if you use this short version or the longer

52 CHAPTER 2. SELECTING DATA

version we used in the main text.

filterIf is a similar capability, but turns a where condi on on or off. For example,
we can give the user an op on to exclude “old” messages:

val hideOldMessages = true

// hideOldMessages: Boolean = true

val queryIf = messages.filterIf(hideOldMessages)(_.id > 100L)

// queryIf: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2012996018)

queryIf.result.statements.mkString

// res34: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"id\" > 100"

Herewe see a condi on of ID > 100 added to the query because hideOldMessages
is true. If it were false, the query would not contain the where clause.

The great convenience of filterIf and filterOpt is that you can chain them one
a er another to build up concise dynamic queries:

val person = Some("Dave")

// person: Some[String] = Some("Dave")

val queryToRun = messages.

filterOpt(person)(_.sender === _).

filterIf(hideOldMessages)(_.id > 100L)

// queryToRun: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(

Filter @2098989530)

queryToRun.result.statements.mkString

// res35: String = "select \"sender\", \"content\", \"id\" from \"message\"

where (\"sender\" = 'Dave') and (\"id\" > 100)"

2.10 Take Home Points

Star ng with a TableQuery we can construct a wide range of queries with filter
and map. As we compose these queries, the types of the Query follow along to give
type-safety throughout our applica on.

The expressions we use in queries are defined in extension methods, and include ===,
=!=, like, && and so on, depending on the type of the Rep. Comparisons to Op-

tion types are made easy for us as Slick will compare Rep[T] and Rep[Option[T]]
automa cally.

2.11. EXERCISES 53

We’ve seen that map acts like a SQL select, and filter is like a WHERE. We’ll see the
Slick representa on of GROUP and JOIN in Chapter 6.

We introduced some new terminology:

• unpacked type, which is the regular Scala types we work with, such as String;
and

• mixed type, which is Slick’s column representa on, such as Rep[String].

We run queries by conver ng them to ac ons using the resultmethod. We run the
ac ons against a database using db.run.

The database ac on type constructor DBIOAction takes three arguments that repre-
sent the result, streaming mode, and effect. DBIO[R] simplifies this to just the result
type.

What we’ve seen for composing queries will help us to modify data using update and
delete. That’s the topic of the next chapter.

2.11 Exercises

If you’ve not already done so, try out the above code. In the example project the code
is in main.scala in the folder chapter-02.

Once you’ve done that, work through the exercises below. An easy way to try things
out is to use triggered execu on with SBT:

$ cd example-02

$ sbt

> ~run

That ~run will monitor the project for changes, and when a change is seen, the
main.scala program will be compiled and run. This means you can edit main.scala and
then look in your terminal window to see the output.

2.11.1 Count the Messages

How would you count the number of messages? Hint: in the Scala collec ons the
method length gives you the size of the collec on.

See the solu on

https://github.com/underscoreio/essential-slick-code/tree/3.3

54 CHAPTER 2. SELECTING DATA

2.11.2 Selec ng a Message

Using a for comprehension, select the message with the id of 1. What happens if you
try to find a message with an id of 999?

Hint: our IDs are Longs. Adding L a er a number in Scala, such as 99L, makes it a
long.

See the solu on

2.11.3 One Liners

Re-write the query from the last exercise to not use a for comprehension. Which style
do you prefer? Why?

See the solu on

2.11.4 Checking the SQL

Calling the result.statements methods on a query will give you the SQL to be
executed. Apply that to the last exercise. What query is reported? What does this
tell you about the way filter has been mapped to SQL?

See the solu on

2.11.5 Is HAL Real?

Find if there are any messages by HAL in the database, but only return a boolean
value from the database.

See the solu on

2.11.6 Selec ng Columns

So far we have been returning Message classes, booleans, or counts. Now we want
to select all the messages in the database, but return just their content columns.

Hint: think of messages as a collec on and what you would do to a collec on to just
get back a single field of a case class.

Check what SQL would be executed for this query.

See the solu on

2.11. EXERCISES 55

2.11.7 First Result

The methods head and headOption are useful methods on a result. Find the first
message that HAL sent.

What happens if you use head to find a message from “Alice” (note that Alice has sent
no messages).

See the solu on

2.11.8 Then the Rest

In the previous exercise you returned the first message HAL sent. This me find the
next five messages HAL sent. What messages are returned?

What if we’d asked for HAL’s tenth through to twen eth message?

See the solu on

2.11.9 The Start of Something

The method startsWith on a String tests to see if the string starts with a par c-
ular sequence of characters. Slick also implements this for string columns. Find the
message that starts with “Open”. How is that query implemented in SQL?

See the solu on

2.11.10 Liking

Slick implements the method like. Find all the messages with “do” in their content.

Can you make this case insensi ve?

See the solu on

2.11.11 Client-Side or Server-Side?

What does this do and why?

exec(messages.map(_.content.toString + "!").result)

See the solu on

56 CHAPTER 2. SELECTING DATA

Chapter 3

Crea ng and Modifying Data

In the last chapter we saw how to retrieve data from the database using select queries.
In this chapter we will look at modifying stored data using insert, update, and delete
queries.

SQL veterans will know that update and delete queries share many similari es with
select queries. The same is true in Slick, where we use the Query monad and combi-
nators to build the different kinds of query. Ensure you are familiar with the content
of Chapter 2 before proceeding.

3.1 Inser ng Rows

As we saw in Chapter 1, adding new data looks like an append opera on on a mutable
collec on. We can use the += method to insert a single row into a table, and ++= to
insert mul ple rows. We’ll discuss both of these opera ons below.

3.1.1 Inser ng Single Rows

To insert a single row into a table we use the += method. Note that, unlike the select
queries we’ve seen, this creates a DBIOAction immediately without an intermediate
Query:

57

58 CHAPTER 3. CREATING AND MODIFYING DATA

val insertAction =

messages += Message("HAL", "No. Seriously, Dave, I can't let you in.")

// insertAction: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.

jdbc.JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@479

a532a

exec(insertAction)

// res1: Int = 1

We’ve le the DBIO[Int] type annota on off of action, so you’ll see the specific
type Slick is using. It’s not important for this discussion, but worth knowing that Slick
has a number of different kinds of DBIOAction classes in use under the hood.

The result of the ac on is the number of rows inserted. However, it is o en useful to
return something else, such as the primary key generated for the new row. We can
get this informa on using a method called returning. Before we get to that, we first
need to understand where the primary key comes from.

3.1.2 Primary Key Alloca on

When inser ng data, we need to tell the database whether or not to allocate primary
keys for the new rows. It is common prac ce to declare auto-incremen ng primary
keys, allowing the database to allocate values automa cally if we don’t manually spec-
ify them in the SQL.

Slick allows us to allocate auto-incremen ng primary keys via an op on on the column
defini on. Recall the defini on of MessageTable from Chapter 1, which looked like
this:

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def sender = column[String]("sender")

def content = column[String]("content")

def * = (sender, content, id).mapTo[Message]

}

The O.AutoInc op on specifies that the id column is auto-incremen ng, meaning
that Slick can omit the column in the corresponding SQL:

3.1. INSERTING ROWS 59

insertAction.statements.head

// res2: String = "insert into \"message\" (\"sender\",\"content\") values

(?,?)"

As a convenience, in our example code we put the id field at the end of the case class
and gave it a default value of 0L. This allows us to skip the field when crea ng new
objects of type Message:

case class Message(

sender: String,

content: String,

id: Long = 0L

)

Message("Dave", "You're off my Christmas card list.")

// res3: Message = Message("Dave", "You're off my Christmas card list.", 0L)

There is nothing special about our default value of 0L—it doesn’t signify anything in
par cular. It is the O.AutoInc op on that determines the behaviour of +=.

Some mes we want to override the database’s default auto-incremen ng behaviour
and specify our own primary key. Slick provides a forceInsert method that does
just this:

val forceInsertAction = messages forceInsert Message(

"HAL",

"I'm a computer, what would I do with a Christmas card anyway?",

1000L)

No ce that the SQL generated for this ac on includes a manually specified ID, and
that running the ac on results in a record with the ID being inserted:

forceInsertAction.statements.head

// res4: String = "insert into \"message\" (\"sender\",\"content\",\"id\")

values (?,?,?)"

exec(forceInsertAction)

// res5: Int = 1

exec(messages.filter(_.id === 1000L).result)

// res6: Seq[MessageTable#TableElementType] = Vector(

// Message(

// "HAL",

// "I'm a computer, what would I do with a Christmas card anyway?",

// 1000L

60 CHAPTER 3. CREATING AND MODIFYING DATA

//)

//)

3.1.3 Retrieving Primary Keys on Insert

When the database allocates primary keys for us it’s o en the case that we want to
get the key back a er an insert. Slick supports this via the returning method:

val insertDave: DBIO[Long] =

messages returning messages.map(_.id) += Message("Dave", "Point taken.")

// insertDave: DBIO[Long] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@5422a514

val pk: Long = exec(insertDave)

// pk: Long = 1001L

The argument to messages returning is a Query over the same table, which is why
messages.map(_.id) makes sense here. The query specifies what data we’d like
the database to return once the insert has finished.

We can demonstrate that the return value is a primary key by looking up the record
we just inserted:

exec(messages.filter(_.id === 1001L).result.headOption)

// res8: Option[Message] = Some(Message("Dave", "Point taken.", 1001L))

For convenience, we can save a few keystrokes and define an insert query that always
returns the primary key:

lazy val messagesReturningId = messages returning messages.map(_.id)

exec(messagesReturningId += Message("HAL", "Humans, eh."))

// res9: messagesReturningId.SingleInsertResult = 1002L

Using messagesReturningId will return the id value, rather than the count of the
number of rows inserted.

3.1.4 Retrieving Rows on Insert

Some databases allow us to retrieve the complete inserted record, not just the primary
key. For example, we could ask for the whole Message back:

3.1. INSERTING ROWS 61

exec(messages returning messages +=

Message("Dave", "So... what do we do now?"))

Not all databases provide complete support for the returning method. H2 only
allows us to retrieve the primary key from an insert.

If we tried this with H2, we get a run me error:

exec(messages returning messages +=

Message("Dave", "So... what do we do now?"))

// slick.SlickException: This DBMS allows only a single column to be returned

from an INSERT, and that column must be an AutoInc column.

// at slick.jdbc.JdbcStatementBuilderComponent$JdbcCompiledInsert.

buildReturnColumns(JdbcStatementBuilderComponent.scala:67)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

x17lzycompute(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.x$17(

JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

keyColumns$lzycompute(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

keyColumns(JdbcActionComponent.scala:657)

// at slick.jdbc.JdbcActionComponent$ReturningInsertActionComposerImpl.

preparedInsert(JdbcActionComponent.scala:660)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.run(

JdbcActionComponent.scala:517)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:28)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:25)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.liftedTree1$1(BasicBackend.

scala:276)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.run(BasicBackend.scala:276)

// at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

java:1149)

// at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

java:624)

// at java.lang.Thread.run(Thread.java:748)

This is a shame, but ge ng the primary key is o en all we need.

Profile Capabili es

The Slick manual contains a comprehensive table of the capabili es for each
database profile. The ability to return complete records from an insert query
is referenced as the jdbc.returnInsertOther capability.

https://scala-slick.org/doc/3.3.3/supported-databases.html
https://scala-slick.org/doc/3.3.3/supported-databases.html

62 CHAPTER 3. CREATING AND MODIFYING DATA

TheAPI documenta on for each profile also lists the capabili es that the profile
doesn’t have. For an example, the top of the H2 Profile Scaladoc page points
out several of its shortcomings.

If we want to get a complete populated Message back from a database without
jdbc.returnInsertOther support, we retrieve the primary key and manually add
it to the inserted record. Slick simplifies this with another method, into:

val messagesReturningRow =

messages returning messages.map(_.id) into { (message, id) =>

message.copy(id = id)

}

// messagesReturningRow: slick.jdbc.H2Profile.IntoInsertActionComposer[

MessageTable#TableElementType, Message] = slick.jdbc.

JdbcActionComponent$ReturningInsertActionComposerImpl@2160eb08

val insertMessage: DBIO[Message] =

messagesReturningRow += Message("Dave", "You're such a jerk.")

// insertMessage: DBIO[Message] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@19de5dba

exec(insertMessage)

// res10: Message = Message("Dave", "You're such a jerk.", 1003L)

The into method allows us to specify a func on to combine the record and the new
primary key. It’s perfect for emula ng the jdbc.returnInsertOther capability, al-
though we can use it for any post-processing we care to imagine on the inserted data.

3.1.5 Inser ng Specific Columns

If our database table contains a lot of columns with default values, it is some mes
useful to specify a subset of columns in our insert queries. We can do this by mapping
over a query before calling insert:

messages.map(_.sender).insertStatement

// res11: String = "insert into \"message\" (\"sender\") values (?)"

The parameter type of the += method is matched to the unpacked type of the query:

messages.map(_.sender)

// res12: Query[Rep[String], String, Seq] = Rep(Bind)

… so we execute this query by passing it a String for the sender:

https://scala-slick.org/doc/3.3.3/api/#slick.jdbc.H2Profile

3.1. INSERTING ROWS 63

exec(messages.map(_.sender) += "HAL")

// org.h2.jdbc.JdbcSQLIntegrityConstraintViolationException: NULL not allowed

for column "content"; SQL statement:

// insert into "message" ("sender") values (?) [23502-200]

// at org.h2.message.DbException.getJdbcSQLException(DbException.java:459)

// at org.h2.message.DbException.getJdbcSQLException(DbException.java:429)

// at org.h2.message.DbException.get(DbException.java:205)

// at org.h2.message.DbException.get(DbException.java:181)

// at org.h2.table.Column.validateConvertUpdateSequence(Column.java:374)

// at org.h2.table.Table.validateConvertUpdateSequence(Table.java:845)

// at org.h2.command.dml.Insert.insertRows(Insert.java:187)

// at org.h2.command.dml.Insert.update(Insert.java:151)

// at org.h2.command.CommandContainer.update(CommandContainer.java:198)

// at org.h2.command.Command.executeUpdate(Command.java:251)

// at org.h2.jdbc.JdbcPreparedStatement.executeUpdateInternal(

JdbcPreparedStatement.java:191)

// at org.h2.jdbc.JdbcPreparedStatement.executeUpdate(JdbcPreparedStatement.

java:152)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.

$anonfun$run$15(JdbcActionComponent.scala:520)

// at slick.jdbc.JdbcBackend$SessionDef.withPreparedStatement(JdbcBackend.

scala:425)

// at slick.jdbc.JdbcBackend$SessionDef.withPreparedStatement$(JdbcBackend.

scala:420)

// at slick.jdbc.JdbcBackend$BaseSession.withPreparedStatement(JdbcBackend.

scala:489)

// at slick.jdbc.JdbcActionComponent$InsertActionComposerImpl.preparedInsert(

JdbcActionComponent.scala:511)

// at slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction.run(

JdbcActionComponent.scala:517)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:28)

// at slick.jdbc.JdbcActionComponent$SimpleJdbcProfileAction.run(

JdbcActionComponent.scala:25)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.liftedTree1$1(BasicBackend.

scala:276)

// at slick.basic.BasicBackend$DatabaseDef$$anon$3.run(BasicBackend.scala:276)

// at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

java:1149)

// at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

java:624)

// at java.lang.Thread.run(Thread.java:748)

The query fails at run me because the content column is non-nullable in our schema.
No ma er. We’ll cover nullable columns when discussing schemas in Chapter 5.

64 CHAPTER 3. CREATING AND MODIFYING DATA

3.1.6 Inser ng Mul ple Rows

Suppose we want to insert several Messages at the same me. We could just use +=
to insert each one in turn. However, this would result in a separate query being issued
to the database for each record, which could be slow for large numbers of inserts.

As an alterna ve, Slick supports batch inserts, where all the inserts are sent to the
database in one go. We’ve seen this already in the first chapter:

val testMessages = Seq(

Message("Dave", "Hello, HAL. Do you read me, HAL?"),

Message("HAL", "Affirmative, Dave. I read you."),

Message("Dave", "Open the pod bay doors, HAL."),

Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")

)

// testMessages: Seq[Message] = List(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 0L),

// Message("HAL", "Affirmative, Dave. I read you.", 0L),

// Message("Dave", "Open the pod bay doors, HAL.", 0L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 0L)

//)

exec(messages ++= testMessages)

// res13: Option[Int] = Some(4)

This code prepares one SQL statement and uses it for each row in the Seq. In princi-
ple Slick could op mize this insert further using database-specific features. This can
result in a significant boost in performance when inser ng many records.

As we saw earlier this chapter, the default return value of a single insert is the num-
ber of rows inserted. The mul -row insert above is also returning the number of rows,
except this me the type is Option[Int]. The reason for this is that the JDBC spec-
ifica on permits the underlying database driver to indicate that the number of rows
inserted is unknown.

Slick also provides a batch version of messages returning..., including the into
method. We can use the messagesReturningRow query we defined last sec on and
write:

exec(messagesReturningRow ++= testMessages)

// res14: messagesReturningRow.MultiInsertResult = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1008L),

// Message("HAL", "Affirmative, Dave. I read you.", 1009L),

// Message("Dave", "Open the pod bay doors, HAL.", 1010L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 1011L)

//)

3.1. INSERTING ROWS 65

3.1.7 More Control over Inserts

At this point we’ve inserted fixed data into the database. Some mes you need more
flexibility, including inser ng data based on another query. Slick supports this via
forceInsertQuery.

The argument to forceInsertQuery is a query. So the form is:

insertExpression.forceInsertQuery(selectExpression)

Our selectExpression can be pre y much anything, but it needs to match the
columns required by our insertExpression.

As an example, our query could check to see if a par cular row of data already exists,
and insert it if it doesn’t. That is, an “insert if doesn’t exist” func on.

Let’s say we only want the director to be able to say “Cut!” once. The SQL would end
up like this:

insert into "messages" ("sender", "content")

select 'Stanley', 'Cut!'

where

not exists(

select

"id", "sender", "content"

from

"messages" where "sender" = 'Stanley'

and "content" = 'Cut!')

That looks quite involved, but we can build it up gradually.

The tricky part of this is the select 'Stanley', 'Cut!' part, as there is no
FROM clause there. We saw an example of how to create that in Chapter 2, with
Query.apply. For this situa on it would be:

val data = Query(("Stanley", "Cut!"))

// data: Query[(ConstColumn[String], ConstColumn[String]), (String, String),

Seq] = Rep(Pure $@255414464)

data is a constant query that returns a fixed value—a tuple of two columns. It’s the
equivalent of running SELECT 'Stanley', 'Cut!'; against the database, which is
one part of the query we need.

We also need to be able to test to see if the data already exists. That’s straigh orward:

66 CHAPTER 3. CREATING AND MODIFYING DATA

val exists =

messages.

filter(m => m.sender === "Stanley" && m.content === "Cut!").

exists

Wewant to use the datawhen the row doesn’t exist, so combine the data and exists
with filterNot rather than filter:

val selectExpression = data.filterNot(_ => exists)

Finally, we need to apply this query with forceInsertQuery. But remember the
column types for the insert and select need to match up. So we map on messages to
make sure that’s the case:

val forceAction =

messages.

map(m => m.sender -> m.content).

forceInsertQuery(selectExpression)

// forceAction: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.

jdbc.JdbcActionComponent$InsertActionComposerImpl$InsertQueryAction@64

e1ef10

exec(forceAction)

// res15: Int = 1

exec(forceAction)

// res16: Int = 0

The first me we run the query, the message is inserted. The second me, no rows
are affected.

In summary, forceInsertQuery provides a way to build-up more complicated in-
serts. If you find situa ons beyond the power of this method, you can always make
use of Plain SQL inserts, described in Chapter 7.

3.2 Dele ng Rows

Slick lets us delete rows using the same Query objects we saw in Chapter 2. That is,
we specify which rows to delete using the filter method, and then call delete:

3.3. UPDATING ROWS 67

val removeHal: DBIO[Int] =

messages.filter(_.sender === "HAL").delete

// removeHal: DBIO[Int] = slick.jdbc.

JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@8c8ce82

exec(removeHal)

// res17: Int = 9

The return value is the number of rows affected.

The SQL generated for the ac on can be seen by calling delete.statements:

messages.filter(_.sender === "HAL").delete.statements.head

// res18: String = "delete from \"message\" where \"message\".\"sender\" = 'HAL

'"

Note that it is an error to use delete in combina on with map. We can only call
delete on a TableQuery:

messages.map(_.content).delete

// error: value delete is not a member of slick.lifted.Query[slick.lifted.Rep[

String],String,Seq]

// messages.filter(_.sender === "HAL").map(_.sender)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3.3 Upda ng Rows

So far we’ve only looked at inser ng new data and dele ng exis ng data. But what if
we want to update exis ng data without dele ng it first? Slick lets us create SQL UP-
DATE ac ons via the kinds of Query valueswe’ve been using for selec ng and dele ng
rows.

Restoring Data

In the last sec on we removed all the rows for HAL. Before con nuing with
upda ng rows, we should put them back:

68 CHAPTER 3. CREATING AND MODIFYING DATA

exec(messages.delete andThen (messages ++= freshTestData) andThen

messages.result)

// res20: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1013L),

// Message("HAL", "Affirmative, Dave. I read you.", 1014L),

// Message("Dave", "Open the pod bay doors, HAL.", 1015L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 1016

L)

//)

Ac on combinators, such as andThen, are the subject of the next chapter.

3.3.1 Upda ng a Single Field

In the Messages we’ve created so far we’ve referred to the computer from 2001: A
Space Odyssey as “HAL”, but the correct name is “HAL 9000”. Let’s fix that.

We start by crea ng a query to select the rows to modify, and the columns to change:

val updateQuery =

messages.filter(_.sender === "HAL").map(_.sender)

// updateQuery: Query[Rep[String], String, Seq] = Rep(Bind)

We can use update to turn this into an ac on to run. Update requires the new values
for the column we want to change:

exec(updateQuery.update("HAL 9000"))

// res21: Int = 2

We can retrieve the SQL for this query by calling updateStatment instead of update:

updateQuery.updateStatement

// res22: String = "update \"message\" set \"sender\" = ? where \"message\".\"

sender\" = 'HAL'"

Let’s break down the code in the Scala expression. By building our update query
from the messages TableQuery, we specify that we want to update records in the
message table in the database:

val messagesByHal = messages.filter(_.sender === "HAL")

// messagesByHal: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep

3.3. UPDATING ROWS 69

(Filter @1736154416)

We only want to update the sender column, so we use map to reduce the query to
just that column:

val halSenderCol = messagesByHal.map(_.sender)

// halSenderCol: Query[Rep[String], String, Seq] = Rep(Bind)

Finally we call the updatemethod, which takes a parameter of the unpacked type (in
this case String):

val action: DBIO[Int] = halSenderCol.update("HAL 9000")

// action: DBIO[Int] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@49ef7a3

Running that ac on would return the number of rows changed.

3.3.2 Upda ng Mul ple Fields

We can update more than one field at the same me by mapping the query to a tuple
of the columns we care about…

// 1016 is "I'm sorry, Dave...."

val query = messages.

filter(_.id === 1016L).

map(message => (message.sender, message.content))

// query: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

…and then supplying the tuple values we want to used in the update:

val updateAction: DBIO[Int] =

query.update(("HAL 9000", "Sure, Dave. Come right in."))

// updateAction: DBIO[Int] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@29fb93ed

exec(updateAction)

// res24: Int = 1

exec(messages.filter(_.sender === "HAL 9000").result)

// res25: Seq[MessageTable#TableElementType] = Vector(

// Message("HAL 9000", "Affirmative, Dave. I read you.", 1014L),

// Message("HAL 9000", "Sure, Dave. Come right in.", 1016L)

//)

70 CHAPTER 3. CREATING AND MODIFYING DATA

Again, we can see the SQL we’re running using the updateStatement method. The
returned SQL contains two ? placeholders, one for each field as expected:

messages.

filter(_.id === 1016L).

map(message => (message.sender, message.content)).

updateStatement

// res26: String = "update \"message\" set \"sender\" = ?, \"content\" = ?

where \"message\".\"id\" = 1016"

We can even use mapTo to use case classes as the parameter to update:

case class NameText(name: String, text: String)

val newValue = NameText("Dave", "Now I totally don't trust you.")

// newValue: NameText = NameText("Dave", "Now I totally don't trust you.")

messages.

filter(_.id === 1016L).

map(m => (m.sender, m.content).mapTo[NameText]).

update(newValue)

// res27: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write] =

slick.jdbc.JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@

242cf2eb

3.3.3 Upda ng with a Computed Value

Let’s now turn to more interes ng updates. How about conver ng every message to
be all capitals? Or adding an exclama on mark to the end of each message? Both
of these queries involve expressing the desired result in terms of the current value in
the database. In SQL we might write something like:

update "message" set "content" = CONCAT("content", '!')

This is not currently supported by update in Slick, but there are ways to achieve the
same result. One such way is to use Plain SQL queries, which we cover in Chapter 7.
Another is to perform a client-side update by defining a Scala func on to capture the
change to each row:

def exclaim(msg: Message): Message =

msg.copy(content = msg.content + "!")

3.4. TAKE HOME POINTS 71

We can update rows by selec ng the relevant data from the database, applying this
func on, and wri ng the results back individually. Note that approach can be quite
inefficient for large datasets—it takes N + 1 queries to apply an update to N results.

You may be tempted to write something like this:

def modify(msg: Message): DBIO[Int] =

messages.filter(_.id === msg.id).update(exclaim(msg))

// Don't do it this way:

for {

msg <- exec(messages.result)

} yield exec(modify(msg))

// res28: Seq[Int] = Vector(1, 1, 1, 1)

This will have the desired effect, but at some cost. What we have done there is use
our own exec method which will wait for results. We use it to fetch all rows, and
then we use it on each row to modify the row. That’s a lot of wai ng. There is also
no support for transac ons as we db.run each ac on separately.

A be er approach is to turn our logic into a single DBIO ac on using ac on combinators.
This, together with transac ons, is the topic of the next chapter.

However, for this par cular example, we recommend using Plain SQL (Chapter 7)
instead of client-side updates.

3.4 Take Home Points

For modifying the rows in the database we have seen that:

• inserts are via a += or ++= call on a table;

• updates are via an update call on a query, but are somewhat limited when you
need to update using the exis ng row value; and

• deletes are via a delete call to a query.

Auto-incremen ng values are inserted by Slick, unless forced. The auto-incremented
values can be returned from the insert by using returning.

Databases have different capabili es. The limita ons of each profile is listed in the
profile’s Scala Doc page.

72 CHAPTER 3. CREATING AND MODIFYING DATA

3.5 Exercises

The code for this chapter is in the GitHub repository in the chapter-03 folder. As with
chapter 1 and 2, you can use the run command in SBT to execute the code against
an H2 database.

Where Did My Data Go?

Several of the exercises in this chapter require you to delete or update content
from the database. We’ve shown you above how to restore you data, but if you
want to explore and change the schema you might want to completely reset
the schema.

In the example code we provide a populate method you can use:

exec(populate)

This will drop, create, and populate the messages table with known values.

Populate is defined as:

import scala.concurrent.ExecutionContext.Implicits.global

def populate: DBIOAction[Option[Int], NoStream, Effect.All] =

for {

// Drop table if it already exists, then create the table:

_ <- messages.schema.drop.asTry andThen messages.schema.create

// Add some data:

count <- messages ++= freshTestData

} yield count

We’ll meet asTry and andThen in the next chapter.

3.5.1 Get to the Specifics

In Inser ng Specific Columns we looked at only inser ng the sender column:

messages.map(_.sender) += "HAL"

This failed when we tried to use it as we didn’t meet the requirements of the message
table schema. For this to succeed we need to include content as well as sender.

Rewrite the above query to include the content column.

https://github.com/underscoreio/essential-slick-code/tree/3.3

3.5. EXERCISES 73

See the solu on

3.5.2 Bulk All the Inserts

Insert the conversa on below between Alice and Bob, returning the messages popu-
lated with ids.

val conversation = List(

Message("Bob", "Hi Alice"),

Message("Alice","Hi Bob"),

Message("Bob", "Are you sure this is secure?"),

Message("Alice","Totally, why do you ask?"),

Message("Bob", "Oh, nothing, just wondering."),

Message("Alice","Ten was too many messages"),

Message("Bob", "I could do with a sleep"),

Message("Alice","Let's just get to the point"),

Message("Bob", "Okay okay, no need to be tetchy."),

Message("Alice","Humph!"))

See the solu on

3.5.3 No Apologies

Write a query to delete messages that contain “sorry”.

See the solu on

3.5.4 Update Using a For Comprehension

Rewrite the update statement below to use a for comprehension.

val rebootLoop = messages.

filter(_.sender === "HAL").

map(msg => (msg.sender, msg.content)).

update(("HAL 9000", "Rebooting, please wait..."))

// rebootLoop: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write]

= slick.jdbc.JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10

@54608cc3

Which style do you prefer?

See the solu on

74 CHAPTER 3. CREATING AND MODIFYING DATA

3.5.5 Selec ve Memory

Delete HALs first two messages. This is a more difficult exercise.

You don’t know the IDs of the messages, or the content of them. But you do know
the IDs increase.

Hints:

• First write a query to select the two messages. Then see if you can find a way
to use it as a subquery.

• You can use in in a query to see if a value is in a set of values returned from a
query.

See the solu on

Chapter 4

Combining Ac ons

At some point you’ll find yourself wri ng a piece of code made up of mul ple ac ons.
You might need a simple sequence of ac ons to run one a er another; or you might
need something more sophis cated where one ac on depends on the results of an-
other.

In Slick you use ac on combinators to turn a number of ac ons into a single ac on.
You can then run this combined ac on just like any single ac on. You might also run
these combined ac ons in a transac on.

This chapter focuses on these combinators. Some, such as map, fold, and zip, will be
familiar from the Scala collec ons library. Others, such as sequence and asTry may
be less familiar. We will give examples of how to use many of them in this chapter.

This is a key concept in Slick. Make sure you spend me ge ng comfortable with
combining ac ons.

4.1 Combinators Summary

The tempta on with mul ple ac ons might be to run each ac on, use the result, and
run another ac on. This will require you to deal with mul ple Futures. We recom-
mend you avoid that whenever you can.

Instead, focus on the ac ons and how they combine together, not on themessy details
of running them. Slick provides a set of combinators to make this possible.

75

76 CHAPTER 4. COMBINING ACTIONS

Before ge ng into the detail, take a look at the two tables below. They list out the
key methods available on an ac on, and also the combinators available on DBIO.

Table 4.1: Combinators on ac on instances of DBIOAction, specifically a
DBIO[T]. Types simplified. (EC) Indicates an execu on context is required.

Method Arguments Result Type

map (EC) T => R DBIO[R]

flatMap (EC) T => DBIO[R] DBIO[R]

filter (EC) T => Boolean DBIO[T]

named String DBIO[T]

zip DBIO[R] DBIO[(T,R)]

asTry DBIO[Try[T]]

andThen or >> DBIO[R] DBIO[R]

andFinally DBIO[_] DBIO[T]

cleanUp (EC) Option[Throwable]=>DBIO[_] DBIO[T]

failed DBIO[Throwable]

Table 4.2: Combinators on DBIO object, with types simplified. (EC) Indicates an
execu on context is required.

Method Arguments Result Type

sequence TraversableOnce[DBIO[T]] DBIO[TraversableOnce[T]]

seq DBIO[_]* DBIO[Unit]

from Future[T] DBIO[T]

successful V DBIO[V]

failed Throwable DBIO[Nothing]

fold (EC) (Seq[DBIO[T]], T)

(T,T)=>T

DBIO[T]

4.2 Combinators in Detail

4.2.1 andThen (or >>)

The simplest way to run one ac on a er another is perhaps andThen. The combined
ac ons are both run, but only the result of the second is returned:

4.2. COMBINATORS IN DETAIL 77

val reset: DBIO[Int] =

messages.delete andThen messages.size.result

// reset: DBIO[Int] = slick.dbio.SynchronousDatabaseAction$FusedAndThenAction@

29cc1771

exec(reset)

// res1: Int = 0

The result of the first query is ignored, so we cannot use it. Later we will see how
flatMap allows us to use the result to make choices about which ac on to run next.

Combined Ac ons Are Not Automa cally Transac ons

By default, when you combine ac ons together you do not get a single trans-
ac on. At the end of this chapter we’ll see that it’s very easy to run combined
ac ons in a transac on with:

db.run(actions.transactionally)

4.2.2 DBIO.seq

If you have a bunch of ac ons you want to run, you can use DBIO.seq to combine
them:

val resetSeq: DBIO[Unit] =

DBIO.seq(messages.delete, messages.size.result)

This is rather like combining the ac ons with andThen, but even the last value is
discarded.

4.2.3 map

Mapping over an ac on is a way to set up a transforma on of a value from the
database. The transforma on will run on the result of the ac on when it is returned
by the database.

As an example, we can create an ac on to return the content of amessage, but reverse
the text:

78 CHAPTER 4. COMBINING ACTIONS

// Restore the data we deleted in the previous section

exec(messages ++= freshTestData)

// res2: Option[Int] = Some(4)

import scala.concurrent.ExecutionContext.Implicits.global

val text: DBIO[Option[String]] =

messages.map(_.content).result.headOption

// text: DBIO[Option[String]] = slick.jdbc.

StreamingInvokerAction$HeadOptionAction@48ce3ded

val backwards: DBIO[Option[String]] =

text.map(optionalContent => optionalContent.map(_.reverse))

// backwards: DBIO[Option[String]] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@48ce3ded,

// slick.dbio.DBIOAction$$Lambda$6716/771068809@366173d5,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(backwards)

// res3: Option[String] = Some("?LAH ,em daer uoy oD .LAH ,olleH")

Here we have created an ac on called backwards that, when run, ensures a func on
is applied to the result of the text ac on. In this case the func on is to apply reverse
to an op onal String.

Note that we have made three uses of map in this example:

• an Option map to apply reverse to our Option[String] result;
• a map on a query to select just the content column; and
• map on our ac on so that the result will be transform when the ac on is run.

Combinators everywhere!

This example transformed an Option[String] to another Option[String]. As you
may expect if map changes the type of a value, the type of DBIO changes too:

text.map(os => os.map(_.length))

// res4: DBIOAction[Option[Int], NoStream, Effect.All] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@48ce3ded,

// slick.dbio.DBIOAction$$Lambda$6716/771068809@7a6b1934,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

4.2. COMBINATORS IN DETAIL 79

0, submissions = 0]

//)

Note that the first type parameter on the DBIOAction is now Option[Int] (as
length returns an Int), not Option[String].

Execu on Context Required

Somemethods require an execu on context and some don’t. For example, map
does, but andThen does not. What gives?

The reason is that map allows you to call arbitrary codewhen joining the ac ons
together. Slick cannot allow that code to be run on its own execu on context,
because it has no way to know if you are going to e up Slicks threads for a
long me.

In contrast, methods such as andThenwhich combine ac ons without custom
code can be run on Slick’s own execu on context. Therefore, you do not need
an execu on context available for andThen.

You’ll know if you need an execu on context, because the compiler will tell
you:

Cannot find an implicit ExecutionContext. You might pass

an (implicit ec: ExecutionContext) parameter to your method

or import scala.concurrent.ExecutionContext.Implicits.global.

The Slick manual discusses this in the sec on on Database I/O Ac ons.

4.2.4 DBIO.successful and DBIO.failed

When combining ac ons you will some mes need to create an ac on that represents
a simple value. Slick provides DBIO.successful for that purpose:

val ok: DBIO[Int] = DBIO.successful(100)

We’ll see an example of this when we discuss flatMap.

And for failures, the value is a Throwable:

https://scala-slick.org/doc/3.3.3/dbio.html

80 CHAPTER 4. COMBINING ACTIONS

val err: DBIO[Nothing] =

DBIO.failed(new RuntimeException("pod bay door unexpectedly locked"))

This has a par cular role to play inside transac ons, which we cover later in this chap-
ter.

4.2.5 flatMap

Ahh, flatMap. Wonderful flatMap. This method gives us the power to sequence
ac ons and decide what we want to do at each step.

The signature of flatMap should feel similar to the flatMap you see elsewhere:

// Simplified:

def flatMap[S](f: R => DBIO[S])(implicit e: ExecutionContext): DBIO[S]

That is, we give flatMap a func on that depends on the value from an ac on, and
evaluates to another ac on.

As an example, let’s write a method to remove all the crew’s messages, and post a
message saying how many messages were removed. This will involve an INSERT and
a DELETE, both of which we’re familiar with:

val delete: DBIO[Int] =

messages.delete

def insert(count: Int) =

messages += Message("NOBODY", s"I removed ${count} messages")

The first thing flatMap allows us to do is run these ac ons in order:

import scala.concurrent.ExecutionContext.Implicits.global

val resetMessagesAction: DBIO[Int] =

delete.flatMap{ count => insert(count) }

// resetMessagesAction: DBIO[Int] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@33

d5fe97,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(resetMessagesAction)

4.2. COMBINATORS IN DETAIL 81

// res5: Int = 1

The 1 we see is the result of insert, which is the number of rows inserted.

This single ac on produces the two SQL expressions you’d expect:

delete from "message";

insert into "message" ("sender","content")

values ('NOBODY', 'I removed 4 messages');

Beyond sequencing, flatMap also gives us control over which ac ons are run. To
illustrate this we will produce a varia on of resetMessagesAction which will not
insert a message if no messages were removed in the first step:

val logResetAction: DBIO[Int] =

delete.flatMap {

case 0 => DBIO.successful(0)

case n => insert(n)

}

We’ve decided a result of 0 is right if no message was inserted. But the point here is
that flatMap gives us arbitrary control over how ac ons can be combined.

Occasionally the compiler will complain about a flatMap and need your help to figur-
ing out the types. Recall that DBIO[T] is an alias for DBIOAction[T,S,E], encoding
streaming and effects. When mixing effects, such as inserts and selects, you may
need to explicitly specify the type parameters to apply to the resul ng ac on:

query.flatMap[Int, NoStream, Effect.All] { result => ... }

…but in many cases the compiler will figure these out for you.

Do it in the database if you can

Combining ac ons to sequence queries is a powerful feature of Slick. However,
you may be able to reduce mul ple queries into a single database query. If you
can do that, you’re probably be er off doing it.

As an example, you could implement “insert if not exists” like this:

82 CHAPTER 4. COMBINING ACTIONS

// Not the best way:

def insertIfNotExists(m: Message): DBIO[Int] = {

val alreadyExists =

messages.filter(_.content === m.content).result.headOption

alreadyExists.flatMap {

case Some(m) => DBIO.successful(0)

case None => messages += m

}

}

…but as we saw earlier in “More Control over Inserts” you can achieve the same
effect with a single SQL statement.

One query can o en (but doesn’t always) perform be er than a sequence of
queries. Your mileage may vary.

4.2.6 DBIO.sequence

Despite the similarity in name to DBIO.seq, DBIO.sequence has a different purpose.
It takes a sequence of DBIOs and gives back a DBIO of a sequence. That’s a bit of a
mouthful, but an example may help.

Let’s say we want to reverse the text of every message (row) in the database. We
start with this:

def reverse(msg: Message): DBIO[Int] =

messages.filter(_.id === msg.id).

map(_.content).

update(msg.content.reverse)

That’s a straigh orward method that returns an update ac on for one message. We
can apply it to every message…

// Don't do this

val manyUpdates: DBIO[Seq[DBIO[Int]]] =

messages.result.

map(msgs => msgs.map(reverse))

…which will give us an ac on that returns ac ons! Note the crazy type signature.

You can find yourself in this awkward situa on when you’re trying to do something
like a join, but not quite. The puzzle is how to run this kind of beast.

This is where DBIO.sequence saves us. Rather than produce many ac ons via
msgs.map(reverse) we use DBIO.sequence to return a single ac on:

4.2. COMBINATORS IN DETAIL 83

val updates: DBIO[Seq[Int]] =

messages.result.

flatMap(msgs => DBIO.sequence(msgs.map(reverse)))

The difference is:

• we’ve wrapped the Seq[DBIO] with DBIO.sequence to give a single
DBIO[Seq[Int]]; and

• we use flatMap to combine the sequence with the original query.

The end result is a sane type which we can run like any other ac on.

Of course this one ac on turns into many SQL statements:

select "sender", "content", "id" from "message"

update "message" set "content" = ? where "message"."id" = 1

update "message" set "content" = ? where "message"."id" = 2

update "message" set "content" = ? where "message"."id" = 3

update "message" set "content" = ? where "message"."id" = 4

4.2.7 DBIO.fold

Recall that many Scala collec ons support fold as a way to combine values:

List(3,5,7).fold(1) { (a,b) => a * b }

// res6: Int = 105

1 * 3 * 5 * 7

// res7: Int = 105

You can do the same kind of thing in Slick: when you need to run a sequence of
ac ons, and reduce the results down to a value, you use fold.

As an example, suppose we have a number of reports to run. We want to summarize
all these reports to a single number.

// Pretend these two reports are complicated queries

// that return Important Business Metrics:

val report1: DBIO[Int] = DBIO.successful(41)

val report2: DBIO[Int] = DBIO.successful(1)

val reports: List[DBIO[Int]] =

84 CHAPTER 4. COMBINING ACTIONS

report1 :: report2 :: Nil

We can fold those reports with a func on.

But we also need to consider our star ng posi on:

val default: Int = 0

Finally we can produce an ac on to summarize the reports:

val summary: DBIO[Int] =

DBIO.fold(reports, default) {

(total, report) => total + report

}

// summary: DBIO[Int] = FlatMapAction(

// FlatMapAction(

// SuccessAction(0),

// slick.dbio.DBIOAction$$$Lambda$7196/2008502859@acd9c55,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//),

// slick.dbio.DBIOAction$$$Lambda$7196/2008502859@378fa902,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(summary)

// res8: Int = 42

DBIO.fold is a way to combine ac ons, such that the results are combined by a func-
on you supply. As with other combinators, your func on isn’t run un l we execute
the ac on itself. In this case all our reports are run, and the sum of the values reported.

4.2.8 zip

We’ve seen how DBIO.seq combines ac ons and ignores the results. We’ve also seen
that andThen combines ac ons and keeps one result. If youwant to keep both results,
zip is the combinator for you:

val zip: DBIO[(Int, Seq[Message])] =

messages.size.result zip messages.filter(_.sender === "HAL").result

// zip: DBIO[(Int, Seq[Message])] = slick.dbio.

SynchronousDatabaseAction$$anon$5@150fb47e

4.2. COMBINATORS IN DETAIL 85

// Make sure we have some messages from HAL:

exec(messages ++= freshTestData)

// res9: Option[Int] = Some(4)

exec(zip)

// res10: (Int, Seq[Message]) = (

// 5,

// Vector(

// Message("HAL", "Affirmative, Dave. I read you.", 11L),

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 13L)

//)

//)

The ac on returns a tuple represen ng the results of both queries: a count of the
total number of messages, and the messages from HAL.

4.2.9 andFinally and cleanUp

The two methods cleanUp and andFinally act a li le like Scala’s catch and
finally.

cleanUp runs a er an ac on completes, and has access to any error informa on as
an Option[Throwable]:

// An action to record problems we encounter:

def log(err: Throwable): DBIO[Int] =

messages += Message("SYSTEM", err.getMessage)

// Pretend this is important work which might fail:

val work = DBIO.failed(new RuntimeException("Boom!"))

val action: DBIO[Int] = work.cleanUp {

case Some(err) => log(err)

case None => DBIO.successful(0)

}

The result of running this action is s ll the original excep on…

exec(action)

// java.lang.RuntimeException: Boom!

// at repl.Session$App.<init>(4-combining-actions.md:241)

// at repl.Session$.app(4-combining-actions.md:3)

…but cleanUp has produced a side-effect for us:

86 CHAPTER 4. COMBINING ACTIONS

exec(messages.filter(_.sender === "SYSTEM").result)

// res11: Seq[MessageTable#TableElementType] = Vector(

// Message("SYSTEM", "Boom!", 14L)

//)

Both cleanUp and andFinally run a er an ac on, regardless of whether it succeeds
or fails. cleanUp runs in response to a previous failed ac on; andFinally runs all the
me, regardless of success or failure, and has no access to the Option[Throwable]
that cleanUp sees.

4.2.10 asTry

Calling asTry on an ac on changes the ac on’s type from a DBIO[T] to a
DBIO[Try[T]]. This means you can work in terms of Scala’s Success[T] and
Failure instead of excep ons.

Suppose we had an ac on that might throw an excep on:

val tryAction = DBIO.failed(new RuntimeException("Boom!"))

We can place this inside Try by combining the ac on with asTry:

exec(tryAction.asTry)

// res13: util.Try[Nothing] = Failure(java.lang.RuntimeException: Boom!)

And successful ac ons will evaluate to a Success[T]:

exec(messages.size.result.asTry)

// res14: util.Try[Int] = Success(6)

4.3 Logging Queries and Results

With ac ons combined together, it’s useful to see the queries that are being executed.

We’ve seen how to retrieve the SQL of a query using insertStatement and similar
methods on a query, or the statements method on an ac on. These are useful for
experimen ng with Slick, but some mes we want to see all the queries when Slick
executes them. We can do that by configuring logging.

Slick uses a logging interface called SLF4J. We can configure this to capture infor-
ma on about the queries being run. The build.sbt files in the exercises use an

https://www.slf4j.org/

4.3. LOGGING QUERIES AND RESULTS 87

SLF4J-compa ble logging back-end called Logback, which is configured in the file sr-
c/main/resources/logback.xml. In that file we can enable statement logging by turning
up the logging to debug level:

<logger name="slick.jdbc.JdbcBackend.statement" level="DEBUG"/>

This causes Slick to log every query, including modifica ons to the schema:

DEBUG slick.jdbc.JdbcBackend.statement - Preparing statement:

delete from "message" where "message"."sender" = 'HAL'

We can change the level of various loggers, as shown in the table below.

Table 4.3: Slick loggers and their effects.

Logger Will log…

slick.jdbc.JdbcBackend.statement SQL sent to the database.
slick.jdbc.JdbcBackend.parameter Parameters passed to a query.
slick.jdbc.StatementInvoker.result The first few results of each query.
slick.session Session events such as

opening/closing connec ons.
slick Everything!

The StatementInvoker.result logger, in par cular, is pre y cute. Here’s an exam-
ple from running a select query:

result - /--------+----------------------+----\

result - | sender | content | id |

result - +--------+----------------------+----+

result - | HAL | Affirmative, Dave... | 2 |

result - | HAL | I'm sorry, Dave. ... | 4 |

result - \--------+----------------------+----/

The combina on of parameter and statement can show you the values bound to ?
placeholders. For example, when adding rows we can see the values being inserted:

statement - Preparing statement: insert into "message"

("sender","content") values (?,?)

https://logback.qos.ch/

88 CHAPTER 4. COMBINING ACTIONS

parameter - /--------+---------------------------\

parameter - | 1 | 2 |

parameter - | String | String |

parameter - |--------+---------------------------|

parameter - | Dave | Hello, HAL. Do you rea... |

parameter - | HAL | I'm sorry, Dave. I'm a... |

parameter - \--------+---------------------------/

4.4 Transac ons

So far each of the changes we’ve made to the database run independently of the
others. That is, each insert, update, or delete query we run can succeed or fail inde-
pendently of the rest.

We o en want to e sets of modifica ons together in a transac on so that they either
all succeed or all fail. We can do this in Slick using the transactionally method.

As an example, let’s re-write the movie script. We want to make sure the script
changes all complete or nothing changes. We can do this by finding the old script
text and replacing it with some new text:

def updateContent(old: String) =

messages.filter(_.content === old).map(_.content)

exec {

(updateContent("Affirmative, Dave. I read you.").update("Wanna come in?")

andThen

updateContent("Open the pod bay doors, HAL.").update("Pretty please!")

andThen

updateContent("I'm sorry, Dave. I'm afraid I can't do that.").update("

Opening now.")).transactionally

}

// res15: Int = 1

exec(messages.result).foreach(println)

// Message(NOBODY,I removed 4 messages,9)

// Message(Dave,Hello, HAL. Do you read me, HAL?,10)

// Message(HAL,Wanna come in?,11)

// Message(Dave,Pretty please!,12)

// Message(HAL,Opening now.,13)

// Message(SYSTEM,Boom!,14)

The changes we make in the transactionally block are temporary un l the block
completes, at which point they are commi ed and become permanent.

4.5. TAKE HOME POINTS 89

To manually force a rollback you need to call DBIO.failed with an appropriate ex-
cep on.

val willRollback = (

(messages += Message("HAL", "Daisy, Daisy...")) >>

(messages += Message("Dave", "Please, anything but your singing")) >>

DBIO.failed(new Exception("agggh my ears")) >>

(messages += Message("HAL", "Give me your answer do"))

).transactionally

// willRollback: DBIOAction[Int, NoStream, Effect.Write with Effect.Write with

Effect with Effect.Write with Effect.Transactional] = slick.dbio.

SynchronousDatabaseAction$$anon$11@6ffbcb49

exec(willRollback.asTry)

// res17: util.Try[Int] = Failure(java.lang.Exception: agggh my ears)

The result of running willRollback is that the database won’t have changed. Inside
of transac onal block you would see the inserts un l DBIO.failed is called.

If we removed the .transactionally that is wrapping our combined ac ons, the
first two inserts would succeed, even though the combined ac on failed.

4.5 Take Home Points

Inserts, selects, deletes and other forms of Database Ac on can be combined using
flatMap and other combinators. This is a powerful way to sequence ac ons, and
make ac ons depend on the results of other ac ons.

Combining ac ons avoid having to deal with awai ng results or having to sequence
Futures yourself.

We saw that the SQL statements executed and the result returned from the database
can be monitored by configuring the logging system.

Finally, we saw that ac ons that are combined together can also be run inside a trans-
ac on.

4.6 Exercises

4.6.1 And Then what?

In Chapter 1 we created a schema and populated the database as separate ac ons.
Use your newly found knowledge to combine them.

90 CHAPTER 4. COMBINING ACTIONS

This exercise expects to start with an empty database. If you’re already in the REPL
and the database exists, you’ll need to drop the table first:

val drop: DBIO[Unit] = messages.schema.drop

// drop: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$8@2576a80d

val create: DBIO[Unit] = messages.schema.create

// create: DBIO[Unit] = slick.jdbc.

JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@4db25499

val populate: DBIO[Option[Int]] = messages ++= freshTestData

// populate: DBIO[Option[Int]] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$MultiInsertAction@52975680

exec(drop)

See the solu on

4.6.2 First!

Create amethod that will insert amessage, but if it is the first message in the database,
automa cally insert the message “First!” before it.

Your method signature should be:

def prefixFirst(m: Message): DBIO[Int] = ???

Use your knowledge of the flatMap ac on combinator to achieve this.

See the solu on

4.6.3 There Can be Only One

Implement onlyOne, a method that guarantees that an ac on will return only one
result. If the ac on returns anything other than one result, the method should fail
with an excep on.

Below is the method signature and two test cases:

def onlyOne[T](ms: DBIO[Seq[T]]): DBIO[T] = ???

You can see that onlyOne takes an ac on as an argument, and that the ac on could
return a sequence of results. The return from the method is an ac on that will return
a single value.

4.6. EXERCISES 91

In the example data there is only one message that contains the word “Sorry”, so we
expect onlyOne to return that row:

val happy = messages.filter(_.content like "%sorry%").result

// happy: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@732184b5

// We expect...

// exec(onlyOne(happy))

// ...to return a message.

However, there are twomessages containing theword “I”. In this case onlyOne should
fail:

val boom = messages.filter(_.content like "%I%").result

// boom: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@2c6800d4

// If we run this...

// exec(onlyOne(boom))

// we want a failure, such as:

// java.lang.RuntimeException: Expected 1 result, not 2

Hints:

• The signature of onlyOne is telling us we will take an ac on that produces a
Seq[T] and return an ac on that produces a T. That tells us we need an ac on
combinator here.

• That fact that the method may fail means we want to use DBIO.successful
and DBIO.failed in there somewhere.

See the solu on

4.6.4 Let’s be Reasonable

Some fool is throwing excep ons in our code, destroying our ability to reason about
it. Implement exactlyOne which wraps onlyOne encoding the possibility of failure
using types rather than excep ons.

Then rerun the test cases.

See the solu on

92 CHAPTER 4. COMBINING ACTIONS

4.6.5 Filtering

There is a DBIO filtermethod, but it produces a run me excep on if the filter pred-
icate is false. It’s like Future’s filter method in that respect. We’ve not found a
situa on where we need it.

However, we can create our own kind of filter. It can take some alterna ve ac on
when the filter predicate fails.

The signature could be:

def myFilter[T](action: DBIO[T])(p: T => Boolean)(alternative: => T) = ???

If you’re not comfortable with the [T] type parameter, or the by name parameter on
alternative, just use Int instead:

def myFilter(action: DBIO[Int])(p: Int => Boolean)(alternative: Int) = ???

Go ahead and implement myFilter.

We have an example usage from the ship’s marke ng department. They are happy to
report the number of chat messages, but only if that number is at least 100:

myFilter(messages.size.result)(_ > 100)(100)

See the solu on

4.6.6 Unfolding

This is a challenging exercise.

We saw that fold can take a number of ac ons and reduce them using a func on
you supply. Now imagine the opposite: unfolding an ini al value into a sequence of
values via a func on. In this exercise we want you to write an unfold method that
will do just that.

Why would you need to do something like this? One example would be when you
have a tree structure represented in a database and need to search it. You can follow
a link between rows, possibly recording what you find as you follow those links.

As an example, let’s pretend the crew’s ship is a set of rooms, one connected to just
one other:

4.6. EXERCISES 93

case class Room(name: String, connectsTo: String)

class FloorPlan(tag: Tag) extends Table[Room](tag, "floorplan") {

def name = column[String]("name")

def connectsTo = column[String]("next")

def * = (name, connectsTo).mapTo[Room]

}

lazy val floorplan = TableQuery[FloorPlan]

exec {

(floorplan.schema.create) >>

(floorplan += Room("Outside", "Podbay Door")) >>

(floorplan += Room("Podbay Door", "Podbay")) >>

(floorplan += Room("Podbay", "Galley")) >>

(floorplan += Room("Galley", "Computer")) >>

(floorplan += Room("Computer", "Engine Room"))

}

// res28: Int = 1

For any given room it’s easy to find the next room. For example:

SELECT

"connectsTo"

FROM

"foorplan"

WHERE

"name" = 'Podbay'

-- Returns 'Galley'

Write a method unfold that will take any room name as a star ng point, and a query
to find the next room, and will follow all the connec ons un l there are no more
connec ng rooms.

The signature of unfold could be:

def unfold(

z: String,

f: String => DBIO[Option[String]]

): DBIO[Seq[String]] = ???

…where z is the star ng (“zero”) room, and f will lookup the connec ng room (an
ac on for the query to find the next room).

If unfold is given "Podbay" as a star ng point it should return an ac onwhich, when
run, will produce: Seq("Podbay", "Galley", "Computer", "Engine Room").

94 CHAPTER 4. COMBINING ACTIONS

You’ll want to accumulate results of the rooms you visit. One way to do that would
be to use a different signature:

def unfold(

z: String,

f: String => DBIO[Option[String]],

acc: Seq[String] = Seq.empty

): DBIO[Seq[String]] = ???

See the solu on

Chapter 5

Data Modelling

We can do the basics of connec ng to a database, running queries, and changing data.
We turn now to richer models of data and how our applica on hangs together.

In this chapter we will:

• understand how to structure an applica on;

• look at alterna ves to modelling rows as case classes;

• store richer data types in columns; and

• expand on our knowledge of modelling tables to introduce op onal values and
foreign keys.

To do this, we’ll expand the chat applica on schema to support more than just mes-
sages.

5.1 Applica on Structure

So far, all of our examples have been wri en in a single Scala file. This approach
doesn’t scale to larger applica on codebases. In this sec on we’ll explain how to split
up applica on code into modules.

95

96 CHAPTER 5. DATA MODELLING

Un l now we’ve also been exclusively using Slick’s H2 profile. When wri ng real
applica ons we o en need to be able to switch profiles in different circumstances.
For example, we may use PostgreSQL in produc on and H2 in our unit tests.

An example of this pa ern can be found in the example project, folder chapter-05, file
structure.scala.

5.1.1 Abstrac ng over Databases

Let’s look at how we can write code that works with mul ple different database pro-
files. When we previously wrote…

import slick.jdbc.H2Profile.api._

…we were locking ourselves into H2. We want to write an import that works with
a variety of profiles. Fortunately, Slick provides a common supertype for profiles—a
trait called JdbcProfile:

import slick.jdbc.JdbcProfile

Wecan’t import directly from JdbcProfile because it isn’t a concrete object. Instead,
we have to inject a dependency of type JdbcProfile into our applica on and import
from that. The basic pa ern we’ll use is as follows:

• isolate our database code into a trait (or a few traits);

• declare the Slick profile as an abstract val and import from that; and

• extend our database trait to make the profile concrete.

Here’s a simple form of this pa ern:

trait DatabaseModule {

// Declare an abstract profile:

val profile: JdbcProfile

// Import the Slick API from the profile:

import profile.api._

// Write our database code here...

}

object Main1 extends App {

// Instantiate the database module, assigning a concrete profile:

https://github.com/underscoreio/essential-slick-code/tree/3.3

5.1. APPLICATION STRUCTURE 97

val databaseLayer = new DatabaseModule {

val profile = slick.jdbc.H2Profile

}

}

In this pa ern, we declare our profile using an abstract val. This is enough to allow us
to write import profile.api._. The compiler knows that the val is going to be an
immutable JdbcProfile even if we haven’t yet said which one. Whenwe instan ate
the DatabaseModule we bind profile to our profile of choice.

5.1.2 Scaling to Larger Codebases

As our applica ons get bigger, we need to split our code up into mul ple files to keep
it manageable. We can do this by extending the pa ern above to a family of traits:

trait Profile {

val profile: JdbcProfile

}

trait DatabaseModule1 { self: Profile =>

import profile.api._

// Write database code here

}

trait DatabaseModule2 { self: Profile =>

import profile.api._

// Write more database code here

}

// Mix the modules together:

class DatabaseLayer(val profile: JdbcProfile) extends

Profile with

DatabaseModule1 with

DatabaseModule2

// Instantiate the modules and inject a profile:

object Main2 extends App {

val databaseLayer = new DatabaseLayer(slick.jdbc.H2Profile)

}

Herewe factor out our profile dependency into its own Profile trait. Eachmodule
of database code specifies Profile as a self-type, meaning it can only be extended
by a class that also extends Profile. This allows us to share the profile across our
family of modules.

98 CHAPTER 5. DATA MODELLING

To work with a different database, we inject a different profile when we instan ate
the database code:

val anotherDatabaseLayer = new DatabaseLayer(slick.jdbc.PostgresProfile)

// anotherDatabaseLayer: DatabaseLayer = repl.SessionAppDatabaseLayer@769

e16b6

This basic pa ern is a reasonable way of structuring your applica on.

5.2 Representa ons for Rows

In previous chapters we modelled rows as case classes. Although this is a common
usage pa ern, and the one we recommend, there are several representa on op ons
available, including tuples, case classes, and HLists. Let’s inves gate these by looking
in more detail at how Slick relates columns in our database to fields in our classes.

5.2.1 Projec ons, ProvenShapes, mapTo, and <>

When we declare a table in Slick, we are required to implement a *method that spec-
ifies a “default projec on”:

class MyTable(tag: Tag) extends Table[(String, Int)](tag, "mytable") {

def column1 = column[String]("column1")

def column2 = column[Int]("column2")

def * = (column1, column2)

}

Expose Only What You Need

We can hide informa on by excluding it from our row defini on. The default
projec on controls what is returned, in what order, and is driven by our row
defini on.

For example, we don’t need to map everything in a table with legacy columns
that aren’t being used.

Projec ons provide mappings between database columns and Scala values. In the
code above, the defini on of * is mapping column1 and column2 from the database
to the (String, Int) tuples defined in the extends Table clause.

If we look at the defini on of * in the Table class, we see something confusing:

5.2. REPRESENTATIONS FOR ROWS 99

abstract class Table[T] {

def * : ProvenShape[T]

}

The type of * is actually something called a ProvenShape, not a tuple of columns
as we specified in our example. There is clearly something else going on here. Slick
is using implicit conversions to build a ProvenShape object from the columns we
provided.

The internal workings of ProvenShape are certainly beyond the scope of this book.
Suffice to say that Slick can use any Scala type as a projec on provided it can generate
a compa ble ProvenShape. If we look at the rules for ProvenShape genera on, we
will get an idea about what data types we can map. Here are the three most common
use cases:

1. Single column defini ons produce shapes that map the column contents to a
value of the column’s type parameter. For example, a column of Rep[String]
maps a value of type String:

class MyTable1(tag: Tag) extends Table[String](tag, "mytable") {

def column1 = column[String]("column1")

def * = column1

}

2. Tuples of database columns map tuples of their type parameters. For example,
(Rep[String], Rep[Int]) is mapped to (String, Int):

class MyTable2(tag: Tag) extends Table[(String, Int)](tag, "mytable")

{

def column1 = column[String]("column1")

def column2 = column[Int]("column2")

def * = (column1, column2)

}

3. If we have a ProvenShape[A], we can convert it to a ProvenShape[B]

using the “projec on operator” <>. In this example we know we can get
ProvenShape[A] when the A is the String and Int tuple (from the previous
example). We supply func ons to convert each way between A and B and
Slick builds the resul ng shape. Here our B is the User case class:

100 CHAPTER 5. DATA MODELLING

case class User(name: String, id: Long)

class UserTable3(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).<>(User.tupled, User.unapply)

}

The projec on operator <> is the secret ingredient that allows us tomap awide variety
of types. As long as we can convert a tuple of columns to and from some type B, we
can store instances of B in a database.

We’ve not seen <> un l now because the mapTo macro builds a projec on for us. In
most situa ons mapTo is both more convenient and more efficient to use than <>.
However, <> is available and worth knowing about if we need more control over the
mapping. It will also be a method you see a great deal in code bases created before
Slick 3.2.

The two arguments to <> are:

• a func on from A => B, which converts from the exis ng shape’s unpacked
row-level encoding (String, Long) to our preferred representa on (User);
and

• a func on from B => Option[A], which converts the other way.

We can supply these func ons by hand if we want:

def intoUser(pair: (String, Long)): User =

User(pair._1, pair._2)

def fromUser(user: User): Option[(String, Long)] =

Some((user.name, user.id))

and write:

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).<>(intoUser, fromUser)

}

5.2. REPRESENTATIONS FOR ROWS 101

In the User example, the case class supplies these func ons via User.tupled and
User.unapply, so we don’t need to build them ourselves. However it is useful to
remember that we can provide our own func ons for more elaborate packaging and
unpackaging of rows. We will see this in one of the exercises in this chapter.

In this sec onwe’ve looked at the details of projec ons. In general, though, the mapTo
macro is sufficient for many situa ons.

5.2.2 Tuples versus Case Classes

We’ve seen how Slick is able to map case classes and tuples of values. But which
shouldweuse? In one sense there is li le difference between case classes and tuples—
both represent fixed sets of values. However, case classes differ from tuples in two
important respects.

First, case classes have field names, which improves code readability:

val dave = User("Dave", 0L)

// dave: User = User("Dave", 0L)

dave.name // case class field access

// res1: String = "Dave" // case class field access

val tuple = ("Dave", 0L)

// tuple: (String, Long) = ("Dave", 0L)

tuple._1 // tuple field access

// res2: String = "Dave"

Second, case classes have types that dis nguish them from other case classes with
the same field types:

case class Dog(name: String, id: Long)

val user = User("Dave", 0L)

val dog = Dog("Lassie", 0L)

// Different types (a warning, but when compiled -Xfatal-warnings....)

user == dog

// error: No warnings can be incurred under -Werror.

As a general rule, we recommend using case classes to represent database rows for
these reasons.

102 CHAPTER 5. DATA MODELLING

5.2.3 Heterogeneous Lists

We’ve seen how Slick can map database tables to tuples and case classes. Scala vet-
erans iden fy a key weakness in this approach—tuples and case classes run into limi-
ta ons at 22 fields¹.

Many of us have heard horror stories of legacy tables in enterprise databases that have
tens or hundreds of columns. How dowemap these rows? Fortunately, Slick provides
an HList implementa on to support tables with very large numbers of columns.

To mo vate this, let’s consider a poorly-designed legacy table for storing product at-
tributes:

case class Attr(id: Long, productId: Long /* ...etc */)

class AttrTable(tag: Tag) extends Table[Attr](tag, "attrs") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

def name3 = column[String]("name3")

def value3 = column[Int]("value3")

def name4 = column[String]("name4")

def value4 = column[Int]("value4")

def name5 = column[String]("name5")

def value5 = column[Int]("value5")

def name6 = column[String]("name6")

def value6 = column[Int]("value6")

def name7 = column[String]("name7")

def value7 = column[Int]("value7")

def name8 = column[String]("name8")

def value8 = column[Int]("value8")

def name9 = column[String]("name9")

def value9 = column[Int]("value9")

def name10 = column[String]("name10")

def value10 = column[Int]("value10")

def name11 = column[String]("name11")

def value11 = column[Int]("value11")

def name12 = column[String]("name12")

def value12 = column[Int]("value12")

def * = ??? // we'll fill this in below

}

¹Scala 2.11 introduced the ability to define case classes with more than 22 fields, but tuples and func-
ons are s ll limited to 22. We’ve wri en about this in a blog post.

https://scala-slick.org/doc/3.3.3/api/#slick.collection.heterogeneous.HList
https://underscore.io/blog/posts/2016/10/11/twenty-two.html

5.2. REPRESENTATIONS FOR ROWS 103

Hopefully you don’t have a table like this at your organiza on, but accidents do hap-
pen.

This table has 26 columns—too many to model using flat tuples. Fortunately, Slick
provides an alterna ve mapping representa on that scales to arbitrary numbers of
columns. This representa on is called a heterogeneous list or HList².

An HList is a sort of hybrid of a list and a tuple. It has an arbitrary length like a List,
but each element can be a different type like a tuple. Here are some examples:

import slick.collection.heterogeneous.{HList, HCons, HNil}

import slick.collection.heterogeneous.syntax._

val emptyHList = HNil

// emptyHList: HNil.type = HNil

val shortHList: Int :: HNil = 123 :: HNil

// shortHList: Int :: HNil = (123)

val longerHList: Int :: String :: Boolean :: HNil =

123 :: "abc" :: true :: HNil

// longerHList: Int :: String :: Boolean :: HNil = (123, "abc", true)

HLists are constructed recursively like Lists, allowing us to model arbitrarily large
collec ons of values:

• an empty HList is represented by the singleton object HNil;

• longer HLists are formed by prepending values using the :: operator, which
creates a new list of a new type.

No ce the types and values of each HListmirror each other: the longerHList com-
prises values of types Int, String, and Boolean, and its type comprises the types
Int, String, and Boolean as well. Because the element types are preserved, we can
write code that takes each precise type into account.

Slick is able to produce ProvenShapes to map HLists of columns to HLists of their
values. For example, the shape for a Rep[Int] :: Rep[String] :: HNil maps
values of type Int :: String :: HNil.

²You may have heard of HList via other libraries, such as shapeless. We’re talking here about Slick’s
own implementa on of HList, not the shapeless one. You can use the shapeless HList via a library we’ve
provided called slickless.

https://github.com/milessabin/shapeless
https://github.com/underscoreio/slickless

104 CHAPTER 5. DATA MODELLING

5.2.3.1 Using HLists Directly

We can use an HList to map the large table in our example above. Here’s what the
default projec on looks like:

import slick.collection.heterogeneous.{ HList, HCons, HNil }

import slick.collection.heterogeneous.syntax._

import scala.language.postfixOps

type AttrHList =

Long :: Long ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

String :: Int :: String :: Int :: String :: Int ::

HNil

class AttrTable(tag: Tag) extends Table[AttrHList](tag, "attrs") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

def name3 = column[String]("name3")

def value3 = column[Int]("value3")

def name4 = column[String]("name4")

def value4 = column[Int]("value4")

def name5 = column[String]("name5")

def value5 = column[Int]("value5")

def name6 = column[String]("name6")

def value6 = column[Int]("value6")

def name7 = column[String]("name7")

def value7 = column[Int]("value7")

def name8 = column[String]("name8")

def value8 = column[Int]("value8")

def name9 = column[String]("name9")

def value9 = column[Int]("value9")

def name10 = column[String]("name10")

def value10 = column[Int]("value10")

def name11 = column[String]("name11")

def value11 = column[Int]("value11")

def name12 = column[String]("name12")

def value12 = column[Int]("value12")

def * = id :: productId ::

name1 :: value1 :: name2 :: value2 :: name3 :: value3 ::

name4 :: value4 :: name5 :: value5 :: name6 :: value6 ::

5.2. REPRESENTATIONS FOR ROWS 105

name7 :: value7 :: name8 :: value8 :: name9 :: value9 ::

name10 :: value10 :: name11 :: value11 :: name12 :: value12 ::

HNil

}

val attributes = TableQuery[AttrTable]

// attributes: TableQuery[AttrTable] = Rep(TableExpansion)

Wri ng HList types and values is cumbersome and error prone, so we’ve introduced
a type alias of AttrHList to help us.

Working with this table involves inser ng, upda ng, selec ng, and modifying
instances of AttrHList. For example:

import scala.concurrent.ExecutionContext.Implicits.global

val program: DBIO[Seq[AttrHList]] = for {

_ <- attributes.schema.create

_ <- attributes += 0L :: 100L ::

"name1" :: 1 :: "name2" :: 2 :: "name3" :: 3 ::

"name4" :: 4 :: "name5" :: 5 :: "name6" :: 6 ::

"name7" :: 7 :: "name8" :: 8 :: "name9" :: 9 ::

"name10" :: 10 :: "name11" :: 11 :: "name12" :: 12 ::

HNil

rows <- attributes.filter(_.value1 === 1).result

} yield rows

// program: DBIO[Seq[AttrHList]] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@2

c30df3,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

val myAttrs: AttrHList = exec(program).head

// myAttrs: AttrHList = (

// 1L,

// 100L,

// "name1",

// 1,

// "name2",

// 2,

// "name3",

// 3,

// "name4",

// 4,

// "name5",

106 CHAPTER 5. DATA MODELLING

// 5,

// "name6",

// 6,

// "name7",

// 7,

// "name8",

// 8,

// "name9",

// 9,

// "name10",

// 10,

// "name11",

// 11,

// "name12",

// 12

//)

We can extract values from our query results HList using pa ern matching or a vari-
ety of type-preserving methods defined on HList, including head, apply, drop, and
fold:

val id: Long = myAttrs.head

// id: Long = 1L

val productId: Long = myAttrs.tail.head

// productId: Long = 100L

val name1: String = myAttrs(2)

// name1: String = "name1"

val value1: Int = myAttrs(3)

// value1: Int = 1

5.2.3.2 Using HLists and Case Classes

In prac ce we’ll want to map an HList representa on to a regular class to make it
easier to work with. Slick’s <> operator works with HList shapes as well as tuple
shapes. To use it we’d have to produce our own mapping func ons in place of the
case class apply and unapply, but otherwise this approach is the same as we’ve
seen for tuples.

However, the mapTo macro will generate the mapping between an HList and a case
class for us:

// A case class for our very wide row:

case class Attrs(id: Long, productId: Long,

name1: String, value1: Int, name2: String, value2: Int /* etc */)

class AttrTable(tag: Tag) extends Table[Attrs](tag, "attributes") {

5.2. REPRESENTATIONS FOR ROWS 107

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def productId = column[Long]("product_id")

def name1 = column[String]("name1")

def value1 = column[Int]("value1")

def name2 = column[String]("name2")

def value2 = column[Int]("value2")

/* etc */

def * = (

id :: productId ::

name1 :: value1 :: name2 :: value2 /* etc */ ::

HNil

).mapTo[Attrs]

}

val attributes = TableQuery[AttrTable]

No ce the pa ern is:

def * = (some hlist).mapTo[case class with the same fields]

With this in place our table is defined on a plain Scala case class. We can query and
modify the data as normal using case classes:

val program: DBIO[Seq[Attrs]] = for {

_ <- attributes.schema.create

_ <- attributes += Attrs(0L, 100L, "n1", 1, "n2", 2 /* etc */)

rows <- attributes.filter(_.productId === 100L).result

} yield rows

// program: DBIO[Seq[Attrs]] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@5

fc4cd6a,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(program)

// res6: Seq[Attrs] = Vector(Attrs(1L, 100L, "n1", 1, "n2", 2))

Code Genera on

Some mes your code is the defini ve descrip on of the schema; other mes
it’s the database itself. The la er is the case when working with legacy
databases, or database where the schema is managed independently of your

108 CHAPTER 5. DATA MODELLING

Slick applica on.

When the database is considered the source truth in your organisa on, the
Slick code generator is an important tool. It allows you to connect to a database,
generate the table defini ons, and customize the code produced. For tables
with wide rows, it produces an HList representa on.

Prefer it to manually reverse engineering a schema by hand.

5.3 Table and Column Representa on

Now we know how rows can be represented and mapped, let’s look in more detail
at the representa on of the table and the columns it comprises. In par cular we’ll
explore nullable columns, foreign keys, more about primary keys, composite keys, and
op ons you can apply to a table.

5.3.1 Nullable Columns

Columns defined in SQL are nullable by default. That is, they can contain NULL as a
value. Slick makes columns non-nullable by default—if you want a nullable column
you model it naturally in Scala as an Option[T].

Let’s create a variant of User with an op onal email address:

case class User(name: String, email: Option[String] = None, id: Long = 0L)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

We can insert users with or without an email address:

val program = (

users.schema.create >>

(users += User("Dave", Some("dave@example.org"))) >>

(users += User("HAL"))

https://scala-slick.org/doc/3.3.3/code-generation.html

5.3. TABLE AND COLUMN REPRESENTATION 109

)

// program: DBIOAction[Int, NoStream, Effect.Schema with Effect.Write with

Effect.Write] = slick.dbio.SynchronousDatabaseAction$FusedAndThenAction@7

b41589b

exec(program)

// res8: Int = 1

and retrieve them again with a select query:

exec(users.result).foreach(println)

// User(Dave,Some(dave@example.org),1)

// User(HAL,None,2)

So far, so ordinary. What might be a surprise is how you go about selec ng all rows
that have no email address. You might expect the following to find the one row that
has no email address:

// Don't do this

val none: Option[String] = None

// none: Option[String] = None

val badQuery = exec(users.filter(_.email === none).result)

// badQuery: Seq[UserTable#TableElementType] = Vector()

Despite the fact that we do have one row in the database no email address, this query
produces no results.

Veterans of database administra on will be familiar with this interes ng quirk of SQL:
expressions involving null themselves evaluate to null. For example, the SQL ex-
pression 'Dave' = 'HAL' evaluates to false, whereas the expression 'Dave' =

null evaluates to null.

Our Slick query above amounts to:

SELECT * FROM "user" WHERE "email" = NULL

The SQL expression "email" = null evaluates to null for any value of "email".
SQL’s null is a falsey value, so this query never returns a value.

To resolve this issue, SQL provides two operators: IS NULL and IS NOT NULL,
which are provided in Slick by the methods isEmpty and isDefined on any
Rep[Option[A]]:

110 CHAPTER 5. DATA MODELLING

Table 5.1: Op onal column methods. Operand and result types should be in-
terpreted as parameters to Rep[_]. The ? method is described in the next
sec on.

Scala Code Operand Column Types Result Type SQL Equivalent

col.? A Option[A] col

col.isEmpty Option[A] Boolean col is null

col.isDefined Option[A] Boolean col is not

null

We can fix our query by replacing our equality check with isEmpty:

val myUsers = exec(users.filter(_.email.isEmpty).result)

// myUsers: Seq[UserTable#TableElementType] = Vector(User("HAL", None, 2L))

which translates to the following SQL:

SELECT * FROM "user" WHERE "email" IS NULL

5.3.2 Primary Keys

We had our first introduc on to primary keys in Chapter 1, where we started se ng
up id fields using the O.PrimaryKey and O.AutoInc column op ons:

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

These op ons do two things:

• they modify the SQL generated for DDL statements;

• O.AutoInc removes the corresponding column from the SQL generated for
INSERT statements, allowing the database to insert an auto-incremen ng
value.

In Chapter 1 we combined O.AutoInc with a case class that has a default ID of 0L,
knowing that Slick will skip the value in insert statements:

5.3. TABLE AND COLUMN REPRESENTATION 111

case class User(name: String, id: Long = 0L)

While we like the simplicity of this style, some developers prefer to wrap primary key
values in Options:

case class User(name: String, id: Option[Long] = None)

In this model we use None as the primary key of an unsaved record and Some as the
primary key of a saved record. This approach has advantages and disadvantages:

• on the posi ve side it’s easier to iden fy unsaved records;

• on the nega ve side it’s harder to get the value of a primary key for use in a
query.

Let’s look at the changes we need to make to our UserTable to make this work:

case class User(id: Option[Long], name: String)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (id.?, name).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

The key thing to no ce here is that we don’t want the primary key to be op onal in
the database. We’re using None to represent an unsaved value—the database assigns
a primary key for us on insert, so we can never retrieve a None via a database query.

We need to map our non-nullable database column to an op onal field value. This
is handled by the ? method in the default projec on, which converts a Rep[A] to a
Rep[Option[A]].

5.3.3 Compound Primary Keys

There is a second way to declare a column as a primary key:

112 CHAPTER 5. DATA MODELLING

def id = column[Long]("id", O.AutoInc)

def pk = primaryKey("pk_id", id)

This separate step doesn’t make much of a difference in this case. It separates the
column defini on from the key constraint, meaning the schema will include:

ALTER TABLE "user" ADD CONSTRAINT "pk_id" PRIMARY KEY("id")

The primaryKey method is more useful for defining compound primary keys that in-
volve two or more columns.

Let’s look at this by adding the ability for people to chat in rooms. First we need a
table for storing rooms, which is straigh orward:

// Regular table definition for a chat room:

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

lazy val insertRoom = rooms returning rooms.map(_.id)

Next we need a table that relates users to rooms. We’ll call this the occupant table.
Rather than give this table an auto-generated primary key, we’ll make it a compound
of the user and room IDs:

case class Occupant(roomId: Long, userId: Long)

class OccupantTable(tag: Tag) extends Table[Occupant](tag, "occupant") {

def roomId = column[Long]("room")

def userId = column[Long]("user")

def pk = primaryKey("room_user_pk", (roomId, userId))

def * = (roomId, userId).mapTo[Occupant]

}

lazy val occupants = TableQuery[OccupantTable]

We can define composite primary keys using tuples or HLists of columns (Slick gen-
erates a ProvenShape and inspects it to find the list of columns involved). The SQL
generated for the occupant table is:

5.3. TABLE AND COLUMN REPRESENTATION 113

CREATE TABLE "occupant" (

"room" BIGINT NOT NULL,

"user" BIGINT NOT NULL

)

ALTER TABLE "occupant"

ADD CONSTRAINT "room_user_pk" PRIMARY KEY("room", "user")

Using the occupant table is no different from any other table:

val program: DBIO[Int] = for {

_ <- rooms.schema.create

_ <- occupants.schema.create

elenaId <- insertUser += User(None, "Elena")

airLockId <- insertRoom += Room("Air Lock")

// Put Elena in the Room:

rowsAdded <- occupants += Occupant(airLockId, elenaId)

} yield rowsAdded

// program: DBIO[Int] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@

7196e207,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(program)

// res11: Int = 1

Of course, if we try to put Dave in the Air Lock twice, the database will complain
about duplicate primary keys.

5.3.4 Indices

We can use indices to increase the efficiency of database queries at the cost of higher
disk usage. Crea ng and using indices is the highest form of database sorcery, differ-
ent for every database applica on, and well beyond the scope of this book. However,
the syntax for defining an index in Slick is simple. Here’s a table with two calls to
index:

114 CHAPTER 5. DATA MODELLING

class IndexExample(tag: Tag) extends Table[(String,Int)](tag, "people") {

def name = column[String]("name")

def age = column[Int]("age")

def * = (name, age)

def nameIndex = index("name_idx", name, unique=true)

def compoundIndex = index("c_idx", (name, age), unique=true)

}

The corresponding DDL statement produced due to nameIndex will be:

CREATE UNIQUE INDEX "name_idx" ON "people" ("name")

We can create compound indices on mul ple columns just like we can with primary
keys. In this case (compoundIndex) the corresponding DDL statement will be:

CREATE UNIQUE INDEX "c_idx" ON "people" ("name", "age")

5.3.5 Foreign Keys

Foreign keys are declared in a similar manner to compound primary keys.

The method foreignKey takes four required parameters:

• a name;

• the column, or columns, that make up the foreign key;

• the TableQuery that the foreign key belongs to; and

• a func on on the supplied TableQuery[T] taking the supplied column(s) as
parameters and returning an instance of T.

We’ll step through this by using foreign keys to connect a message to a user. We do
this by changing the defini on of message to reference the id of its sender instead
of their name:

case class Message(

senderId : Long,

content : String,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

5.3. TABLE AND COLUMN REPRESENTATION 115

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id)

}

lazy val messages = TableQuery[MessageTable]

The column for the sender is now a Long instead of a String. We have also defined
a method, sender, providing the foreign key linking the senderId to a user id.

The foreignKey gives us two things. First, it adds a constraint to the DDL statement
generated by Slick:

ALTER TABLE "message" ADD CONSTRAINT "sender_fk"

FOREIGN KEY("sender") REFERENCES "user"("id")

ON UPDATE NO ACTION

ON DELETE NO ACTION

On Update and On Delete

A foreign key makes certain guarantees about the data you store. In the case
we’ve looked at there must be a sender in the user table to successfully insert
a new message.

So what happens if something changes with the user row? There are a num-
ber of referen al ac ons that could be triggered. The default is for nothing to
happen, but you can change that.

Let’s look at an example. Suppose we delete a user, and we want all the mes-
sages associated with that user to be removed. We could do that in our appli-
ca on, but it’s something the database can provide for us:

https://en.wikipedia.org/wiki/Foreign_key#Referential_actions

116 CHAPTER 5. DATA MODELLING

class AltMsgTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id, onDelete=

ForeignKeyAction.Cascade)

}

Providing Slick’s schema command has been run for the table, or the SQL ON
DELETE CASCADE ac on has been manually applied to the database, the fol-
lowing ac on will remove HAL from the users table, and all of the messages
that HAL sent:

users.filter(_.name === "HAL").delete

Slick supports onUpdate and onDelete for the five ac ons:

Ac on Descrip on

NoAction The default.
Cascade A change in the referenced table triggers a change

in the referencing table. In our example, dele ng a
user will cause their messages to be deleted.

Restrict Changes are restricted, triggered a constraint
viola on excep on. In our example, you would
not be allowed to delete a user who had posted a
message.

SetNull The column referencing the updated value will be
set to NULL.

SetDefault The default value for the referencing column will
be used. Default values are discussion in Table
and Column Modifiers, later in this chapter.

Second, the foreign key gives us a query that we can use in a join. We’ve dedicated
the next chapter to looking at joins in detail, but here’s a simple join to illustrate the
use case:

5.3. TABLE AND COLUMN REPRESENTATION 117

val q = for {

msg <- messages

usr <- msg.sender

} yield (usr.name, msg.content)

// q: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

This is equivalent to the query:

SELECT u."name", m."content"

FROM "message" m, "user" u

WHERE "id" = m."sender"

…and once we have populated the database…

def findUserId(name: String): DBIO[Option[Long]] =

users.filter(_.name === name).map(_.id).result.headOption

def findOrCreate(name: String): DBIO[Long] =

findUserId(name).flatMap { userId =>

userId match {

case Some(id) => DBIO.successful(id)

case None => insertUser += User(None, name)

}

}

// Populate the messages table:

val setup = for {

daveId <- findOrCreate("Dave")

halId <- findOrCreate("HAL")

// Add some messages:

_ <- messages.schema.create

rowsAdded <- messages ++= Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

} yield rowsAdded

// setup: DBIOAction[Option[Int], NoStream, Effect.All with Effect.All with

Effect.Schema with Effect.Write] = FlatMapAction(

// FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@e2f92e,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//),

118 CHAPTER 5. DATA MODELLING

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

exec(setup)

// res14: Option[Int] = Some(4)

…our query produces the following results, showing the sender name (not ID) and
corresponding message:

exec(q.result).foreach(println)

// (Dave,Hello, HAL. Do you read me, HAL?)

// (HAL,Affirmative, Dave. I read you.)

// (Dave,Open the pod bay doors, HAL.)

// (HAL,I'm sorry, Dave. I'm afraid I can't do that.)

Save Your Sanity With Laziness

Defining foreign keys places constraints on the order in which we have to
define our database tables. In the example above, the foreign key from
MessageTable to UserTable requires us to place the la er defini on above
the former in our Scala code.

Ordering constraints make complex schemas difficult to write. Fortunately, we
can work around them using def and lazy val.

As a rule, use lazy val for TableQuerys and def foreign keys (for consistency
with column defini ons).

5.3.6 Column Op ons

We’ll round off this sec on by looking at modifiers for columns and tables. These
allow us to tweak the default values, sizes, and data types for columns at the SQL
level.

We have already seen two examples of column op ons, namely O.PrimaryKey and
O.AutoInc. Column op ons are defined in ColumnOption, and as you have seen are
accessed via O.

The following example introduces four new op ons: O.Length, O.SqlType,
O.Unique, and O.Default.

https://scala-slick.org/doc/3.3.3/api/index.html#slick.ast.ColumnOption

5.4. CUSTOM COLUMNMAPPINGS 119

case class PhotoUser(

name : String,

email : String,

avatar : Option[Array[Byte]] = None,

id : Long = 0L)

class PhotoTable(tag: Tag) extends Table[PhotoUser](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String](

"name",

O.Length(64, true),

O.Default("Anonymous Coward")

)

def email = column[String]("email", O.Unique)

def avatar = column[Option[Array[Byte]]]("avatar", O.SqlType("BINARY(2048)"))

def * = (name, email, avatar, id).mapTo[PhotoUser]

}

In this example we’ve done four things:

1. We’ve used O.Length to give the name column a maximum length. This modi-
fies the type of the column in theDDL statement. The parameters toO.Length
are an Int specifying the maximum length, and a Boolean indica ng whether
the length is variable. Se ng the Boolean to true sets the SQL column type
to VARCHAR; se ng it to false sets the type to CHAR.

2. We’ve used O.Default to give the name column a default value. This adds a
DEFAULT clause to the column defini on in the DDL statement.

3. We added a uniqueness constraint on the email column.

4. We’ve used O.SqlType to control the exact type used by the database. The
values allowed here depend on the database we’re using.

5.4 Custom Column Mappings

We want to work with types that have meaning to our applica on. This means con-
ver ng data from the simple types the database uses to something more developer-
friendly.

120 CHAPTER 5. DATA MODELLING

We’ve already seen Slick’s ability tomap tuples and HLists of columns to case classes.
However, so far the fields of our case classes have been restricted to simple types such
as Int and String,

Slick also lets us control how individual columns are mapped to Scala types. For exam-
ple, perhaps we’d like to use Joda Time’s DateTime class for anything date and me
related. Slick doesn’t provide na ve support for Joda Time³, but it’s painless for us to
implement it via Slick’s ColumnType type class:

import java.sql.Timestamp

import org.joda.time.DateTime

import org.joda.time.DateTimeZone.UTC

object CustomColumnTypes {

implicit val jodaDateTimeType =

MappedColumnType.base[DateTime, Timestamp](

dt => new Timestamp(dt.getMillis),

ts => new DateTime(ts.getTime, UTC)

)

}

What we’re providing here is two func ons to MappedColumnType.base:

• one from a DateTime to a database-friendly java.sql.Timestamp; and

• one that does the reverse, taking a Timestamp and conver ng it to a
DateTime.

Once we have declared this custom column type, we are free to create columns con-
taining DateTimes:

case class Message(

senderId : Long,

content : String,

timestamp : DateTime,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

// Bring our implicit conversions into scope:

import CustomColumnTypes._

³However since Slick 3.3.0 there is built-in support for java.time.Instant, LocalDate, LocalTime,
LocalDateTime, OffsetTime, OffsetDateTime, and ZonedDateTime. You’ll very likely want to use
these over the older Joda Time library.

https://www.joda.org/joda-time/

5.4. CUSTOM COLUMNMAPPINGS 121

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender")

def content = column[String]("content")

def timestamp = column[DateTime]("timestamp")

def * = (senderId, content, timestamp, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessage = messages returning messages.map(_.id)

Reset Your Database

If you’ve been following along in the REPL, by nowyou’re going to have a bunch
of tables and rows. Now is a good me to remove all of that.

You can exit the REPL and restart it. H2 is holding the data in memory, so
turning it on and off again is one way to reset your database.

Alterna vely, you can use an ac on:

val schemas = (users.schema ++

messages.schema ++

occupants.schema ++

rooms.schema)

// schemas: slick.jdbc.H2Profile.DDL = slick.sql.SqlProfile$DDL$$anon$1@

9d7ec033

exec(schemas.drop)

Our modified defini on of MessageTable allows us to work directly with Messages
containing DateTime mestamps, without having to do cumbersome type conver-
sions by hand:

val program = for {

_ <- messages.schema.create

_ <- users.schema.create

daveId <- insertUser += User(None, "Dave")

msgId <- insertMessage += Message(

daveId,

"Open the pod bay doors, HAL.",

DateTime.now)

} yield msgId

// program: DBIOAction[insertMessage.SingleInsertResult, NoStream, Effect.

Schema with Effect.Schema with Effect.Write with Effect.Write] =

FlatMapAction(

122 CHAPTER 5. DATA MODELLING

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@

63844785,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 0, active = 0, running = 0, steals = 19, tasks =

0, submissions = 0]

//)

val msgId = exec(program)

// msgId: insertMessage.SingleInsertResult = 1L

Fetching the database row will automa cally convert the timestamp field into the
DateTime value we expect:

exec(messages.filter(_.id === msgId).result)

// res18: Seq[MessageTable#TableElementType] = Vector(

// Message(1L, "Open the pod bay doors, HAL.", 2021-05-07T17:38:55.513Z, 1L)

//)

This model of working with seman c types is immediately appealing to Scala devel-
opers. We strongly encourage you to use ColumnType in your applica ons, to help
reduce bugs and let Slick take care of the type conversions.

5.4.1 Value Classes

We are currently using Longs to model primary keys. Although this is a good choice
at a database level, it’s not great for our applica on code.

The problem is we can make silly mistakes, such as trying to look up a User by pri-
mary key using the primary key from a Message. They are both Longs, but trying to
compare them makes no sense. And yet the code would compile, and could possibly
return a result. But it’s likely to be the wrong result.

We can prevent these kinds of problems using types. The essen al approach is to
model primary keys using value classes:

case class MessagePK(value: Long) extends AnyVal

case class UserPK(value: Long) extends AnyVal

A value class is a compile- mewrapper around a value. At run me, the wrapper goes
away, leaving no alloca on or performance overhead⁴ in our running code.

⁴It’s not totally cost free: there are situa ons where a value will need alloca on, such as when passed
to a polymorphic method.

https://docs.scala-lang.org/overviews/core/value-classes.html
https://docs.scala-lang.org/overviews/core/value-classes.html

5.4. CUSTOM COLUMNMAPPINGS 123

To use a value class we need to provide Slick with ColumnTypes to use these types
with our tables. This is the same process we used for Joda Time DateTimes:

implicit val messagePKColumnType =

MappedColumnType.base[MessagePK, Long](_.value, MessagePK(_))

// messagePKColumnType: slick.jdbc.H2Profile.BaseColumnType[MessagePK] =

MappedJdbcType[repl.Session$App19$MessagePK -> Long']

implicit val userPKColumnType =

MappedColumnType.base[UserPK, Long](_.value, UserPK(_))

// userPKColumnType: slick.jdbc.H2Profile.BaseColumnType[UserPK] =

MappedJdbcType[repl.Session$App19$UserPK -> Long']

Defining all these type class instances can be me consuming, especially if we’re defin-
ing one for every table in our schema. Fortunately, Slick provides a short-hand called
MappedTo to take care of this for us:

case class MessagePK(value: Long) extends AnyVal with MappedTo[Long]

case class UserPK(value: Long) extends AnyVal with MappedTo[Long]

When we use MappedTo we don’t need to define a separate ColumnType. MappedTo
works with any class that:

• has a method called value that returns the underlying database value; and

• has a single-parameter constructor to create the Scala value from the database
value.

Value classes are a great fit for the MappedTo pa ern.

Let’s redefine our tables to use our custom primary key types. We will convert User…

case class User(name: String, id: UserPK = UserPK(0L))

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[UserPK]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

…and Message:

124 CHAPTER 5. DATA MODELLING

case class Message(

senderId : UserPK,

content : String,

id : MessagePK = MessagePK(0L))

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[MessagePK]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[UserPK]("sender")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users) (_.id, onDelete=

ForeignKeyAction.Cascade)

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessage = messages returning messages.map(_.id)

No ce how we’re able to be explicit: the User.id and Message.senderId are
UserPKs, and the Message.id is a MessagePK.

We can lookup values if we have the right kind of key:

users.filter(_.id === UserPK(0L))

// res22: Query[UserTable, UserTable#TableElementType, Seq] = Rep(Filter @

211274507)

…but if we accidentally try to mix our primary keys, we’ll find we cannot:

users.filter(_.id === MessagePK(0L))

// error: Cannot perform option-mapped operation

// with type: (repl.Session.App8.UserPK, repl.Session.App8.MessagePK) =>

R

// for base type: (repl.Session.App8.UserPK, repl.Session.App8.UserPK) =>

Boolean

// messages.filter(_.flag === (Important : Flag)).result

// ^

// error: ambiguous implicit values:

// both value BooleanColumnCanBeQueryCondition in object CanBeQueryCondition

of type slick.lifted.CanBeQueryCondition[slick.lifted.Rep[Boolean]]

// and value BooleanOptionColumnCanBeQueryCondition in object

CanBeQueryCondition of type slick.lifted.CanBeQueryCondition[slick.lifted.

Rep[Option[Boolean]]]

// match expected type slick.lifted.CanBeQueryCondition[Nothing]

// lazy val users = TableQuery[UserTable]

// ^

5.4. CUSTOM COLUMNMAPPINGS 125

Values classes are a low-cost way to make code safer and more legible. The amount
of code required is small, however for a large database it can s ll be an overhead. We
can either use code genera on to overcome this, or generalise our primary key type
by making it generic:

case class PK[A](value: Long) extends AnyVal with MappedTo[Long]

case class User(

name : String,

id : PK[UserTable])

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[PK[UserTable]]("id", O.AutoInc, O.PrimaryKey)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

val exampleQuery =

users.filter(_.id === PK[UserTable](0L))

// exampleQuery: Query[UserTable, UserTable#TableElementType, Seq] = Rep(Filter

@959233222)

With this approach we achieve type safety without the boiler plate of many primary
key type defini ons. Depending on the nature of your applica on, this may be con-
venient for you.

The general point is that we can use the whole of the Scala type system to represent
primary keys, foreign keys, rows, and columns from our database. This is enormously
valuable and should not be overlooked.

5.4.2 Modelling Sum Types

We’ve used case classes extensively for modelling data. Using the language of alge-
braic data types, case classes are “product types” (created from conjunc ons of their
field types). The other common form of algebraic data type is known as a sum type,
formed from a disjunc on of other types. We’ll look at modelling these now.

As an example let’s add a flag to our Message class to model messages as important,
offensive, or spam. The natural way to do this is establish a sealed trait and a set of
case objects:

126 CHAPTER 5. DATA MODELLING

sealed trait Flag

case object Important extends Flag

case object Offensive extends Flag

case object Spam extends Flag

case class Message(

senderId : UserPK,

content : String,

flag : Option[Flag] = None,

id : MessagePK = MessagePK(0L))

There are a number of ways we could represent the flags in the database. For the sake
of the argument, let’s use characters: !, X, and $. We need a new custom ColumnType

to manage the mapping:

implicit val flagType =

MappedColumnType.base[Flag, Char](

flag => flag match {

case Important => '!'

case Offensive => 'X'

case Spam => '$'

},

code => code match {

case '!' => Important

case 'X' => Offensive

case '$' => Spam

})

// flagType: slick.jdbc.H2Profile.BaseColumnType[Flag] = MappedJdbcType[repl.

Session$App25$Flag -> Char']

We like sum types because the compiler can ensure we’ve covered all the cases. If we
add a new flag (OffTopic perhaps), the compiler will issue warnings un l we add it
to our Flag => Char func on. We can turn these compiler warnings into errors by
enabling the Scala compiler’s -Xfatal-warnings op on, preven ng us shipping the
applica on un l we’ve covered all bases.

Using Flag is the same as any other custom type:

class MessageTable(tag: Tag) extends Table[Message](tag, "flagmessage") {

def id = column[MessagePK]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[UserPK]("sender")

def content = column[String]("content")

def flag = column[Option[Flag]]("flag")

def * = (senderId, content, flag, id).mapTo[Message]

def sender = foreignKey("sender_fk", senderId, users)(_.id, onDelete=

5.4. CUSTOM COLUMNMAPPINGS 127

ForeignKeyAction.Cascade)

}

lazy val messages = TableQuery[MessageTable]

exec(messages.schema.create)

We can insert a message with a flag easily:

val halId = UserPK(1L)

// halId: UserPK = UserPK(1L)

exec(

messages += Message(

halId,

"Just kidding - come on in! LOL.",

Some(Important)

)

)

// res27: Int = 1

We can also query for messages with a par cular flag. However, we need to give the
compiler a li le help with the types:

exec(

messages.filter(_.flag === (Important : Flag)).result

)

// res28: Seq[MessageTable#TableElementType] = Vector(

// Message(

// UserPK(1L),

// "Just kidding - come on in! LOL.",

// Some(Important),

// MessagePK(1L)

//)

//)

The type annota on here is annoying. We can work around it in two ways:

First, we can define a “smart constructor” method for each flag that returns it pre-cast
as a Flag:

object Flags {

val important : Flag = Important

val offensive : Flag = Offensive

val spam : Flag = Spam

128 CHAPTER 5. DATA MODELLING

val action = messages.filter(_.flag === Flags.important).result

}

Second, we can define some custom syntax to build our filter expressions:

implicit class MessageQueryOps(message: MessageTable) {

def isImportant = message.flag === (Important : Flag)

def isOffensive = message.flag === (Offensive : Flag)

def isSpam = message.flag === (Spam : Flag)

}

messages.filter(_.isImportant).result.statements.head

// res29: String = "select \"sender\", \"content\", \"flag\", \"id\" from \"

flagmessage\" where \"flag\" = '!'"

5.5 Take Home Points

In this Chapter we covered a lot of Slick’s features for defining database schemas.
We went into detail about defining tables and columns, mapping them to convenient
Scala types, adding primary keys, foreign keys, and indices, and customising Slick’s
DDL SQL. We also discussed wri ng generic code that works with mul ple database
back-ends, and how to structure the database layer of your applica on using traits
and self-types.

The most important points are:

• We can separate the specific profile for our database (H2, Postgres, etc) from
our tables. We assemble a database layer from a number of traits, leaving the
profile as an abstract field that can be implemented at run me.

• We can represent rows in a variety of ways: tuples, HLists, and arbitrary
classes and case classes via the mapTo macro.

• If we need more control over a mapping from columns to other data structures,
the <> method is available.

• We can represent individual values in columns using arbitrary Scala data types
by providing ColumnTypes to manage the mappings. We’ve seen numerous
examples suppor ng typed primary keys such as UserPK, sealed traits such as
Flag, and third party classes such as DateTime.

5.6. EXERCISES 129

• Nullable values are typically represented as Options in Scala. We can either
define columns to store Options directly, or use the ? method to map non-
nullable columns to op onal ones.

• We can define simple primary keys using O.PrimaryKey and compound keys
using the primaryKey method.

• We can define foreignKeys, which gives us a simple way of linking tables in
a join. More on this next chapter.

Slick’s philosophy is to keep models simple. Wemodel rows as flat case classes, ignor-
ing joins with other tables. While this may seem inflexible at first, it more than pays
for itself in terms of simplicity and transparency. Database queries are explicit and
type-safe, and return values of convenient types.

In the next chapter we will build on the founda ons of primary and foreign keys and
look at wri ng more complex queries involving joins and aggregate func ons.

5.6 Exercises

5.6.1 Filtering Op onal Columns

Imagine a repor ng tool on a web site. Some mes you want to look at all the users in
the database, and some mes you want to only see rows matching a par cular value.

Working with the op onal email address for a user, write a method that will take an
op onal value, and list rows matching that value.

The method signature is:

def filterByEmail(email: Option[String]) = ???

Assume we only have two user records, one with an email address and one with no
email address:

case class User(name: String, email: Option[String], id: Long = 0)

class UserTable(tag: Tag) extends Table[User](tag, "filtering_3") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

130 CHAPTER 5. DATA MODELLING

}

lazy val users = TableQuery[UserTable]

val setup = DBIO.seq(

users.schema.create,

users += User("Dave", Some("dave@example.org")),

users += User("HAL ", None)

)

exec(setup)

We want filterByEmail(Some("dave@example.org")) to produce one row, and
filterByEmail(None) to produce two rows:

Tip: it’s OK to use mul ple queries.

See the solu on

5.6.2 Matching or Undecided

Not everyone has an email address, so perhaps when filtering it would be safer to
exclude rows that don’t match our filter criteria. That is, keep NULL addresses in the
results.

Add Elena to the database…

exec(

users += User("Elena", Some("elena@example.org"))

)

// res36: Int = 1

…andmodify filterByEmail sowhenwe search for Some("elena@example.org")
we only exclude Dave, as he definitely doesn’t match that address.

This me you can do this in one query.

Hint: if you get stuck thinking about this in terms of SQL, think about it in terms of
Scala collec ons. E.g.,

List(Some("dave"), Some("elena"), None).filter(???) == List(Some("elena",

None))

See the solu on

5.6. EXERCISES 131

5.6.3 Enforcement

What happens if you try adding a message for a user ID of 3000?

For example:

messages += Message(UserPK(3000L), "Hello HAL!")

Note that there is no user in our example with an ID of 3000.

See the solu on

5.6.4 Mapping Enumera ons

We can use the same trick that we’ve seen for DateTime and value classes to map
enumera ons.

Here’s a Scala Enumera on for a user’s role:

object UserRole extends Enumeration {

type UserRole = Value

val Owner = Value("O")

val Regular = Value("R")

}

Modify the user table to include a UserRole. In the database store the role as a
single character.

See the solu on

5.6.5 Alterna ve Enumera ons

Modify your solu on to the previous exercise to store the value in the database as an
integer.

If you see an unrecognized user role value, default it to a UserRole.Regular.

See the solu on

132 CHAPTER 5. DATA MODELLING

5.6.6 Custom Boolean

Messages can be high priority or low priority.

The database is a bit of a mess:

• The database value for high priority messages will be: y, Y, +, or high.

• For low priority messages the value will be: n, N, -, lo, or low.

Go ahead and model this with a sum type.

See the solu on

5.6.7 Turning a Row into Many Case Classes

Our HList example mapped a table with many columns. It’s not the only way to deal
with lots of columns.

Use custom func ons with <> and map UserTable into a tree of case classes. To
do this you will need to define the schema, define a User, insert data, and query the
data.

To make this easier, we’re just going to map six of the columns. Here are the case
classes to use:

case class EmailContact(name: String, email: String)

case class Address(street: String, city: String, country: String)

case class User(contact: EmailContact, address: Address, id: Long = 0L)

You’ll find a defini on of UserTable that you can copy and paste in the example code
in the file chapter-05/src/main/scala/nested_case_class.scala.

See the solu on

Chapter 6

Joins and Aggregates

Wrangling data with joins and aggregates can be painful. In this chapter we’ll try to
ease that pain by exploring:

• different styles of join (monadic and applica ve);

• different ways to join (inner, outer and zip); and

• aggregate func ons and grouping.

6.1 Two Kinds of Join

There are two styles of join in Slick. One, called applica ve, is based on an explicit
join method. It’s a lot like the SQL JOIN … ON syntax.

The second style of join, monadic, makes use of flatMap as a way to join tables.

These two styles of join are not mutually exclusive. We can mix and match them in
our queries. It’s o en convenient to create an applica ve join and use it in a monadic
join.

6.2 Chapter Schema

To demonstrate joins we will need at least two tables. Wewill store users in one table,
and messages in a separate table, and we will join across these tables to find out who

133

https://en.wikipedia.org/wiki/Join_(SQL)

134 CHAPTER 6. JOINS AND AGGREGATES

sent a message.

We’ll start with User…

import slick.jdbc.H2Profile.api._

import scala.concurrent.ExecutionContext.Implicits.global

case class User(name: String, id: Long = 0L)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def * = (name, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUser = users returning users.map(_.id)

…and add Message:

// Note that messages have senders, which are references to users

case class Message(

senderId : Long,

content : String,

id : Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("senderId")

def content = column[String]("content")

def sender = foreignKey("sender_fk", senderId, users)(_.id)

def * = (senderId, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessages = messages returning messages.map(_.id)

We’ll populate the database with the usual movie script:

def freshTestData(daveId: Long, halId: Long) = Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

6.3. MONADIC JOINS 135

val setup = for {

_ <- (users.schema ++ messages.schema).create

daveId <- insertUser += User("Dave")

halId <- insertUser += User("HAL")

rowsAdded <- messages ++= freshTestData(daveId, halId)

} yield rowsAdded

// setup: DBIOAction[Option[Int], NoStream, Effect.Schema with Effect.Write

with Effect.Write with Effect.Write] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@2

b1a8a94,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(setup)

// res0: Option[Int] = Some(4)

Later in this chapter we’ll add more tables for more complex joins.

6.3 Monadic Joins

We have seen an example of monadic joins in the previous chapter:

val monadicFor = for {

msg <- messages

usr <- msg.sender

} yield (usr.name, msg.content)

// monadicFor: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(

Bind)

No ce how we are using msg.sender which is defined as a foreign key in the
MessageTable defini on. (See Foreign Keys in Chapter 5 to recap this topic.)

We can express the same query without using a for comprehension:

val monadicDesugar =

messages flatMap { msg =>

msg.sender.map { usr =>

(usr.name, msg.content)

}

}

136 CHAPTER 6. JOINS AND AGGREGATES

// monadicDesugar: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

Either way, when we run the query Slick generates something like the following SQL:

select

u."name", m."content"

from

"message" m, "user" u

where

u."id" = m."sender"

That’s the monadic style of query, using foreign key rela onships.

Run the Code

You’ll find the example queries for this sec on in the file joins.sql over at
the associated GitHub repository.

From the chapter-06 folder start SBT and at the SBT > prompt run:

runMain JoinsExample

Even if we don’t have a foreign key, we can use the same style and control the join
ourselves:

val monadicFilter = for {

msg <- messages

usr <- users if usr.id === msg.senderId

} yield (usr.name, msg.content)

// monadicFilter: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

Note how this me we’re using msg.senderId, not the foreign key sender. This
produces the same query when we joined using sender.

You’ll see plenty of examples of this style of join. They look straigh orward to read,
and are natural to write. The cost is that Slick has to translate the monadic expression
down to something that SQL is capable of running.

https://github.com/underscoreio/essential-slick-code/tree/3.3

6.4. APPLICATIVE JOINS 137

6.4 Applica ve Joins

An applica ve join is where we explicitly write the join in code. In SQL this is via the
JOIN and ON keywords, which are mirrored in Slick with the following methods:

• join — an inner join,

• joinLeft — a le outer join,

• joinRight — a right outer join,

• joinFull — a full outer join.

We will work through examples of each of these methods. But as a quick taste of the
syntax, here’s how we can join the messages table to the users on the senderId:

val applicative1: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on (_.senderId === _.id)

// applicative1: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

As you can see, this code produces a query of (MessageTable, UserTable). If we
want to, we can be more explicit about the values used in the on part:

val applicative2: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on ((m: MessageTable, u: UserTable) =>

m.senderId === u.id

)

// applicative2: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

We can also write the join condi on using pa ern matching:

val applicative3: Query[(MessageTable, UserTable), (Message, User), Seq] =

messages join users on { case (m, u) => m.senderId === u.id }

// applicative3: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(

Join Inner)

Joins like this form queries that we convert to ac ons the usual way:

138 CHAPTER 6. JOINS AND AGGREGATES

val action: DBIO[Seq[(Message, User)]] = applicative3.result

// action: DBIO[Seq[(Message, User)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@206d26b6

exec(action)

// res1: Seq[(Message, User)] = Vector(

// (Message(1L, "Hello, HAL. Do you read me, HAL?", 1L), User("Dave", 1L)),

// (Message(2L, "Affirmative, Dave. I read you.", 2L), User("HAL", 2L)),

// (Message(1L, "Open the pod bay doors, HAL.", 3L), User("Dave", 1L)),

// (

// Message(2L, "I'm sorry, Dave. I'm afraid I can't do that.", 4L),

// User("HAL", 2L)

//)

//)

The end result of Seq[(Message, User)] is each message paired with the corre-
sponding user.

6.4.1 More Tables, Longer Joins

In the rest of this sec on we’ll work through a variety of more involved joins. You
may find it useful to refer to figure 6.1, which sketches the schema we’re using in this
chapter.

For now we will add one more table. This is a Room that a User can be in, giving us
channels for our chat conversa ons:

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

lazy val insertRoom = rooms returning rooms.map(_.id)

And we’ll modify a message so it can op onally be a ached to a room:

case class Message(

senderId : Long,

content : String,

roomId : Option[Long] = None,

id : Long = 0L)

6.4. APPLICATIVE JOINS 139

Figure 6.1: The database schema for this chapter. Find this code in the chat-
schema.scala file of the example project on GitHub. A message can have a sender,
which is a join to the user table. Also, a message can be in a room, which is a join to
the room table.

140 CHAPTER 6. JOINS AND AGGREGATES

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("senderId")

def content = column[String]("content")

def roomId = column[Option[Long]]("roomId")

def sender = foreignKey("sender_fk", senderId, users)(_.id)

def * = (senderId, content, roomId, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

lazy val insertMessages = messages returning messages.map(_.id)

We’ll reset our database and populate it with some messages happening in the “Air
Lock” room:

exec(messages.schema.drop)

val daveId = 1L

// daveId: Long = 1L

val halId = 2L

// halId: Long = 2L

val setup = for {

// Create the modified and new tables:

_ <- (messages.schema ++ rooms.schema).create

// Create one room:

airLockId <- insertRoom += Room("Air Lock")

// Half the messages will be in the air lock room...

_ <- insertMessages += Message(daveId, "Hello, HAL. Do you read me, HAL?",

Some(airLockId))

_ <- insertMessages += Message(halId, "Affirmative, Dave. I read you.",

Some(airLockId))

// ...and half will not be in room:

_ <- insertMessages += Message(daveId, "Open the pod bay doors, HAL.")

_ <- insertMessages += Message(halId, "I'm sorry, Dave. I'm afraid I can't do

that.")

// See what we end up with:

msgs <- messages.result

} yield (msgs)

// setup: DBIOAction[Seq[MessageTable#TableElementType], NoStream, Effect.

Schema with Effect.Write with Effect.Write with Effect.Write with Effect.

Write with Effect.Write with Effect.Read] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$SchemaActionExtensionMethodsImpl$$anon$5@7

6.4. APPLICATIVE JOINS 141

ef35c42,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(setup).foreach(println)

// Message(1,Hello, HAL. Do you read me, HAL?,Some(1),1)

// Message(2,Affirmative, Dave. I read you.,Some(1),2)

// Message(1,Open the pod bay doors, HAL.,None,3)

// Message(2,I'm sorry, Dave. I'm afraid I can't do that.,None,4)

Now let’s get to work and join across all these tables.

6.4.2 Inner Join

An inner join selects data frommul ple tables, where the rows in each table match up
in some way. Typically, the matching up is done by comparing primary keys. If there
are rows that don’t match up, they won’t appear in the join results.

Let’s look up messages that have a sender in the user table, and a room in the rooms
table:

val usersAndRooms =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on{ case ((msg,user), room) => msg.roomId === room.id }

// usersAndRooms: Query[((MessageTable, UserTable), RoomTable), ((MessageTable#

TableElementType, UserTable#TableElementType), RoomTable#TableElementType)

, Seq] = Rep(Join Inner)

We’re joining messages to users, and messages to rooms. We use a binary func on
on the first call to on and a pa ern matching func on on our second call, to illustrate
two styles.

Because each join results in a query of a tuple, successive joins result in nested tuples.
Pa ern matching is our preferred syntax for unpacking these tuples because it explic-
itly clarifies the structure of the query. However, you may see this more concisely
expressed as a binary func on for both joins:

val usersAndRoomsBinaryFunction =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on(_._1.roomId === _.id)

142 CHAPTER 6. JOINS AND AGGREGATES

// usersAndRoomsBinaryFunction: Query[((MessageTable, UserTable), RoomTable),

((MessageTable#TableElementType, UserTable#TableElementType), RoomTable#

TableElementType), Seq] = Rep(Join Inner)

The result is the same either way.

6.4.2.1 Mapping Joins

We can turn this query into an ac on as it stands:

val usersAndRoomQuery: DBIO[Seq[((Message, User), Room)]] =

usersAndRooms.result

// usersAndRoomQuery: DBIO[Seq[((Message, User), Room)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@775d827c

…but our results will contain nested tuples. That’s OK, if that’s what you want. But
typically we want to map over the query to fla en the results and select the columns
we want.

Rather than returning the table classes, we can pick out just the informa on we want.
Perhaps the message, the name of the sender, and the tle of the room:

val usersAndRoomTitles =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on { case ((msg,user), room) => msg.roomId === room.id }.

map { case ((msg, user), room) => (msg.content, user.name, room.title) }

// usersAndRoomTitles: Query[(Rep[String], Rep[String], Rep[String]), (String,

String, String), Seq] = Rep(Bind)

val action: DBIO[Seq[(String, String, String)]] = usersAndRoomTitles.result

// action: DBIO[Seq[(String, String, String)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@5d9b84f6

exec(action).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Dave,Air Lock)

// (Affirmative, Dave. I read you.,HAL,Air Lock)

6.4.2.2 Filter with Joins

As joins are queries, we can transform them using the combinators we learned in
previous chapters. We’ve already seen an example of the map combinator. Another
example would be the filter method.

6.4. APPLICATIVE JOINS 143

As an example, we can use our usersAndRooms query and modify it to focus on a
par cular room. Perhaps we want to use our join for the Air Lock room:

// The query we've already seen...

val usersAndRooms =

messages.

join(users).on(_.senderId === _.id).

join(rooms).on { case ((msg,user), room) => msg.roomId === room.id }

// ...modified to focus on one room:

val airLockMsgs =

usersAndRooms.

filter { case (_, room) => room.title === "Air Lock" }

// airLockMsgs: Query[((MessageTable, UserTable), RoomTable), ((MessageTable#

TableElementType, UserTable#TableElementType), RoomTable#TableElementType)

, Seq] = Rep(Filter @22510755)

As with other queries, the filter becomes a WHERE clause in SQL. Something like this:

SELECT

"message"."content", "user"."name", "room"."title"

FROM

"message"

INNER JOIN "user" ON "message"."sender" = "user"."id"

INNER JOIN "room" ON "message"."room" = "room"."id"

WHERE

"room"."title" = 'Air Lock';

6.4.3 Le Join

A le join (a.k.a. le outer join), adds an extra twist. Now we are selec ng all the
records from a table, and matching records from another table if they exist. If we find
no matching record on the le , we will end up with NULL values in our results.

For an example from our chat schema, observe that messages can op onally be in a
room. Let’s suppose we want a list of all the messages and the room they are sent to.
Visually the le outer join is as shown below:

That is, we are going to select all the data from the messages table, plus data from the
rooms table for those messages that are in a room.

The join would be:

144 CHAPTER 6. JOINS AND AGGREGATES

Figure 6.2: A visualiza on of the le outer join example. Selec ng messages and
associated rooms. For similar diagrams, see A Visual Explana on of SQL Joins, Coding
Horror, 11 Oct 2007.

https://blog.codinghorror.com/a-visual-explanation-of-sql-joins/

6.4. APPLICATIVE JOINS 145

val left = messages.joinLeft(rooms).on(_.roomId === _.id)

// left: Query[(MessageTable, Rep[Option[RoomTable]]), (MessageTable#

TableElementType, Option[Room]), Seq] = Rep(Join LeftOption)

This query, left, is going to fetch messages and look up their corresponding room
from the room table. Not all messages are in a room, so in that case the roomId
column will be NULL.

Slick will li those possibly null values into something more comfortable: Option.
The full type of left is:

Query[

(MessageTable, Rep[Option[RoomTable]]),

(MessageTable#TableElementType, Option[Room]),

Seq]

The results of this query are of type (Message, Option[Room])—Slick has made
the Room side op onal for us automa cally.

If we want to just pick out the message content and the room tle, we can map over
the query:

val leftMapped =

messages.

joinLeft(rooms).on(_.roomId === _.id).

map { case (msg, room) => (msg.content, room.map(_.title)) }

// leftMapped: Query[(Rep[String], Rep[Option[String]]), (String, Option[String

]), Seq] = Rep(Bind)

Because the room element is op onal, we naturally extract the title element using
Option.map: room.map(_.title).

The type of this query then becomes:

Query[

(Rep[String], Rep[Option[String]]),

(String, Option[String]),

Seq]

The types String and Option[String] correspond to the message content and
room tle:

146 CHAPTER 6. JOINS AND AGGREGATES

exec(leftMapped.result).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Some(Air Lock))

// (Affirmative, Dave. I read you.,Some(Air Lock))

// (Open the pod bay doors, HAL.,None)

// (I'm sorry, Dave. I'm afraid I can't do that.,None)

6.4.4 Right Join

In the previous sec on, we saw that a le join selects all the records from the le
hand side of the join, with possibly NULL values from the right.

Right joins (or right outer joins) reverse the situa on, selec ng all records from the
right side of the join, with possibly NULL values from the le .

We can demonstrate this by reversing our le join example. We’ll ask for all rooms
together with private messages have they received. We’ll use for comprehension
syntax this me for variety:

val right = for {

(msg, room) <- messages joinRight (rooms) on (_.roomId === _.id)

} yield (room.title, msg.map(_.content))

// right: Query[(Rep[String], Rep[Option[String]]), (String, Option[String]),

Seq] = Rep(Bind)

Let’s create another room and see how the query works out:

exec(rooms += Room("Pod Bay"))

// res7: Int = 1

exec(right.result).foreach(println)

// (Air Lock,Some(Hello, HAL. Do you read me, HAL?))

// (Air Lock,Some(Affirmative, Dave. I read you.))

// (Pod Bay,None)

6.4.5 Full Outer Join

Full outer joins mean either side can be NULL.

From our schema an example would be the tle of all rooms and messages in those
rooms. Either side could be NULL because messages don’t have to be in rooms, and
rooms don’t have to have any messages.

6.4. APPLICATIVE JOINS 147

val outer = for {

(room, msg) <- rooms joinFull messages on (_.id === _.roomId)

} yield (room.map(_.title), msg.map(_.content))

// outer: Query[(Rep[Option[String]], Rep[Option[String]]), (Option[String],

Option[String]), Seq] = Rep(Bind)

The type of this query has op ons on either side:

Query[

(Rep[Option[String]], Rep[Option[String]]),

(Option[String], Option[String]),

Seq]

As you can see from the results…

exec(outer.result).foreach(println)

// (Some(Air Lock),Some(Hello, HAL. Do you read me, HAL?))

// (Some(Air Lock),Some(Affirmative, Dave. I read you.))

// (Some(Pod Bay),None)

// (None,Some(Open the pod bay doors, HAL.))

// (None,Some(I'm sorry, Dave. I'm afraid I can't do that.))

…some rooms have many messages, some none, some messages have rooms, and
some do not.

At the me of wri ng H2 does not support full outer joins. Whereas earlier
versions of Slick would throw a run me excep on, Slick 3 compiles the query
into something that will run, emula ng a full outer join.

6.4.6 Cross Joins

In the examples above, whenever we’ve used joinwe’ve also used an on to constrain
the join. This is op onal.

If we omit the on condi on for any join, joinLeft, or joinRight, we end up with
a cross join.

Cross joins include every row from the le table with every row from the right table.
If we have 10 rows in the first table and 5 in the second, the cross join produces 50
rows.

An example:

148 CHAPTER 6. JOINS AND AGGREGATES

val cross = messages joinLeft users

// cross: slick.lifted.BaseJoinQuery[MessageTable, Rep[Option[UserTable]],

MessageTable#TableElementType, Option[User], Seq, MessageTable, UserTable]

= Rep(Join LeftOption)

6.5 Zip Joins

Zip joins are equivalent to zip on a Scala collec on. Recall that the zip in the collec-
ons library operates on two lists and returns a list of pairs:

val xs = List(1, 2, 3)

// xs: List[Int] = List(1, 2, 3)

xs zip xs.drop(1)

// res10: List[(Int, Int)] = List((1, 2), (2, 3))

Slick provides the equivalent zip method for queries, plus two varia ons. Let’s say
we want to pair up adjacent messages into what we’ll call a “conversa on”:

// Select message content, ordered by id:

val msgs = messages.sortBy(_.id.asc).map(_.content)

// msgs: Query[Rep[String], String, Seq] = Rep(Bind)

// Pair up adjacent messages:

val conversations = msgs zip msgs.drop(1)

// conversations: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Join Zip)

This will turn into an inner join, producing output like:

exec(conversations.result).foreach(println)

// (Hello, HAL. Do you read me, HAL?,Affirmative, Dave. I read you.)

// (Affirmative, Dave. I read you.,Open the pod bay doors, HAL.)

// (Open the pod bay doors, HAL.,I'm sorry, Dave. I'm afraid I can't do that.)

A second varia on, zipWith, lets us provide a mapping func on along with the join.
We can provide a func on to upper-case the first part of a conversa on, and lower-
case the second part:

def combiner(c1: Rep[String], c2: Rep[String]) =

(c1.toUpperCase, c2.toLowerCase)

val query = msgs.zipWith(msgs.drop(1), combiner)

// query: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

6.5. ZIP JOINS 149

exec(query.result).foreach(println)

// (HELLO, HAL. DO YOU READ ME, HAL?,affirmative, dave. i read you.)

// (AFFIRMATIVE, DAVE. I READ YOU.,open the pod bay doors, hal.)

// (OPEN THE POD BAY DOORS, HAL.,i'm sorry, dave. i'm afraid i can't do that.)

The final variant is zipWithIndex, which is as per the Scala collec ons method of
the same name. Let’s number each message:

val withIndexQuery = messages.map(_.content).zipWithIndex

// withIndexQuery: slick.lifted.BaseJoinQuery[Rep[String], Rep[Long], String,

Long, Seq, Rep[String], Rep[Long]] = Rep(Join Zip)

val withIndexAction: DBIO[Seq[(String, Long)]] =

withIndexQuery.result

// withIndexAction: DBIO[Seq[(String, Long)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@2c99188a

For H2 the SQL ROWNUM() func on is used to generate a number. The data from this
query will be:

exec(withIndexAction).foreach(println)

// (Hello, HAL. Do you read me, HAL?,0)

// (Affirmative, Dave. I read you.,1)

// (Open the pod bay doors, HAL.,2)

// (I'm sorry, Dave. I'm afraid I can't do that.,3)

Not all databases support zip joins. Check for the relational.zip capability in the
capabilities field of your chosen database profile:

// H2 supports zip

slick.jdbc.H2Profile.capabilities.

map(_.toString).

contains("relational.zip")

// res14: Boolean = true

// SQLite does not support zip

slick.jdbc.SQLiteProfile.capabilities.

map(_.toString).

contains("relational.zip")

// res15: Boolean = false

150 CHAPTER 6. JOINS AND AGGREGATES

6.6 Joins Summary

In this chapter we’ve seen examples of the two different styles of join: applica ve
and monadic. We’ve also mixed and matched these styles.

We’ve seen how to construct the arguments to on methods, either with a binary join
condi on or by deconstruc ng a tuple with pa ern matching.

Each join step produces a tuple. Using pa ern matching in map and filter allows us
to clearly name each part of the tuple, especially when the tuple is deeply nested.

We’ve also explored inner and outer joins, zip joins, and cross joins. We saw that
each type of join is a query, making it compa ble with combinators such as map and
filter from earlier chapters.

6.7 Seen Any Strange Queries?

If you’ve been following along and running the example joins, you may have no ced
large or unusual queries being generated. Or you may not have. Since Slick 3.1, the
SQL generated by Slick has improved greatly.

However, you may find the SQL generated a li le strange or involved. If Slick gener-
ates verbose queries are they are going to be slow?

Here’s the key concept: the SQL generated by Slick is fed to the database op mizer.
That op mizer has far be er knowledge about your database, indexes, query paths,
than anything else. It will op mize the SQL from Slick into something that works well.

Unfortunately, some op mizers don’t manage this very well. Postgres does a good
job. MySQL is, at the me of wri ng, pre y bad at this. The trick here is to watch for
slow queries, and use your database’s EXPLAIN command to examine and debug the
query plan.

Op misa ons can o en be achieved by rewri ng monadic joins in applica ve style
and judiciously adding indices to the columns involved in joins. However, a full dis-
cussion of query op misa on is out of the scope of this book. See your database’s
documenta on for more informa on.

If all else fails, we can rewrite queries for ul mate control using Slick’s Plain SQL fea-
ture. We will look at this in Chapter 7.

6.8. AGGREGATION 151

6.8 Aggrega on

Aggregate func ons are all about compu ng a single value from some set of rows. A
simple example is count. This sec on looks at aggrega on, and also at grouping rows,
and compu ng values on those groups.

6.8.1 Func ons

Slick provides a few aggregate func ons, as listed in the table below.

Table 6.1: A Selec on of Aggregate Func ons

Method SQL

length COUNT(1)

min MIN(column)

max MAX(column)

sum SUM(column)

avg AVG(column) — mean of the column values

Using them causes no great surprises, as shown in the following examples:

val numRows: DBIO[Int] = messages.length.result

// numRows: DBIO[Int] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@11119fc5

val numDifferentSenders: DBIO[Int] =

messages.map(_.senderId).distinct.length.result

// numDifferentSenders: DBIO[Int] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@5015401a

val firstSent: DBIO[Option[Long]] =

messages.map(_.id).min.result

// firstSent: DBIO[Option[Long]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$3@6ae3465a

While length returns an Int, the other func ons return an Option. This is because
there may be no rows returned by the query, meaning there is no minimum, no maxi-
mum and so on.

152 CHAPTER 6. JOINS AND AGGREGATES

6.8.2 Grouping

Aggregate func ons are o en used with column grouping. For example, how many
messages has each user sent? That’s a grouping (by user) of an aggregate (count).

6.8.2.1 groupBy

Slick provides groupBywhichwill group rows by some expression. Here’s an example:

val msgPerUser: DBIO[Seq[(Long, Int)]] =

messages.groupBy(_.senderId).

map { case (senderId, msgs) => senderId -> msgs.length }.

result

// msgPerUser: DBIO[Seq[(Long, Int)]] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@eda5ec4

A groupBy must be followed by a map. The input to the map will be the grouping key
(senderId) and a query for the group.

When we run the query, it’ll work, but it will be in terms of a user’s primary key:

exec(msgPerUser)

// res18: Seq[(Long, Int)] = Vector((1L, 2), (2L, 2))

6.8.2.2 Groups and Joins

It’d be nicer to see the user’s name. We can do that using our join skills:

val msgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }.

result

// msgsPerUser: slick.jdbc.H2Profile.StreamingProfileAction[Seq[(String, Int)],

(String, Int), Effect.Read] = slick.jdbc.

JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@13a8076d

The results would be:

exec(msgsPerUser).foreach(println)

// (Dave,2)

// (HAL,2)

6.8. AGGREGATION 153

So what’s happened here? What groupBy has given us is a way to place rows into
groups according to some func onwe supply. In this example the func on is to group
rows based on the user’s name. It doesn’t have to be a String, it could be any type
in the table.

When it comes to mapping, we now have the key to the group (the user’s name in our
case), and the corresponding group rows as a query.

Becausewe’ve joinedmessages and users, our group is a query of those two tables. In
this example we don’t care what the query is because we’re just coun ng the number
of rows. But some mes we will need to know more about the query.

6.8.2.3 More Complicated Grouping

Let’s look at a more involved example by collec ng some sta s cs about our mes-
sages. We want to find, for each user, how many messages they sent, and the id of
their first message. We want a result something like this:

Vector(

(HAL, 2, Some(2)),

(Dave, 2, Some(1)))

We have all the aggregate func ons we need to do this:

val stats =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map {

case (name, group) =>

(name, group.length, group.map{ case (msg, user) => msg.id}.min)

}

// stats: Query[(Rep[String], Rep[Int], Rep[Option[Long]]), (String, Int,

Option[Long]), Seq] = Rep(Bind)

We’ve now started to create a bit of a monster query. We can simplify this, but before
doing so, it may help to clarify that this query is equivalent to the following SQL:

select

user.name, count(1), min(message.id)

from

message inner join user on message.sender = user.id

group by

user.name

154 CHAPTER 6. JOINS AND AGGREGATES

Convince yourself the Slick and SQL queries are equivalent, by comparing:

• the map expression in the Slick query to the SELECT clause in the SQL;

• the join to the SQL INNER JOIN; and

• the groupBy to the SQL GROUP expression.

If you do that you’ll see the Slick expression makes sense. But when seeing these
kinds of queries in code it may help to simplify by introducing intermediate func ons
with meaningful names.

There are a few ways to go at simplifying this, but the lowest hanging fruit is that
min expression inside the map. The issue here is that the group pa ern is a Query of
(MessageTable, UserTable) as that’s our join. That leads to us having to split it
further to access the message’s ID field.

Let’s pull that part out as a method:

import scala.language.higherKinds

def idOf[S[_]](group: Query[(MessageTable,UserTable), (Message,User), S]) =

group.map { case (msg, user) => msg.id }

What we’ve done here is introduced a method to work on the group query, using the
knowledge of the Query type introduced in The Query and TableQuery Types sec on
of Chapter 2.

The query (group) is parameterized by thee things: the join, the unpacked values, and
the container for the results. By container we mean something like Seq[T]. We don’t
really care what our results go into, but we do care we’re working with messages and
users.

With this li le piece of domain specific language in place, the query becomes:

val nicerStats =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => (name, group.length, idOf(group).min) }

// nicerStats: Query[(Rep[String], Rep[Int], Rep[Option[Long]]), (String, Int,

Option[Long]), Seq] = Rep(Bind)

exec(nicerStats.result).foreach(println)

// (Dave,2,Some(1))

6.8. AGGREGATION 155

// (HAL,2,Some(2))

We think these small changes make code more maintainable and, quite frankly, less
scary. It may be marginal in this case, but real world queries can become large. Your
team mileage may vary, but if you see Slick queries that are hard to understand, try
pulling the query apart into named methods.

Group By True

There’s a groupBy { _ => true} trick you can use where you want to select
more than one aggregate from a query.

As an example, have a go at transla ng this SQL into a Slick query:

select min(id), max(id) from message where content like '%read%'

It’s pre y easy to get either min or max:

messages.filter(_.content like "%read%").map(_.id).min

// res21: Rep[Option[Long]] = Rep(Apply Function min)

But you want both min and max in one query. This is where groupBy { _ =>

true} comes into play:

messages.

filter(_.content like "%read%").

groupBy(_ => true).

map {

case (_, msgs) => (msgs.map(_.id).min, msgs.map(_.id).max)

}

// res22: Query[(Rep[Option[Long]], Rep[Option[Long]]), (Option[Long],

Option[Long]), Seq] = Rep(Bind)

The effect of _ => true here is to group all rows into the same group! This
allows us to reuse the msgs query, and obtain the result we want.

6.8.2.4 Grouping by Mul ple Columns

The result of groupBy doesn’t need to be a single value: it can be a tuple. This gives
us access to grouping by mul ple columns.

We can look at the number of messages per user per room. Something like this:

156 CHAPTER 6. JOINS AND AGGREGATES

Vector(

(Air Lock, HAL, 1),

(Air Lock, Dave, 1),

(Kitchen, Frank, 3))

…assuming we add a message from Frank:

val addFrank = for {

kitchenId <- insertRoom += Room("Kitchen")

frankId <- insertUser += User("Frank")

rowsAdded <- messages ++= Seq(

Message(frankId, "Hello?", Some(kitchenId)),

Message(frankId, "Helloooo?", Some(kitchenId)),

Message(frankId, "HELLO!?", Some(kitchenId))

)

} yield rowsAdded

// addFrank: DBIOAction[Option[Int], NoStream, Effect.Write with Effect.Write

with Effect.Write] = FlatMapAction(

// slick.jdbc.JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction

@744e944f,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 34, tasks =

0, submissions = 0]

//)

exec(addFrank)

// res23: Option[Int] = Some(3)

To run the report we’re going to need to group by room and then by user, and finally
count the number of rows in each group:

val msgsPerRoomPerUser =

rooms.

join(messages).on(_.id === _.roomId).

join(users).on{ case ((room,msg), user) => user.id === msg.senderId }.

groupBy { case ((room,msg), user) => (room.title, user.name) }.

map { case ((room,user), group) => (room, user, group.length) }.

sortBy { case (room, user, group) => room }

// msgsPerRoomPerUser: Query[(Rep[String], Rep[String], Rep[Int]), (String,

String, Int), Seq] = Rep(SortBy Ordering(Asc,NullsDefault))

Hopefully you’re now in a posi on where you can unpick this:

• We join on messages, room and user to be able to display the room tle and
user name.

6.9. TAKE HOME POINTS 157

• The value passed into the groupBy will be determined by the join.

• The result of the groupBy is the columns for the grouping, which is a tuple of
the room tle and the user’s name.

• We select (map) just the columns we want: room, user and the number of rows.

• For fun we’ve thrown in a sortBy to get the results in room order.

Running the ac on produces our expected report:

exec(msgsPerRoomPerUser.result).foreach(println)

// (Air Lock,Dave,1)

// (Air Lock,HAL,1)

// (Kitchen,Frank,3)

6.9 Take Home Points

Slick supports join, joinLeft, joinRight, joinOuter and a zip join. You can map
and filter over these queries as you would other queries with Slick. Using pa ern
matching on the query tuples can be more readable than accessing tuples via ._1,
._2 and so on.

Aggrega on methods, such as length and sum, produce a value from a set of rows.

Rows can be grouped based on an expression supplied to groupBy. The result of a
grouping expression is a group key and a query defining the group. Use map, filter,
sortBy as you would with any query in Slick.

The SQL produced by Slick might not be the SQL you would write. Slick expects the
database query engine to perform op misa on. If you find slow queries, take a look
at Plain SQL, discussed in the next chapter.

6.10 Exercises

Because these exercises are all about mul ple tables, take a moment to remind your-
self of the schema. You’ll find this in the example code, chatper-06, in the source
file chat_schema.scala.

158 CHAPTER 6. JOINS AND AGGREGATES

6.10.1 Name of the Sender

Each message is sent by someone. That is, the messages.senderId will have a
matching row via users.id.

Please…

• Write a monadic join to return all Message rows and the associated User

record for each of them.

• Change your answer to return only the content of a message and the name of
the sender.

• Modify the query to return the results in name order.

• Re-write the query as an applica ve join.

These exercises will get your fingers familiar with wri ng joins.

See the solu on

6.10.2 Messages of the Sender

Write a method to fetch all the message sent by a par cular user. The signature is:

def findByName(name: String): Query[Rep[Message], Message, Seq] = ???

See the solu on

6.10.3 Having Many Messages

Modify the msgsPerUser query…

val msgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }

…to return the counts for just those users with more than 2 messages.

See the solu on

6.10. EXERCISES 159

6.10.4 Collec ng Results

A join on messages and senders will produce a row for every message. Each row will
be a tuple of the user and message:

users.join(messages).on(_.id === _.senderId)

// res1: slick.lifted.Query[

// (UserTable, MessageTable),

// (UserTable#TableElementType, MessageTable#TableElementType),

// Seq] = Rep(Join Inner)

The return type is effec vely Seq[(User, Message)].

Some mes you’ll really want something like a Map[User, Seq[Message]].

There’s no built-in way to do that in Slick, but you can do it in Scala using the collec-
ons groupBy method.

val almost = Seq(

("HAL" -> "Hello"),

("Dave" -> "How are you?"),

("HAL" -> "I have terrible pain in all the diodes")

).groupBy{ case (name, message) => name }

// almost: Map[String, Seq[(String, String)]] = HashMap(

// "HAL" -> List(("HAL", "Hello"), ("HAL", "I have terrible pain in all the

diodes")),

// "Dave" -> List(("Dave", "How are you?"))

//)

That’s close, but the values in the map are s ll a tuple of the name and the message.
We can go further and reduce this to:

val correct = almost.view.mapValues { values =>

values.map{ case (name, msg) => msg }

}

correct.foreach(println)

// (HAL,List(Hello, I have terrible pain in all the diodes))

// (Dave,List(How are you?))

The .view call is required in Scala 2.13 to convert the lazy evaluated map into a strict
map. A future version of Scala will remove the need for the .view call.

Go ahead and write a method to encapsulate this for a join:

160 CHAPTER 6. JOINS AND AGGREGATES

def userMessages: DBIO[Map[User, Seq[Message]]] = ???

See the solu on

Chapter 7

Plain SQL

Slick supports Plain SQL queries in addi on to the li ed embedded style we’ve seen
up to this point. Plain queries don’t compose as nicely as li ed, or offer quite the
same type safely. But they enable you to execute essen ally arbitrary SQL when you
need to. If you’re unhappy with a par cular query produced by Slick, dropping into
Plain SQL is the way to go.

In this sec on we will see that:

• the interpolators sql (for select) and sqlu (for updates) are used to create Plain
SQL queries;

• values can be safely subs tuted into queries using a ${expresson} syntax;

• custom types can be used in Plain SQL, as long as there is a converter in scope;
and

• the tsql interpolator can be used to check the syntax and types of a query via
a database at compile me.

A Table to Work With

For the examples that follow, we’ll set up a table for rooms. For now we’ll do
this as we have in other chapters using the li ed embedded style:

161

https://docs.scala-lang.org/overviews/core/string-interpolation.html

162 CHAPTER 7. PLAIN SQL

case class Room(title: String, id: Long = 0L)

class RoomTable(tag: Tag) extends Table[Room](tag, "room") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def title = column[String]("title")

def * = (title, id).mapTo[Room]

}

lazy val rooms = TableQuery[RoomTable]

val roomSetup = DBIO.seq(

rooms.schema.create,

rooms ++= Seq(Room("Air Lock"), Room("Pod"), Room("Brain Room"))

)

// roomSetup: DBIOAction[Unit, NoStream, Effect.Write with Effect.Schema

] = slick.dbio.DBIOAction$$anon$4@20f5fa11

val setupResult = exec(roomSetup)

7.1 Selects

Let’s start with a simple example of returning a list of room IDs.

val action = sql""" select "id" from "room" """.as[Long]

// action: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] = slick.

jdbc.SQLActionBuilder$$anon$1@5c41b300

Await.result(db.run(action), 2.seconds)

// res0: Vector[Long] = Vector(1L, 2L, 3L)

Running a Plain SQL query looks similar to other queries we’ve seen in this book: call
db.run as usual.

The big difference is with the construc on of the query. We supply both the SQL we
want to run and specify the expected result type using as[T]. And the result we get
back is an ac on to run, rather than a Query.

The as[T] method is pre y flexible. Let’s get back the room ID and room tle:

val roomInfo = sql""" select "id", "title" from "room" """.as[(Long,String)]

// roomInfo: slick.sql.SqlStreamingAction[Vector[(Long, String)], (Long, String

), Effect] = slick.jdbc.SQLActionBuilder$$anon$1@695607a4

exec(roomInfo)

// res1: Vector[(Long, String)] = Vector(

7.1. SELECTS 163

// (1L, "Air Lock"),

// (2L, "Pod"),

// (3L, "Brain Room")

//)

No ce we specified a tuple of (Long, String) as the result type. This matches the
columns in our SQL SELECT statement.

Using as[T] we can build up arbitrary result types. Later we’ll see how we can use
our own applica on case classes too.

One of the most useful features of the SQL interpolators is being able to reference
Scala values in a query:

val roomName = "Pod"

// roomName: String = "Pod"

val podRoomAction = sql"""

select

"id", "title"

from

"room"

where

"title" = $roomName """.as[(Long,String)].headOption

// podRoomAction: slick.sql.SqlStreamingAction[Vector[(Long, String)], (Long,

String), Effect]#ResultAction[Option[(Long, String)], NoStream, Effect] =

slick.jdbc.StreamingInvokerAction$HeadOptionAction@786516e7

exec(podRoomAction)

// res2: Option[(Long, String)] = Some((2L, "Pod"))

No ce how $roomName is used to reference a Scala value roomName. This value is in-
corporated safely into the query. That is, you don’t have to worry about SQL injec on
a acks when you use the SQL interpolators in this way.

The Danger of Strings

The SQL interpolators are essen al for situa ons where you need full control
over the SQL to be run. Be aware there is some loss of compile- me safety.
For example:

164 CHAPTER 7. PLAIN SQL

val t = 42

// t: Int = 42

val badAction =

sql""" select "id" from "room" where "title" = $t """.as[Long]

// badAction: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] =

slick.jdbc.SQLActionBuilder$$anon$1@774f5e88

This compiles, but fails at run me as the type of the title column is a String
and we’ve provided an Int:

exec(badAction.asTry)

// res3: util.Try[Vector[Long]] = Failure(

// org.h2.jdbc.JdbcSQLDataException: Data conversion error converting

"Air Lock"; SQL statement:

// select "id" from "room" where "title" = ? [22018-200]

//)

The equivalent query using the li ed embedded style would have caught the
problem at compile me. The tsql interpolator, described later in this chapter,
helps here by connec ng to a database at compile me to check the query and
types.

Another danger is with the #$ style of subs tu on. This is called splicing, and
is used when you don’t want SQL escaping to apply. For example, perhaps the
name of the table you want to use may change:

val table = "room"

// table: String = "room"

val splicedAction = sql""" select "id" from "#$table" """.as[Long]

// splicedAction: slick.sql.SqlStreamingAction[Vector[Long], Long,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@26c72ad2

In this situa on we do not want the value of table to be treated as a String.
If we did, it’d be an invalid query: select "id" from "'message'" (no ce
the double quotes and single quotes around the table name, which is not valid
SQL).

This means you can produce unsafe SQL with splicing. The golden rule is to
never use #$ with input supplied by users.

To be sure you remember it, say it again with us: never use #$ with input sup-
plied by users.

7.1. SELECTS 165

7.1.1 Select with Custom Types

Out of the box Slick knows how to convert many data types to and from SQL data
types. The examples we’ve seen so far include turning a Scala String into a SQL
string, and a SQL BIGINT to a Scala Long. These conversions are available via as[T].

If we want to work with a type that Slick doesn’t know about, we need to provide a
conversion. That’s the role of the GetResult type class.

For an example, let’s set up a table for messages with some interes ng structure:

import org.joda.time.DateTime

case class Message(

sender : String,

content : String,

created : DateTime,

updated : Option[DateTime],

id : Long = 0L

)

The point of interest for the moment is that we have a created field of type
DateTime. This is from Joda Time, and Slick does not ship with built-in support for
this type.

This is the query we want to run:

sql""" select "created" from "message" """.as[DateTime]

// error: could not find implicit value for parameter rconv: slick.jdbc.

GetResult[org.joda.time.DateTime] (No implicit view available from slick.

jdbc.PositionedResult => org.joda.time.DateTime.)

// sql""" select "created" from "message" """.as[DateTime]

// ^^^

OK, that won’t compile as Slick doesn’t know anything about DateTime. For this to
compile we need to provide an instance of GetResult[DateTime]:

import slick.jdbc.GetResult

import java.sql.Timestamp

import org.joda.time.DateTimeZone.UTC

implicit val GetDateTime =

GetResult[DateTime](r => new DateTime(r.nextTimestamp(), UTC))

// GetDateTime: AnyRef with GetResult[DateTime] = <function1>

166 CHAPTER 7. PLAIN SQL

GetResult is wrapping up a func on from r (a PositionedResult) to DateTime.
The PositionedResult provides access to the database value (via nextTimestamp,
nextLong, nextBigDecimal and so on). We use the value from nextTimestamp to
feed into the constructor for DateTime.

The name of this value doesn’t ma er. What’s important is that the value is implicit
and the type is GetResult[DateTime]. This allows the compiler to lookup our con-
version func on when we men on a DateTime.

Now we can construct our ac on:

sql""" select "created" from "message" """.as[DateTime]

// res5: slick.sql.SqlStreamingAction[Vector[DateTime], DateTime, Effect] =

slick.jdbc.SQLActionBuilder$$anon$1@2237af48

7.1.2 Case Classes

As you’ve probably guessed, returning a case class from a Plain SQL query means
providing a GetResult for the case class. Let’s work through an example for the
messages table.

Recall that a message contains: an ID, some content, the sender ID, a mestamp, and
an op onal mestamp.

To provide a GetResult[Message]we need all the types inside the Message to have
GetResult instances. We’ve already tackled DateTime. And Slick knows how to han-
dle Long and String. So that leaves us with Option[DateTime] and the Message
itself.

For op onal values, Slick providesnextXXXOptionmethods, such as nextLongOption.
For the op onal date mewe read the database value usingnextTimestampOption()
and then map to the right type:

implicit val GetOptionalDateTime = GetResult[Option[DateTime]](r =>

r.nextTimestampOption().map(ts => new DateTime(ts, UTC))

)

// GetOptionalDateTime: AnyRef with GetResult[Option[DateTime]] = <function1>

With all the individual columns mapped we can pull them together in a GetResult
for Message. There are two helper methods which make it easier to construct these
instances:

• << for calling the appropriate nextXXX method; and

7.2. UPDATES 167

• <<? when the value is op onal.

We can use them like this:

implicit val GetMessage = GetResult(r =>

Message(sender = r.<<,

content = r.<<,

created = r.<<,

updated = r.<<?,

id = r.<<)

)

// GetMessage: AnyRef with GetResult[Message] = <function1>

This works because we’ve provided implicits for the components of the case class. As
the types of the fields are known, << and <<? can use the implicit GetResult[T] for
the type of each type.

Now we can select into Message values:

val messageAction: DBIO[Seq[Message]] =

sql""" select * from "message" """.as[Message]

// messageAction: DBIO[Seq[Message]] = slick.jdbc.SQLActionBuilder$$anon$1@4

b782390

In all likelihood you’ll prefer the li ed embedded style over Plain SQL in this specific
example. But if you do find yourself using Plain SQL, for performance reasons perhaps,
it’s useful to know how to convert database values up into meaningful domain types.

SELECT *

We some mes use SELECT * in this chapter to fit our code examples onto the
page. You should avoid this in your code base as it leads to bri le code.

An example: if, outside of Slick, a table is modified to add a column, the results
from the query will unexpectedly change. You code may not longer be able to
map results.

7.2 Updates

Back in Chapter 3 we saw how to modify rows with the update method. We noted
that batch updates were challenging when we wanted to use the row’s current value.
The example we used was appending an exclama on mark to a message’s content:

168 CHAPTER 7. PLAIN SQL

UPDATE "message" SET "content" = CONCAT("content", '!')

Plain SQL updates will allow us to do this. The interpolator is sqlu:

val updateAction =

sqlu"""UPDATE "message" SET "content" = CONCAT("content", '!')"""

// updateAction: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@2a44fcb7

The action we have constructed, just like other ac ons, is not run un l we evaluate
it via db.run. But when it is run, it will append the exclama on mark to each row
value, which is what we couldn’t do as efficiently with the li ed embedded style.

Just like the sql interpolator, we also have access to $ for binding to variables:

val char = "!"

// char: String = "!"

val interpolatorAction =

sqlu"""UPDATE "message" SET "content" = CONCAT("content", $char)"""

// interpolatorAction: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@343b214f

This gives us two benefits: the compiler will point out typos in variables names, but
also the input is sani zed against SQL injec on a acks.

In this case, the statement that Slick generates will be:

interpolatorAction.statements.head

// res6: String = "UPDATE \"message\" SET \"content\" = CONCAT(\"content\", ?)"

7.2.1 Upda ng with Custom Types

Working with basic types like String and Int is fine, but some mes you want to
update using a richer type. We saw the GetResult type class for mapping select
results, and for updates this is mirrored with the SetParameter type class.

We can teach Slick how to set DateTime parameters like this:

import slick.jdbc.SetParameter

implicit val SetDateTime = SetParameter[DateTime](

(dt, pp) => pp.setTimestamp(new Timestamp(dt.getMillis))

)

https://en.wikipedia.org/wiki/SQL_injection

7.3. TYPED CHECKED PLAIN SQL 169

// SetDateTime: AnyRef with SetParameter[DateTime] = <function2>

The value pp is a PositionedParameters. This is an implementa on detail of Slick,
wrapping a SQL statement and a placeholder for a value. Effec vely we’re saying how
to treat a DateTime regardless of where it appears in the update statement.

In addi on to a Timestamp (via setTimestamp), you can set: Boolean, Byte, Short,
Int, Long, Float, Double, BigDecimal, Array[Byte], Blob, Clob, Date, Time, as
well as Object and null. There are setXXX methods on PositionedParameters
for Option types, too.

There’s further symmetry with GetResuts in that we could have used >> in our
SetParameter:

implicit val SetDateTime = SetParameter[DateTime](

(dt, pp) => pp >> new Timestamp(dt.getMillis))

// SetDateTime: AnyRef with SetParameter[DateTime] = <function2>

With this in place we can construct Plain SQL updates using DateTime instances:

val now =

sqlu"""UPDATE "message" SET "created" = ${DateTime.now}"""

// now: slick.sql.SqlAction[Int, NoStream, Effect] = slick.jdbc.

StreamingInvokerAction$HeadAction@2be9956f

Without the SetParameter[DateTime] instance the compiler would tell you:

could not find implicit SetParameter[DateTime]

7.3 Typed Checked Plain SQL

We’ve men oned the risks of Plain SQL, which can be summarized as not discovering
a problem with your query un l run me. The tsql interpolator removes some of this
risk, but at the cost of requiring a connec on to a database at compile me.

Run the Code

These examples won’t run in the REPL. To try these out, use the tsql.scala
file inside the chapter-07 folder. This is all in the example code base on
GitHub.

https://github.com/underscoreio/essential-slick-code/tree/3.3
https://github.com/underscoreio/essential-slick-code/tree/3.3

170 CHAPTER 7. PLAIN SQL

7.3.1 Compile Time Database Connec ons

To get started with tsql we provide a database configura on informa on on a class:

import slick.backend.StaticDatabaseConfig

@StaticDatabaseConfig("file:src/main/resources/application.conf#tsql")

object TsqlExample {

// queries go here

}

The @StaticDatabaseConfig syntax is called an annota on. This par cular
StaticDatabaseConfig annota on is telling Slick to use the connec on called
“tsql” in our configura on file. That entry will look like this:

tsql {

profile = "slick.jdbc.H2Profile$"

db {

connectionPool = disabled

url = "jdbc:h2:mem:chapter06; INIT=

runscript from 'src/main/resources/integration-schema.sql'"

driver = "org.h2.Driver"

keepAliveConnection = false

}

}

Note the $ in the profile class name is not a typo. The class name is being passed to
Java’s Class.forName, but of course Java doesn’t have a singleton as such. The Slick
configura on does the right thing to load $MODULEwhen it sees $. This interoperabil-
ity with Java is described in Chapter 29 of Programming in Scala.

You won’t have seen this when we introduced the database configura on in Chapter
1. That’s because this tsql configura on has a different format, and combines the
Slick profile (slick.jdbc.H2Profile) and the JDBC driver (org.h2.Drvier) in one
entry.

A consequence of supplying a @StaticDatabaseConfig is that you can define one
databases configura on for your applica on and a different one for the compiler
to use. That is, perhaps you are running an applica on, or test suite, against an in-
memory database, but valida ng the queries at compile me against a full-populated
produc on-like integra on database.

In the example above, and the accompanying example code, we use an in-memory
database to make Slick easy to get started with. However, an in-memory database
is empty by default, and that would be no use for checking queries against. To work

https://www.artima.com/pins1ed/combining-scala-and-java.html#i-855208314-1

7.3. TYPED CHECKED PLAIN SQL 171

around that we provide an INIT script to populate the in-memory database. For our
purposes, the integration-schema.sql file only needs to contain one line:

create table "message" (

"content" VARCHAR NOT NULL,

"id" BIGSERIAL NOT NULL PRIMARY KEY

);

7.3.2 Type Checked Plain SQL

With the @StaticDatabaseConfig in place we can use tsql:

val action: DBIO[Seq[String]] = tsql""" select "content" from "message" """

You can run that query as you would sql or sqlu query. You can also use custom
types via SetParameter type class. However, GetResult type classes are not sup-
ported for tsql.

Let’s get the query wrong and see what happens:

val action: DBIO[Seq[String]] =

tsql"""select "content", "id" from "message""""

Do you see what’s wrong? If not, don’t worry because the compiler will find the
problem:

type mismatch;

[error] found : SqlStreamingAction[

Vector[(String, Int)],

(String, Int),Effect]

[error] required : DBIO[Seq[String]]

The compiler wants a String for each row, because that’s what we’ve declared
the result to be. However it has found, via the database, that the query will return
(String,Int) rows.

If we had omi ed the type declara on, the ac on would have the inferred type of
DBIO[Seq[(String,Int)]]. So if you want to catch these kinds of mismatches, it’s
good prac ce to declare the type you expect when using tsql.

Let’s see other kinds of errors the compiler will find.

How about if the SQL is just wrong:

172 CHAPTER 7. PLAIN SQL

val action: DBIO[Seq[String]] =

tsql"""select "content" from "message" where"""

This is incomplete SQL, and the compiler tells us:

exception during macro expansion: ERROR: syntax error at end of input

[error] Position: 38

[error] tsql"""select "content" from "message" WHERE"""

[error] ^

And if we get a column name wrong…

val action: DBIO[Seq[String]] =

tsql"""select "text" from "message" where"""

…that’s also a compile error too:

Exception during macro expansion: ERROR: column "text" does not exist

[error] Position: 8

[error] tsql"""select "text" from "message""""

[error] ^

Of course, in addi on to selec ng rows, you can insert:

val greeting = "Hello"

val action: DBIO[Seq[Int]] =

tsql"""insert into "message" ("content") values ($greeting)"""

Note that at run me, when we execute the query, a new row will be inserted. At
compile me, Slick uses a facility in JDBC to compile the query and retrieve the meta
data without having to run the query. In other words, at compile me the database is
not mutated.

7.4 Take Home Points

Plain SQL allows you away out of any limita ons you findwith Slick’s li ed embedded
style of querying.

Two main string interpolators for SQL are provided: sql and sqlu:

• Values can be safely subs tuted into Plain SQL queries using ${expression}.

7.5. EXERCISES 173

• Custom types can be used with the interpolators providing an implicit
GetResult (select) or SetParameter (update) is in scope for the type.

• Raw values can be spliced into a query with #$. Use this with care: end-user
supplied informa on should never be spliced into a query.

The tsql interpolator will check Plain SQL queries against a database at compile me.
The database connec on is used to validate the query syntax, and also discover the
types of the columns being selected. To make best use of this, always declare the
type of the query you expect from tsql.

7.5 Exercises

For these exercises we will use a combina on of messages and users. We’ll set this
up using the li ed embedded style:

case class User(

name : String,

email : Option[String] = None,

id : Long = 0L

)

class UserTable(tag: Tag) extends Table[User](tag, "user") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def email = column[Option[String]]("email")

def * = (name, email, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

lazy val insertUsers = users returning users.map(_.id)

case class Message(senderId: Long, content: String, id: Long = 0L)

class MessageTable(tag: Tag) extends Table[Message](tag, "message") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def senderId = column[Long]("sender_id")

def content = column[String]("content")

def * = (senderId, content, id).mapTo[Message]

}

lazy val messages = TableQuery[MessageTable]

val setup = for {

_ <- (users.schema ++ messages.schema).create

174 CHAPTER 7. PLAIN SQL

daveId <- insertUsers += User("Dave")

halId <- insertUsers += User("HAL")

rowsAdded <- messages ++= Seq(

Message(daveId, "Hello, HAL. Do you read me, HAL?"),

Message(halId, "Affirmative, Dave. I read you."),

Message(daveId, "Open the pod bay doors, HAL."),

Message(halId, "I'm sorry, Dave. I'm afraid I can't do that.")

)

} yield rowsAdded

exec(setup)

7.5.1 Plain Selects

Let’s get warmed up with some simple exercises.

Write the following four queries as Plain SQL queries:

• Count the number of rows in the message table.

• Select the content from the messages table.

• Select the length of each message (“content”) in the messages table.

• Select the content and length of each message.

Tips:

• Remember that you need to use double quotes around table and column names
in the SQL.

• We gave the database tables names which are singular: message, user, etc.

See the solu on

7.5.2 Conversion

Convert the following li ed embedded query to a Plain SQL query.

7.5. EXERCISES 175

val whoSaidThat =

messages.join(users).on(_.senderId === _.id).

filter{ case (message,user) =>

message.content === "Open the pod bay doors, HAL."}.

map{ case (message,user) => user.name }

// whoSaidThat: Query[Rep[String], String, Seq] = Rep(Bind)

exec(whoSaidThat.result)

// res15: Seq[String] = Vector("Dave")

Tips:

• If you’re not familiar with SQL syntax, peak at the statement generated for
whoSaidThat given above.

• Remember that strings in SQL are wrapped in single quotes, not double quotes.

• In the database, the sender’s ID is sender_id.

See the solu on

7.5.3 Subs tu on

Complete the implementa on of this method using a Plain SQL query:

def whoSaid(content: String): DBIO[Seq[String]] =

???

Running whoSaid("Open the pod bay doors, HAL.") should return a list of the
people who said that. Which should be Dave.

This should be a small change to your solu on to the last exercise.

See the solu on

7.5.4 First and Last

This H2 query returns the alphabe cally first and last messages:

176 CHAPTER 7. PLAIN SQL

exec(sql"""

select min("content"), max("content")

from "message" """.as[(String,String)]

)

// res19: Vector[(String, String)] = Vector(

// ("Affirmative, Dave. I read you.", "Open the pod bay doors, HAL.")

//)

In this exercise we want you to write a GetResult type class instance so that the
result of the query is one of these:

case class FirstAndLast(first: String, last: String)

The steps are:

1. Remember to import slick.jdbc.GetResult.

2. Provide an implicit value for GetResult[FirstAndLast]

3. Make the query use as[FirstAndLast]

See the solu on

7.5.5 Plain Change

We can use Plain SQL to modify the database. That means inser ng rows, upda ng
rows, dele ng rows, and also modifying the schema.

Go ahead and create a new table, using Plain SQL, to store the crew’s jukebox playlist.
Just store a song tle. Insert a row into the table.

See the solu on

7.5.6 Robert Tables

We’re building a web site that allows searching for users by their email address:

def lookup(email: String) =

sql"""select "id" from "user" where "email" = '#${email}'"""

// Example use:

7.5. EXERCISES 177

exec(lookup("dave@example.org").as[Long].headOption)

// res24: Option[Long] = None

What the problem with this code?

See the solu on

178 CHAPTER 7. PLAIN SQL

Appendix A

Using Different Database
Products

As men oned during the introduc on, H2 is used throughout the book for exam-
ples. However Slick also supports PostgreSQL, MySQL, Derby, SQLite, Oracle, and
Microso Access.

There was a me when you needed a commercial license from Lightbend to use Slick
in produc on with Oracle, SQL Server, or DB2. This restric on was removed in early
2016¹. However, there was an effort to build free and open profiles, resul ng in the
FreeSlick project. These profiles con nue to be available, and you can find out more
about this from the FreeSlick GitHub page.

A.1 Changes

If you want to use a different database for the exercises in the book, you will need to
make changes detailed below.

In summary you will need to ensure that:

• you have installed the database (details beyond the scope of this book);
• a database is available with the correct name;
• the build.sbt file has the correct dependency;

¹https://scala-slick.org/news/2016/02/01/slick-extensions-licensing-change.html.

179

https://github.com/smootoo/freeslick
https://scala-slick.org/news/2016/02/01/slick-extensions-licensing-change.html

180 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

• the correct JDBC driver is referenced in the code; and
• the correct Slick profile is used.

Each chapter uses its own database—so these steps will need to be applied for each
chapter.

We’ve given detailed instruc ons for two populated databases below.

A.2 PostgreSQL

A.2.1 Create a Database

Create a database named chapter-01with user essential. This will be used for all
examples and can be created with the following:

CREATE DATABASE "chapter-01" WITH ENCODING 'UTF8';

CREATE USER "essential" WITH PASSWORD 'trustno1';

GRANT ALL ON DATABASE "chapter-01" TO essential;

Confirm the database has been created and can be accessed:

$ psql -d chapter-01 essential

A.2.2 Update build.sbt Dependencies

Replace

"com.h2database" % "h2" % "1.4.185"

with

"org.postgresql" % "postgresql" % "9.3-1100-jdbc41"

If you are already in SBT, type reload to load this changed build file. If you are using
an IDE, don’t forget to regenerate any IDE project files.

A.3. MYSQL 181

A.2.3 Update JDBC References

Replace application.conf parameters with:

chapter01 = {

connectionPool = disabled

url = jdbc:postgresql:chapter-01

driver = org.postgresql.Driver

keepAliveConnection = true

users = essential

password = trustno1

}

A.2.4 Update Slick Profile

Change the import from

slick.jdbc.H2Profile.api._

to

slick.jdbc.PostgresProfile.api._

A.3 MySQL

A.3.1 Create a Database

Create a database named chapter-01with user essential. This will be used for all
examples and can be created with the following:

CREATE USER 'essential'@'localhost' IDENTIFIED BY 'trustno1';

CREATE DATABASE `chapter-01` CHARACTER SET utf8 COLLATE utf8_bin;

GRANT ALL ON `chapter-01`.* TO 'essential'@'localhost';

FLUSH PRIVILEGES;

Confirm the database has been created and can be accessed:

182 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

$ mysql -u essential chapter-01 -p

A.3.2 Update build.sbt Dependencies

Replace

"com.h2database" % "h2" % "1.4.185"

with

"mysql" % "mysql-connector-java" % "5.1.34"

If you are already in SBT, type reload to load this changed build file. If you are using
an IDE, don’t forget to regenerate any IDE project files.

A.3.3 Update JDBC References

Replace Database.forURL parameters with:

chapter01 = {

connectionPool = disabled

url = jdbc:mysql://localhost:3306/chapter-01

&useUnicode=true

&characterEncoding=UTF-8

&autoReconnect=true

driver = com.mysql.jdbc.Driver

keepAliveConnection = true

users = essential

password = trustno1

}

Note that we’ve forma ed the connectionPool line to make it legible. In reality all
those & parameters will be on the same line.

A.3.4 Update Slick DriverProfile

Change the import from

A.3. MYSQL 183

slick.jdbc.H2Profile.api._

to

slick.jdbc.MySQLProfile.api._

184 APPENDIX A. USING DIFFERENT DATABASE PRODUCTS

Appendix B

Solu ons to Exercises

B.1 Basics

B.1.1 Solu on to: Bring Your Own Data

Here’s the solu on:

exec(messages += Message("Dave","What if I say 'Pretty please'?"))

// res10: Int = 1

The return value indicates that 1 row was inserted. Because we’re using an auto-
incremen ng primary key, Slick ignores the id field for our Message and asks the
database to allocate an id for the new row. It is possible to get the insert query to
return the new id instead of the row count, as we shall see next chapter.

Here are some things that might go wrong:

If you don’t pass the ac on created by += to db to be run, you’ll get back the Action
object instead.

messages += Message("Dave","What if I say 'Pretty please'?")

// res11: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@f0d0df2

If you don’t wait for the future to complete, you’ll see just the future itself:

185

186 APPENDIX B. SOLUTIONS TO EXERCISES

val f = db.run(messages += Message("Dave","What if I say 'Pretty please'?"))

// f: Future[Int] = Future(Success(1))

Return to the exercise

B.1.2 Solu on to: Bring Your Own Data Part 2

Here’s the code:

exec(messages.filter(_.sender === "Dave").result)

// res13: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("Dave", "What if I say 'Pretty please'?", 5L)

//)

If that’s hard to read, we can print each message in turn. As the Future will evaluate
to a collec on of Message, we can foreach over that with a func on of Message =>

Unit, such as println:

val sentByDave: Seq[Message] = exec(messages.filter(_.sender === "Dave").result

)

// sentByDave: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L),

// Message("Dave", "Open the pod bay doors, HAL.", 3L),

// Message("Dave", "What if I say 'Pretty please'?", 5L)

//)

sentByDave.foreach(println)

// Message(Dave,Hello, HAL. Do you read me, HAL?,1)

// Message(Dave,Open the pod bay doors, HAL.,3)

// Message(Dave,What if I say 'Pretty please'?,5)

Here are some things that might go wrong:

Note that the parameter to filter is built using a triple-equals operator, ===, not a
regular ==. If you use == you’ll get an interes ng compile error:

exec(messages.filter(_.sender == "Dave").result)

// error: inferred type arguments [Boolean] do not conform to method filter's

type parameter bounds [T <: slick.lifted.Rep[_]]

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^

// error: type mismatch;

// found : repl.Session.App.MessageTable => Boolean

// required: repl.Session.App.MessageTable => T

// exec(messages.filter(_.sender == "Dave").result)

B.2. SELECTING DATA 187

// ^^^^^^^^^^^^^^^^^^

// error: Type T cannot be a query condition (only Boolean, Rep[Boolean] and

Rep[Option[Boolean]] are allowed

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The trick here is to no ce that we’re not actually trying to compare _.sender and
"Dave". A regular equality expression evaluates to a Boolean, whereas === builds
an SQL expression of type Rep[Boolean] (Slick uses the Rep type to represent ex-
pressions over Columns as well as Columns themselves). The error message is baffling
when you first see it but makes sense once you understand what’s going on.

Finally, if you forget to call result, you’ll end up with a compila on error as exec
and the call it is wrapping db.run both expect ac ons:

exec(messages.filter(_.sender === "Dave"))

// error: type mismatch;

// found : slick.lifted.Query[repl.Session.App.MessageTable,repl.Session.App

.MessageTable#TableElementType,Seq]

// (which expands to) slick.lifted.Query[repl.Session.App.MessageTable,

repl.Session.App.Message,Seq]

// required: slick.jdbc.H2Profile.api.DBIO[?]

// (which expands to) slick.dbio.DBIOAction[?,slick.dbio.NoStream,slick.

dbio.Effect.All]

// exec(messages.filter(_.sender == "Dave").result)

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Query types tend to be verbose, which can be distrac ng from the actual cause of
the problem (which is that we’re not expec ng a Query object at all). We will discuss
Query types in more detail next chapter.

Return to the exercise

B.2 Selec ng Data

B.2.1 Solu on to: Count the Messages

val results = exec(messages.length.result)

// results: Int = 4

You could also use size, which is an alias for length.

Return to the exercise

188 APPENDIX B. SOLUTIONS TO EXERCISES

B.2.2 Solu on to: Selec ng a Message

val id1query = for {

message <- messages if message.id === 1L

} yield message

// id1query: Query[MessageTable, Message, Seq] = Rep(Bind)

val id1result = exec(id1query.result)

// id1result: Seq[Message] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L)

//)

Asking for 999, when there is no row with that ID, will give back an empty collec on.

Return to the exercise

B.2.3 Solu on to: One Liners
val filterResults = exec(messages.filter(_.id === 1L).result)

// filterResults: Seq[MessageTable#TableElementType] = Vector(

// Message("Dave", "Hello, HAL. Do you read me, HAL?", 1L)

//)

Return to the exercise

B.2.4 Solu on to: Checking the SQL

The code you need to run is:

val sql = messages.filter(_.id === 1L).result.statements

// sql: Iterable[String] = List(

// "select \"sender\", \"content\", \"id\" from \"message\" where \"id\" = 1"

//)

println(sql.head)

// select "sender", "content", "id" from "message" where "id" = 1

From this we see how filter corresponds to a SQL where clause.

Return to the exercise

B.2.5 Solu on to: Is HAL Real?

That’s right, we want to know if HAL exists:

B.2. SELECTING DATA 189

val queryHalExists = messages.filter(_.sender === "HAL").exists

// queryHalExists: Rep[Boolean] = Rep(Apply Function exists)

exec(queryHalExists.result)

// res39: Boolean = true

The query will return true as we do have records from HAL, and Slick will generate
the following SQL:

queryHalExists.result.statements.head

// res41: String = "select exists(select \"sender\", \"content\", \"id\" from

\"message\" where \"sender\" = 'HAL')"

Return to the exercise

B.2.6 Solu on to: Selec ng Columns

val contents = messages.map(_.content)

// contents: Query[Rep[String], String, Seq] = Rep(Bind)

exec(contents.result)

// res42: Seq[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

You could have also said:

val altQuery = for { message <- messages } yield message.content

// altQuery: Query[Rep[String], String, Seq] = Rep(Bind)

The query will return only the content column from the database:

altQuery.result.statements.head

// res43: String = "select \"content\" from \"message\""

Return to the exercise

B.2.7 Solu on to: First Result

190 APPENDIX B. SOLUTIONS TO EXERCISES

val msg1 = messages.filter(_.sender === "HAL").map(_.content).result.head

// msg1: slick.sql.SqlAction[String, NoStream, Effect.Read] = slick.jdbc.

StreamingInvokerAction$HeadAction@1cceaa36

You should get an ac on that produces “Affirma ve, Dave. I read you.”

For Alice, headwill throw a run- me excep on as we are trying to return the head of
an empty collec on. Using headOption will prevent the excep on.

exec(messages.filter(_.sender === "Alice").result.headOption)

// res44: Option[Message] = None

Return to the exercise

B.2.8 Solu on to: Then the Rest

It’s drop and take to the rescue:

val msgs = messages.filter(_.sender === "HAL").drop(1).take(5).result

// msgs: slick.jdbc.H2Profile.StreamingProfileAction[Seq[MessageTable#

TableElementType], MessageTable#TableElementType, Effect.Read] = slick.

jdbc.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$2@3571bbb9

HAL has only two messages in total. Therefore our result set should contain one
messages

Message(HAL,I'm sorry, Dave. I'm afraid I can't do that.,4)

And asking for any more messages will result in an empty collec on.

val allMsgs = exec(

messages.

filter(_.sender === "HAL").

drop(10).

take(10).

result

)

// allMsgs: Seq[MessageTable#TableElementType] = Vector()

Return to the exercise

B.2.9 Solu on to: The Start of Something

B.2. SELECTING DATA 191

messages.filter(_.content startsWith "Open")

// res47: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@785054318)

The query is implemented in terms of LIKE:

messages.filter(_.content startsWith "Open").result.statements.head

// res48: String = "select \"sender\", \"content\", \"id\" from \"message\"

where \"content\" like 'Open%' escape '^'"

Return to the exercise

B.2.10 Solu on to: Liking

If you have familiarity with SQL like expressions, it probably wasn’t too hard to find
a case-sensi ve version of this query:

messages.filter(_.content like "%do%")

// res49: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@475220442)

To make it case sensi ve you could use toLowerCase on the content field:

messages.filter(_.content.toLowerCase like "%do%")

// res50: Query[MessageTable, MessageTable#TableElementType, Seq] = Rep(Filter

@1973804924)

We can do this because content is a Rep[String] and that Rep has implemented
toLowerCase. That means, the toLowerCasewill be translated into meaningful SQL.

There will be three results: “Do you read me”, “Open the pod bay doors”, and “I’m
afraid I can’t do that”.

Return to the exercise

B.2.11 Solu on to: Client-Side or Server-Side?

The query Slick generates looks something like this:

192 APPENDIX B. SOLUTIONS TO EXERCISES

select '(message Ref @421681221).content!' from "message"

That is a select expression for a strange constant string.

The _.content.toString + "!" expression converts content to a string and ap-
pends the exclama on point. What is content? It’s a Rep[String], not a String of
the content. The end result is that we’re seeing something of the internal workings
of Slick.

It is possible to do this mapping in the database with Slick. We need to remember to
work in terms of Rep[T] classes:

messages.map(m => m.content ++ LiteralColumn("!"))

// res53: Query[Rep[String], String, Seq] = Rep(Bind)

Here LiteralColumn[T] is type of Rep[T] for holding a constant value to be in-
serted into the SQL. The ++method is one of the extension methods defined for any
Rep[String].

Using ++ will produce the desired query:

select "content"||'!' from "message"

You can also write:

messages.map(m => m.content ++ "!")

// res54: Query[Rep[String], String, Seq] = Rep(Bind)

…as "!" will be li ed to a Rep[String].

This exercise highlights that inside of a map or filter you are working in terms of
Rep[T]. You should become familiar with the opera ons available to you. The tables
we’ve included in this chapter should help with that.

Return to the exercise

B.3 Crea ng and Modifying Data

B.3.1 Solu on to: Get to the Specifics

The requirements of the messages table is sender and content can not be null.
Given this, we can correct our query:

B.3. CREATING AND MODIFYING DATA 193

val senderAndContent = messages.map { m => (m.sender, m.content) }

// senderAndContent: Query[(Rep[String], Rep[String]), (String, String), Seq] =

Rep(Bind)

val insertSenderContent = senderAndContent += (("HAL","Helllllo Dave"))

// insertSenderContent: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] =

slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@1159d251

exec(insertSenderContent)

// res30: Int = 1

We have used map to create a query that works on the two columns we care about.
To insert using that query, we supply the two field values.

In case you’re wondering, we’ve out the extra parentheses around the column values
to be clear it is a single value which is a tuple of two values.

Return to the exercise

B.3.2 Solu on to: Bulk All the Inserts

For this we need to use a batch insert (++=) and into:

val messageRows =

messages returning messages.map(_.id) into { (message, id) =>

message.copy(id = id)

}

// messageRows: slick.jdbc.H2Profile.IntoInsertActionComposer[MessageTable#

TableElementType, Message] = slick.jdbc.

JdbcActionComponent$ReturningInsertActionComposerImpl@62890c36

exec(messageRows ++= conversation).foreach(println)

// Message(Bob,Hi Alice,1018)

// Message(Alice,Hi Bob,1019)

// Message(Bob,Are you sure this is secure?,1020)

// Message(Alice,Totally, why do you ask?,1021)

// Message(Bob,Oh, nothing, just wondering.,1022)

// Message(Alice,Ten was too many messages,1023)

// Message(Bob,I could do with a sleep,1024)

// Message(Alice,Let's just get to the point,1025)

// Message(Bob,Okay okay, no need to be tetchy.,1026)

// Message(Alice,Humph!,1027)

Return to the exercise

194 APPENDIX B. SOLUTIONS TO EXERCISES

B.3.3 Solu on to: No Apologies

The pa ern is to define a query to select the data, and then use it with delete:

messages.filter(_.content like "%sorry%").delete

// res32: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.Write] =

slick.jdbc.JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@

17989f71

Return to the exercise

B.3.4 Solu on to: Update Using a For Comprehension

We’ve split this into a query and then an update:

val halMessages = for {

message <- messages if message.sender === "HAL"

} yield (message.sender, message.content)

// halMessages: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(

Bind)

val rebootLoopUpdate = halMessages.update(("HAL 9000", "Rebooting, please wait

..."))

// rebootLoopUpdate: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.

Write] = slick.jdbc.

JdbcActionComponent$UpdateActionExtensionMethodsImpl$$anon$10@bf41744

Return to the exercise

B.3.5 Solu on to: Selec ve Memory

We’ve selected HAL’s message IDs, sorted by the ID, and used this query inside a
filter:

val selectiveMemory =

messages.filter{

_.id in messages.

filter { _.sender === "HAL" }.

sortBy { _.id.asc }.

map {_.id}.

take(2)

}.delete

// selectiveMemory: slick.jdbc.H2Profile.ProfileAction[Int, NoStream, Effect.

Write] = slick.jdbc.

B.4. COMBINING ACTIONS 195

JdbcActionComponent$DeleteActionExtensionMethodsImpl$$anon$4@213642b0

selectiveMemory.statements.head

// res33: String = "delete from \"message\" where \"message\".\"id\" in (select

\"id\" from \"message\" where \"sender\" = 'HAL' order by \"id\" limit 2)

"

Return to the exercise

B.4 Combining Ac ons

B.4.1 Solu on to: And Then what?

Using the values we’ve provided, you can create a new database with a single ac on:

exec(drop andThen create andThen populate)

// res20: Option[Int] = Some(4)

If we don’t care about any of the values we could also use DBIO.seq:

val allInOne = DBIO.seq(drop,create,populate)

// allInOne: DBIOAction[Unit, NoStream, Effect.All] = slick.dbio.

DBIOAction$$anon$4@63077e18

val result = exec(allInOne)

Return to the exercise

B.4.2 Solu on to: First!

There are two elements to this problem:

1. being able to use the result of a count, which is what flatMap gives us; and

2. combining two inserts via andThen.

import scala.concurrent.ExecutionContext.Implicits.global

def prefixFirst(m: Message): DBIO[Int] =

messages.size.result.flatMap {

case 0 =>

(messages += Message(m.sender, "First!")) andThen (messages += m)

case n =>

196 APPENDIX B. SOLUTIONS TO EXERCISES

messages += m

}

// Throw away all the messages:

exec(messages.delete)

// res21: Int = 4

// Try out the method:

exec {

prefixFirst(Message("Me", "Hello?"))

}

// res22: Int = 1

// What's in the database?

exec(messages.result).foreach(println)

// Message(Me,First!,5)

// Message(Me,Hello?,6)

Return to the exercise

B.4.3 Solu on to: There Can be Only One

The basis of our solu on is to flatMap the ac on we’re given into a new ac on with
the type we want:

def onlyOne[T](action: DBIO[Seq[T]]): DBIO[T] = action.flatMap { ms =>

ms match {

case m +: Nil => DBIO.successful(m)

case ys => DBIO.failed(

new RuntimeException(s"Expected 1 result, not ${ys.length}")

)

}

}

If you’ve not seen +: before: it is “cons” for Seq (a standard part of Scala, equivalent
to :: for List).

Our flatMap is taking the results from the ac on, ms, and in the case it is a single
message, we return it. In the case it’s something else, we fail with an informa ve
message.

exec(populate)

// res24: Option[Int] = Some(4)

exec(onlyOne(boom))

// java.lang.RuntimeException: Expected 1 result, not 2

B.4. COMBINING ACTIONS 197

// at repl.Session$App$$anonfun$onlyOne$1.apply(4-combining-actions.md:403)

// at repl.Session$App$$anonfun$onlyOne$1.apply(4-combining-actions.md:399)

// at slick.basic.BasicBackend$DatabaseDef.$anonfun$runInContextInline$1(

BasicBackend.scala:172)

// at scala.concurrent.impl.Promise$Transformation.run(Promise.scala:433)

// at scala.concurrent.BatchingExecutor$AbstractBatch.runN(BatchingExecutor.

scala:134)

// at scala.concurrent.BatchingExecutor$AsyncBatch.apply(BatchingExecutor.

scala:163)

// at scala.concurrent.BatchingExecutor$AsyncBatch.apply(BatchingExecutor.

scala:146)

// at scala.concurrent.BlockContext$.usingBlockContext(BlockContext.scala:107)

// at scala.concurrent.BatchingExecutor$AsyncBatch.run(BatchingExecutor.scala

:154)

// at java.util.concurrent.ForkJoinTask$RunnableExecuteAction.exec(

ForkJoinTask.java:1402)

// at java.util.concurrent.ForkJoinTask.doExec(ForkJoinTask.java:289)

// at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java

:1056)

// at java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1692)

// at java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java

:157)

exec(onlyOne(happy))

// res25: MessageTable#TableElementType = Message(

// "HAL",

// "I'm sorry, Dave. I'm afraid I can't do that.",

// 10L

//)

Return to the exercise

B.4.4 Solu on to: Let’s be Reasonable

There are several ways we could have implemented this. Perhaps the simplest is using
asTry:

import scala.util.Try

def exactlyOne[T](action: DBIO[Seq[T]]): DBIO[Try[T]] = onlyOne(action).asTry

exec(exactlyOne(happy))

// res26: Try[MessageTable#TableElementType] = Success(

// Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.", 10L)

//)

exec(exactlyOne(boom))

// res27: Try[MessageTable#TableElementType] = Failure(

198 APPENDIX B. SOLUTIONS TO EXERCISES

// java.lang.RuntimeException: Expected 1 result, not 2

//)

Return to the exercise

B.4.5 Solu on to: Filtering

This is a fairly straigh orward example of using map:

def myFilter[T](action: DBIO[T])(p: T => Boolean)(alternative: => T) =

action.map {

case t if p(t) => t

case _ => alternative

}

Return to the exercise

B.4.6 Solu on to: Unfolding

The trick here is to recognize that:

1. this is a recursive problem, so we need to define a stopping condi on;

2. we need flatMap to sequence queries ; and

3. we need to accumulate results from each step.

In code…

def unfold(

z: String,

f: String => DBIO[Option[String]],

acc: Seq[String] = Seq.empty

): DBIO[Seq[String]] =

f(z).flatMap {

case None => DBIO.successful(acc :+ z)

case Some(r) => unfold(r, f, acc :+ z)

}

The basic idea is to call our ac on (f) on the first room name (z). If there’s no result
from the query, we’re done. Otherwise we add the room to the list of rooms, and
recurse star ng from the room we just found.

Here’s how we’d use it:

B.5. DATA MODELLING 199

def nextRoom(roomName: String): DBIO[Option[String]] =

floorplan.filter(_.name === roomName).map(_.connectsTo).result.headOption

val path: DBIO[Seq[String]] = unfold("Podbay", nextRoom)

// path: DBIO[Seq[String]] = FlatMapAction(

// slick.jdbc.StreamingInvokerAction$HeadOptionAction@1c0c21bd,

// <function1>,

// scala.concurrent.impl.ExecutionContextImpl$$anon$3@25bc3124[Running,

parallelism = 2, size = 1, active = 0, running = 0, steals = 55, tasks =

0, submissions = 0]

//)

exec(path)

// res29: Seq[String] = List("Podbay", "Galley", "Computer", "Engine Room")

Return to the exercise

B.5 Data Modelling

B.5.1 Solu on to: Filtering Op onal Columns

We can decide on the query to run in the two cases from inside our applica on:

def filterByEmail(email: Option[String]) =

email.isEmpty match {

case true => users

case false => users.filter(_.email === email)

}

You don’t always have to do everything at the SQL level.

exec(

filterByEmail(Some("dave@example.org")).result

).foreach(println)

// User(Dave,Some(dave@example.org),1)

exec(

filterByEmail(None).result

).foreach(println)

// User(Dave,Some(dave@example.org),1)

// User(HAL ,None,2)

Return to the exercise

200 APPENDIX B. SOLUTIONS TO EXERCISES

B.5.2 Solu on to: Matching or Undecided

This problem we can represent in SQL, so we can do it with one query:

def filterByEmail(email: Option[String]) =

users.filter(u => u.email.isEmpty || u.email === email)

In this implementa on we’ve decided that if you search for email addresses matching
None, we only return NULL email address. But you could switch on the value of email
and do something different, as we did in previous exercises.

Return to the exercise

B.5.3 Solu on to: Enforcement

We get a run me excep on as we have violated referen al integrity. There is no row
in the user table with a primary id of 3000.

val action = messages += Message(UserPK(3000L), "Hello HAL!")

// action: slick.sql.FixedSqlAction[Int, NoStream, Effect.Write] = slick.jdbc.

JdbcActionComponent$InsertActionComposerImpl$SingleInsertAction@30b06f80

exec(action.asTry)

// res41: util.Try[Int] = Failure(

// org.h2.jdbc.JdbcSQLIntegrityConstraintViolationException: Referential

integrity constraint violation: "sender_fk2: PUBLIC.msg_table FOREIGN KEY(

sender) REFERENCES PUBLIC.user(id) (3000)"; SQL statement:

// insert into "msg_table" ("sender","content") values (?,?) [23506-200]

//)

Return to the exercise

B.5.4 Solu on to: Mapping Enumera ons

The first step is to supply an implicit to and from the database values:

object UserRole extends Enumeration {

type UserRole = Value

val Owner = Value("O")

val Regular = Value("R")

}

import UserRole._

implicit val userRoleMapper =

MappedColumnType.base[UserRole, String](_.toString, UserRole.withName(_))

B.5. DATA MODELLING 201

// userRoleMapper: slick.jdbc.H2Profile.BaseColumnType[UserRole] =

MappedJdbcType[scala.Enumeration$Value -> String']

Then we can use the UserRole in the table defini on:

case class User(

name : String,

userRole : UserRole = Regular,

id : UserPK = UserPK(0L)

)

class UserTable(tag: Tag) extends Table[User](tag, "user_with_role") {

def id = column[UserPK]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def role = column[UserRole]("role", O.Length(1,false))

def * = (name, role, id).mapTo[User]

}

lazy val users = TableQuery[UserTable]

We’ve made the role column exactly 1 character in size.

Return to the exercise

B.5.5 Solu on to: Alterna ve Enumera ons

The only change to make is to the mapper, to go from a UserRole and String, to a
UserRole and Int:

implicit val userRoleIntMapper =

MappedColumnType.base[UserRole, Int](

_.id,

v => UserRole.values.find(_.id == v) getOrElse Regular

)

// userRoleIntMapper: slick.jdbc.H2Profile.BaseColumnType[UserRole] =

MappedJdbcType[scala.Enumeration$Value -> Int']

Return to the exercise

B.5.6 Solu on to: Custom Boolean

This is similar to the Flag example above, except we need to handle mul ple values
from the database.

202 APPENDIX B. SOLUTIONS TO EXERCISES

sealed trait Priority

case object HighPriority extends Priority

case object LowPriority extends Priority

implicit val priorityType =

MappedColumnType.base[Priority, String](

flag => flag match {

case HighPriority => "y"

case LowPriority => "n"

},

str => str match {

case "Y" | "y" | "+" | "high" => HighPriority

case "N" | "n" | "-" | "lo" | "low" => LowPriority

})

// priorityType: slick.jdbc.H2Profile.BaseColumnType[Priority] = MappedJdbcType

[repl.Session$App44$Priority -> String']

The table defini on would need a column[Priority].

Return to the exercise

B.5.7 Solu on to: Turning a Row into Many Case Classes

In our huge legacy table we will use custom func ons with <>…

class LegacyUserTable(tag: Tag) extends Table[User](tag, "legacy") {

def id = column[Long]("id", O.PrimaryKey, O.AutoInc)

def name = column[String]("name")

def age = column[Int]("age")

def gender = column[Char]("gender")

def height = column[Float]("height")

def weight = column[Float]("weight_kg")

def shoeSize = column[Int]("shoe_size")

def email = column[String]("email_address")

def phone = column[String]("phone_number")

def accepted = column[Boolean]("terms")

def sendNews = column[Boolean]("newsletter")

def street = column[String]("street")

def city = column[String]("city")

def country = column[String]("country")

def faveColor = column[String]("fave_color")

def faveFood = column[String]("fave_food")

def faveDrink = column[String]("fave_drink")

def faveTvShow = column[String]("fave_show")

def faveMovie = column[String]("fave_movie")

def faveSong = column[String]("fave_song")

def lastPurchase = column[String]("sku")

B.5. DATA MODELLING 203

def lastRating = column[Int]("service_rating")

def tellFriends = column[Boolean]("recommend")

def petName = column[String]("pet")

def partnerName = column[String]("partner")

// The tuple representation we will use:

type Row = (String, String, String, String, String, Long)

// One function from Row to User

def pack(row: Row): User = User(

EmailContact(row._1, row._2),

Address(row._3, row._4, row._5),

row._6

)

// Another method from User to Row:

def unpack(user: User): Option[Row] = Some(

(user.contact.name, user.contact.email, user.address.street,

user.address.city, user.address.country, user.id)

)

def * = (name, email, street, city, country, id).<>(pack, unpack)

}

lazy val legacyUsers = TableQuery[LegacyUserTable]

We can insert and query as normal:

exec(legacyUsers.schema.create)

exec(

legacyUsers += User(

EmailContact("Dr. Dave Bowman", "dave@example.org"),

Address("123 Some Street", "Any Town", "USA")

)

)

// res46: Int = 1

And we can fetch results:

exec(legacyUsers.result)

// res47: Seq[LegacyUserTable#TableElementType] = Vector(

// User(

// EmailContact("Dr. Dave Bowman", "dave@example.org"),

// Address("123 Some Street", "Any Town", "USA"),

// 1L

//)

//)

204 APPENDIX B. SOLUTIONS TO EXERCISES

You can con nue to select just some fields:

exec(legacyUsers.map(_.email).result)

// res48: Seq[String] = Vector("dave@example.org")

However, no ce that if you used legacyUsers.schema.create, only the columns
defined in the default projec on were created in the H2 database:

legacyUsers.schema.createStatements.foreach(println)

// create table "legacy" ("name" VARCHAR NOT NULL,"email_address" VARCHAR NOT

NULL,"street" VARCHAR NOT NULL,"city" VARCHAR NOT NULL,"country" VARCHAR

NOT NULL,"id" BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT)

Return to the exercise

B.6 Joins and Aggregates

B.6.1 Solu on to: Name of the Sender

These queries are all items we’ve covered in the text:

val ex1 = for {

m <- messages

u <- users

if u.id === m.senderId

} yield (m, u)

// ex1: Query[(MessageTable, UserTable), (Message, User), Seq] = Rep(Bind)

val ex2 = for {

m <- messages

u <- users

if u.id === m.senderId

} yield (m.content, u.name)

// ex2: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(Bind)

val ex3 = ex2.sortBy{ case (content, name) => name }

// ex3: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(SortBy

Ordering(Asc,NullsDefault))

val ex4 =

messages.

join(users).on(_.senderId === _.id).

map { case (msg, usr) => (msg.content, usr.name) }.

sortBy { case (content,name) => name }

// ex4: Query[(Rep[String], Rep[String]), (String, String), Seq] = Rep(SortBy

B.6. JOINS AND AGGREGATES 205

Ordering(Asc,NullsDefault))

Return to the exercise

B.6.2 Solu on to: Messages of the Sender

This is a filter, a join, and a map:

def findByNameMonadic(name: String): Query[Rep[Message], Message, Seq] = for {

u <- users if u.name === name

m <- messages if m.senderId === u.id

} yield m

…or…

def findByNameApplicative(name: String): Query[Rep[Message], Message, Seq] =

users.filter(_.name === name).

join(messages).on(_.id === _.senderId).

map{ case (user, msg) => msg }

Return to the exercise

B.6.3 Solu on to: Having Many Messages

SQL dis nguishes between WHERE and HAVING. In Slick you use filter for both:

val modifiedMsgsPerUser =

messages.join(users).on(_.senderId === _.id).

groupBy { case (msg, user) => user.name }.

map { case (name, group) => name -> group.length }.

filter { case (name, count) => count > 2 }

// modifiedMsgsPerUser: Query[(Rep[String], Rep[Int]), (String, Int), Seq] =

Rep(Filter @778091124)

At this point in the book, only Frank has more than two messages:

exec(modifiedMsgsPerUser.result)

// res25: Seq[(String, Int)] = Vector(("Frank", 3))

// Let's check:

val frankMsgs =

messages.join(users).on {

case (msg,user) => msg.senderId === user.id && user.name === "Frank"

}

206 APPENDIX B. SOLUTIONS TO EXERCISES

// frankMsgs: Query[(MessageTable, UserTable), (MessageTable#TableElementType,

UserTable#TableElementType), Seq] = Rep(Join Inner)

exec(frankMsgs.result).foreach(println)

// (Message(3,Hello?,Some(3),5),User(Frank,3))

// (Message(3,Helloooo?,Some(3),6),User(Frank,3))

// (Message(3,HELLO!?,Some(3),7),User(Frank,3))

…although if you’ve been experimen ng with the database, your results could be dif-
ferent.

Return to the exercise

B.6.4 Solu on to: Collec ng Results

You need all the code in the ques on and also what you know about ac on combina-
tors:

def userMessages: DBIO[Map[User,Seq[Message]]] =

users.join(messages).on(_.id === _.senderId).result.

map { rows => rows

.groupBy{ case (user, message) => user }

.view

.mapValues(values => values.map{ case (name, msg) => msg })

.toMap

}

exec(userMessages).foreach(println)

// (User(Dave,1),Vector(Message(1,Hello, HAL. Do you read me, HAL?,Some(1),1),

Message(1,Open the pod bay doors, HAL.,None,3)))

// (User(HAL,2),Vector(Message(2,Affirmative, Dave. I read you.,Some(1),2),

Message(2,I'm sorry, Dave. I'm afraid I can't do that.,None,4)))

// (User(Frank,3),Vector(Message(3,Hello?,Some(3),5), Message(3,Helloooo?,Some

(3),6), Message(3,HELLO!?,Some(3),7)))

You may have been tripped up on the call to toMap at the end. We didn’t need this
in the examples in the text because we were not being explicit that we wanted a
Map[User,Seq[Message]]. However, userMessages does define the result type,
and as such we need to explicitly covert the sequence of tuples into a Map.

Return to the exercise

B.7. PLAIN SQL 207

B.7 Plain SQL

B.7.1 Solu on to: Plain Selects

The SQL statements are rela vely simple. You need to take care to make the as[T]
align to the result of the query.

val q1 = sql""" select count(*) from "message" """.as[Int]

// q1: slick.sql.SqlStreamingAction[Vector[Int], Int, Effect] = slick.jdbc.

SQLActionBuilder$$anon$1@21875721

val a1 = exec(q1)

// a1: Vector[Int] = Vector(4)

val q2 = sql""" select "content" from "message" """.as[String]

// q2: slick.sql.SqlStreamingAction[Vector[String], String, Effect] = slick.

jdbc.SQLActionBuilder$$anon$1@2c2bb6e2

val a2 = exec(q2)

// a2: Vector[String] = Vector(

// "Hello, HAL. Do you read me, HAL?",

// "Affirmative, Dave. I read you.",

// "Open the pod bay doors, HAL.",

// "I'm sorry, Dave. I'm afraid I can't do that."

//)

a2.foreach(println)

// Hello, HAL. Do you read me, HAL?

// Affirmative, Dave. I read you.

// Open the pod bay doors, HAL.

// I'm sorry, Dave. I'm afraid I can't do that.

val q3 = sql""" select length("content") from "message" """.as[Int]

// q3: slick.sql.SqlStreamingAction[Vector[Int], Int, Effect] = slick.jdbc.

SQLActionBuilder$$anon$1@4177db71

val a3 = exec(q3)

// a3: Vector[Int] = Vector(32, 30, 28, 44)

val q4 = sql""" select "content", length("content") from "message" """.as[(

String,Int)]

// q4: slick.sql.SqlStreamingAction[Vector[(String, Int)], (String, Int),

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@26527cdd

val a4 = exec(q4)

// a4: Vector[(String, Int)] = Vector(

// ("Hello, HAL. Do you read me, HAL?", 32),

// ("Affirmative, Dave. I read you.", 30),

// ("Open the pod bay doors, HAL.", 28),

// ("I'm sorry, Dave. I'm afraid I can't do that.", 44)

//)

a4.foreach(println)

// (Hello, HAL. Do you read me, HAL?,32)

208 APPENDIX B. SOLUTIONS TO EXERCISES

// (Affirmative, Dave. I read you.,30)

// (Open the pod bay doors, HAL.,28)

// (I'm sorry, Dave. I'm afraid I can't do that.,44)

Return to the exercise

B.7.2 Solu on to: Conversion

There are various ways to implement this query in SQL. Here’s one of them…

val whoSaidThatPlain = sql"""

select

"name" from "user" u

join

"message" m on u."id" = m."sender_id"

where

m."content" = 'Open the pod bay doors, HAL.'

""".as[String]

// whoSaidThatPlain: slick.sql.SqlStreamingAction[Vector[String], String,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@3d771969

exec(whoSaidThatPlain)

// res16: Vector[String] = Vector("Dave")

Return to the exercise

B.7.3 Solu on to: Subs tu on

The solu on requires the use of a $ subs tu on:

def whoSaid(content: String): DBIO[Seq[String]] =

sql"""

select

"name" from "user" u

join

"message" m on u."id" = m."sender_id"

where

m."content" = $content

""".as[String]

exec(whoSaid("Open the pod bay doors, HAL."))

// res17: Seq[String] = Vector("Dave")

B.7. PLAIN SQL 209

exec(whoSaid("Affirmative, Dave. I read you."))

// res18: Seq[String] = Vector("HAL")

Return to the exercise

B.7.4 Solu on to: First and Last

import slick.jdbc.GetResult

implicit val GetFirstAndLast =

GetResult[FirstAndLast](r => FirstAndLast(r.nextString(), r.nextString()))

// GetFirstAndLast: AnyRef with GetResult[FirstAndLast] = <function1>

val query = sql""" select min("content"), max("content")

from "message" """.as[FirstAndLast]

// query: slick.sql.SqlStreamingAction[Vector[FirstAndLast], FirstAndLast,

Effect] = slick.jdbc.SQLActionBuilder$$anon$1@4c9a2483

exec(query)

// res20: Vector[FirstAndLast] = Vector(

// FirstAndLast("Affirmative, Dave. I read you.", "Open the pod bay doors,

HAL.")

//)

Return to the exercise

B.7.5 Solu on to: Plain Change

For modifica ons we use sqlu, not sql:

exec(sqlu""" create table "jukebox" ("title" text) """)

// res21: Int = 0

exec(sqlu""" insert into "jukebox"("title")

values ('Bicycle Built for Two') """)

// res22: Int = 1

exec(sql""" select "title" from "jukebox" """.as[String])

// res23: Vector[String] = Vector("Bicycle Built for Two")

Return to the exercise

210 APPENDIX B. SOLUTIONS TO EXERCISES

B.7.6 Solu on to: Robert Tables

If you are familiar with xkcd’s Li le Bobby Tables, the tle of the exercise has probably
pped you off: #$ does not escape input.

This means a user could use a carefully cra ed email address to do evil:

val evilAction = lookup("""';DROP TABLE "user";--- """).as[Long]

// evilAction: slick.sql.SqlStreamingAction[Vector[Long], Long, Effect] = slick

.jdbc.SQLActionBuilder$$anon$1@33c9d232

exec(evilAction)

// res25: Vector[Long] = Vector()

This “email address” turns into two queries:

SELECT * FROM "user" WHERE "email" = '';

and

DROP TABLE "user";

Trying to access the users table a er this will produce:

exec(users.result.asTry)

// res26: util.Try[Seq[UserTable#TableElementType]] = Failure(

// org.h2.jdbc.JdbcSQLSyntaxErrorException: Table "user" not found; SQL

statement:

// select "name", "email", "id" from "user" [42102-200]

//)

Yes, the table was dropped by the query.

Never use #$ with user supplied input.

Return to the exercise

http://xkcd.com/327/

	Preface
	What is Slick?
	How to Contact Us
	Getting help using Slick
	Acknowledgements
	Backers
	Conventions Used in This Book
	Typographical Conventions
	Source Code
	REPL Output
	Callout Boxes

	Basics
	Orientation
	Running the Examples and Exercises
	Working Interactively in the sbt Console
	Example: A Sequel Odyssey
	Library Dependencies
	Importing Library Code
	Defining our Schema
	Example Queries
	Configuring the Database
	Creating the Schema
	Inserting Data
	Selecting Data
	Combining Queries with For Comprehensions
	Actions Combine

	Take Home Points
	Exercise: Bring Your Own Data

	Selecting Data
	Select All The Rows!
	Filtering Results: The filter Method
	The Query and TableQuery Types
	Transforming Results
	The map Method
	exists

	Converting Queries to Actions
	Executing Actions
	Column Expressions
	Equality and Inequality Methods
	String Methods
	Numeric Methods
	Boolean Methods
	Date and Time Methods
	Option Methods and Type Equivalence

	Controlling Queries: Sort, Take, and Drop
	Conditional Filtering
	Take Home Points
	Exercises
	Count the Messages
	Selecting a Message
	One Liners
	 Checking the SQL
	Is HAL Real?
	Selecting Columns
	First Result
	Then the Rest
	The Start of Something
	Liking
	Client-Side or Server-Side?

	Creating and Modifying Data
	Inserting Rows
	Inserting Single Rows
	Primary Key Allocation
	Retrieving Primary Keys on Insert
	Retrieving Rows on Insert
	Inserting Specific Columns
	Inserting Multiple Rows
	More Control over Inserts

	Deleting Rows
	Updating Rows
	Updating a Single Field
	Updating Multiple Fields
	Updating with a Computed Value

	Take Home Points
	Exercises
	Get to the Specifics
	Bulk All the Inserts
	No Apologies
	Update Using a For Comprehension
	Selective Memory

	Combining Actions
	Combinators Summary
	Combinators in Detail
	andThen (or >>)
	DBIO.seq
	map
	DBIO.successful and DBIO.failed
	flatMap
	DBIO.sequence
	DBIO.fold
	zip
	andFinally and cleanUp
	asTry

	Logging Queries and Results
	Transactions
	Take Home Points
	Exercises
	And Then what?
	First!
	There Can be Only One
	Let's be Reasonable
	Filtering
	Unfolding

	Data Modelling
	Application Structure
	Abstracting over Databases
	Scaling to Larger Codebases

	Representations for Rows
	Projections, ProvenShapes, mapTo, and <>
	Tuples versus Case Classes
	Heterogeneous Lists

	Table and Column Representation
	Nullable Columns
	Primary Keys
	Compound Primary Keys
	Indices
	Foreign Keys
	Column Options

	Custom Column Mappings
	Value Classes
	Modelling Sum Types

	Take Home Points
	Exercises
	Filtering Optional Columns
	Matching or Undecided
	Enforcement
	Mapping Enumerations
	Alternative Enumerations
	Custom Boolean
	Turning a Row into Many Case Classes

	Joins and Aggregates
	Two Kinds of Join
	Chapter Schema
	Monadic Joins
	Applicative Joins
	More Tables, Longer Joins
	Inner Join
	Left Join
	Right Join
	Full Outer Join
	Cross Joins

	Zip Joins
	Joins Summary
	Seen Any Strange Queries?
	Aggregation
	Functions
	Grouping

	Take Home Points
	Exercises
	Name of the Sender
	Messages of the Sender
	Having Many Messages
	Collecting Results

	Plain SQL
	Selects
	Select with Custom Types
	Case Classes

	Updates
	Updating with Custom Types

	Typed Checked Plain SQL
	Compile Time Database Connections
	Type Checked Plain SQL

	Take Home Points
	Exercises
	Plain Selects
	Conversion
	Substitution
	First and Last
	Plain Change
	Robert Tables

	Using Different Database Products
	Changes
	PostgreSQL
	Create a Database
	Update build.sbt Dependencies
	Update JDBC References
	Update Slick Profile

	MySQL
	Create a Database
	Update build.sbt Dependencies
	Update JDBC References
	Update Slick DriverProfile

	Solutions to Exercises
	Basics
	Solution to: Bring Your Own Data
	Solution to: Bring Your Own Data Part 2

	Selecting Data
	Solution to: Count the Messages
	Solution to: Selecting a Message
	Solution to: One Liners
	Solution to: Checking the SQL
	Solution to: Is HAL Real?
	Solution to: Selecting Columns
	Solution to: First Result
	Solution to: Then the Rest
	Solution to: The Start of Something
	Solution to: Liking
	Solution to: Client-Side or Server-Side?

	Creating and Modifying Data
	Solution to: Get to the Specifics
	Solution to: Bulk All the Inserts
	Solution to: No Apologies
	Solution to: Update Using a For Comprehension
	Solution to: Selective Memory

	Combining Actions
	Solution to: And Then what?
	Solution to: First!
	Solution to: There Can be Only One
	Solution to: Let's be Reasonable
	Solution to: Filtering
	Solution to: Unfolding

	Data Modelling
	Solution to: Filtering Optional Columns
	Solution to: Matching or Undecided
	Solution to: Enforcement
	Solution to: Mapping Enumerations
	Solution to: Alternative Enumerations
	Solution to: Custom Boolean
	Solution to: Turning a Row into Many Case Classes

	Joins and Aggregates
	Solution to: Name of the Sender
	Solution to: Messages of the Sender
	Solution to: Having Many Messages
	Solution to: Collecting Results

	Plain SQL
	Solution to: Plain Selects
	Solution to: Conversion
	Solution to: Substitution
	Solution to: First and Last
	Solution to: Plain Change
	Solution to: Robert Tables

