
Essenঞal Scala
Noel Welsh and Dave Gurnell

Version 1.3, April 2017

underscore

Copyright 2014-2017 Noel Welsh and Dave Gurnell.

2

Essenঞal Scala
Version 1.3, April 2017

Copyright 2014-2017 Noel Welsh and Dave Gurnell.

Published by Underscore Consulঞng LLP, Brighton, UK.

Copies of this, and related topics, can be found at
h�p://underscore.io/training.

Team discounts, when available, may also be found at that address.

Contact the author regarding this text at: hello@underscore.io.

Our courses, workshops, and other products can help you and your team
create be�er so[ware and have more fun. For more informaঞon, as well as
the latest Underscore ঞtles, please visit h�p://underscore.io/training.

Disclaimer: Every precauࢼon was taken in the preparaࢼon of this book. However,
the author and Underscore Consulࢼng LLP assume no responsibility for errors or
omissions, or for damages that may result from the use of informaࢼon (including

program lisࢼngs) contained herein.

http://underscore.io
http://underscore.io/training
mailto:hello@underscore.io
http://underscore.io/training

Contents

Foreword 7

Convenঞons Used in This Book 7

Thanks . 9

1 Geমng Started 11

1.1 Seমng up the Scala Console 11

1.2 Seমng up Scala IDE . 14

2 Expressions, Types, and Values 23

2.1 Your First Program . 23

2.2 Interacঞng with Objects . 28

2.3 Literal Objects . 33

2.4 Object Literals . 39

2.5 Wriঞng Methods . 47

2.6 Compound Expressions . 51

2.7 Conclusion . 55

3

4 CONTENTS

3 Objects and Classes 57

3.1 Classes . 57

3.2 Objects as Funcঞons . 68

3.3 Companion Objects . 70

3.4 Case Classes . 74

3.5 Pa�ern Matching . 80

3.6 Conclusions . 83

4 Modelling Data with Traits 85

4.1 Traits . 85

4.2 This or That and Nothing Else: Sealed Traits 91

4.3 Modelling Data with Traits 96

4.4 The Sum Type Pa�ern . 97

4.5 Working With Data . 100

4.6 Recursive Data . 109

4.7 Extended Examples . 116

4.8 Conclusions . 120

5 Sequencing Computaঞons 121

5.1 Generics . 122

5.2 Funcঞons . 127

5.3 Generic Folds for Generic Data 132

5.4 Modelling Data with Generic Types 139

5.5 Sequencing Computaঞon 145

5.6 Variance . 152

5.7 Conclusions . 160

CONTENTS 5

6 Collecঞons 161

6.1 Sequences . 162

6.2 Working with Sequences . 173

6.3 For Comprehensions . 181

6.4 Opঞons . 185

6.5 Opঞons as Flow Control . 189

6.6 Monads . 192

6.7 For Comprehensions Redux 194

6.8 Maps and Sets . 197

6.9 Ranges . 207

6.10 Generaঞng Random Data 208

7 Type Classes 215

7.1 Type Class Instances . 216

7.2 Organising Type Class Instances 220

7.3 Creaঞng Type Classes . 226

7.4 Implicit Parameter and Interfaces 231

7.5 Enriched Interfaces . 236

7.6 Combining Type Classes and Type Enrichment 238

7.7 Using Type Classes . 240

7.8 Implicit Conversions . 242

7.9 JSON Serialisaঞon . 244

8 Conclusions 249

8.1 What Now? . 250

6 CONTENTS

A Pa�ern Matching 251

A.1 Standard pa�erns . 252

A.2 Custom Pa�erns . 255

B Collecঞons Redux 263

B.1 Sequence Implementaঞons 263

B.2 Arrays and Strings . 266

B.3 Iterators and Views . 268

B.4 Traversable and Iterable . 269

B.5 Java Interoperaঞon . 270

B.6 Mutable Sequences . 272

C Soluঞons to Exercises 277

C.1 Expressions, Types, and Values 277

C.2 Objects and Classes . 288

C.3 Modelling Data with Traits 300

C.4 Sequencing Computaঞons 321

C.5 Collecঞons . 336

C.6 Type Classes . 362

C.7 Pa�ern Matching . 370

C.8 Collecঞons Redux . 371

Foreword

This book is aimed at programmers learning Scala for the first ঞme. We assume
you have some familiaritywith an object-oriented programming language such
as Java, but li�le or no experience with funcঞonal programming.

Our goal is to describe how to use Scala in-the-small. To this end our focus
is on the core pa�erns used in idiomaঞc Scala code, and we introduce Scala’s
features in the context of the pa�erns they enable. We are not aiming for
exhausঞve coverage of Scala’s features, and this text is not a referencemanual.

Except for a few exercises we don’t rely on any external libraries. You should
be able to complete all the problems inside with only a text editor and Scala’s
REPL, or an IDE such as the Scala IDE for Eclipse or IntelliJ IDEA.

Essenঞal Scala was created by Noel Welsh and Dave Gurnell of Underscore.
It was built using Underscore’s eBook Template, plain text, and a deep and
profound love of funcঞonal programming.

Convenঞons Used in This Book

This book contains a lot of technical informaঞon and program code. We use
the following typographical convenঞons to reduce ambiguity and highlight im-
portant concepts:

7

http://scala-ide.org/
http://www.jetbrains.com/idea/
http://noelwelsh.com
http://davegurnell.com/
http://underscore.io
https://github.com/underscoreio/underscore-ebook-template

8 CONTENTS

Typographical Convenঞons

New terms and phrases are introduced in italics. A[er their iniঞal introducঞon
they are wri�en in normal roman font.

Terms from program code, filenames, and file contents, are wri�en in
monospace font. Note that we do not disঞnguish between singular and
plural forms. For example, might write String or Strings to refer to the
java.util.String class or objects of that type.

References to external resources are wri�en as hyperlinks. References to API
documentaঞon are wri�en using a combinaঞon of hyperlinks and monospace
font, for example: Option.

Source Code

Source code blocks are wri�en as follows. Syntax is highlighted appropriately
where applicable:

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

Some lines of program code are too wide to fit on the page. In these cases we
use a conࢼnuaࢼon character (curly arrow) to indicate that longer code should
all be wri�en on one line. For example, the following code:

println("This code should all be written Ď

on one line.")

should actually be wri�en as follows:

println("This code should all be written on one line.")

Callout Boxes

We use three types of callout box to highlight parঞcular content:

https://underscore.io
https://www.scala-lang.org/api/current/index.html#scala.Option

CONTENTS 9

Tip callouts indicate handy summaries, recipes, or best pracঞces.

Advanced callouts provide addiঞonal informaঞon on corner cases
or underlying mechanisms. Feel free to skip these on your first
read-through—come back to them later for extra informaঞon.

Warning callouts indicate common pi�alls and gotchas. Make sure you
read these to avoid problems, and come back to them if you’re having
trouble geমng your code to run.

Thanks

Many thanks to Richard Dallway and Jonathan Ferguson, who took on the her-
culean task of proof reading our early dra[s and helped develop the rendering
pipeline that produces the finished book.

Thanks also to Danielle Ashley, who updated all of the code samples to use
Tut and increased our code quality 100% overnight!

Thanks also to Amir Aryanpour, Audrey Welsh, Daniel Wa�ord, Jason Sco�,
Joe Halliwell, Jon Pearce, Konstanঞne Gadyrka, N. Sriram, Rebecca Grenier,
and Raffael Dzikowski, who sent us correcঞons and suggesঞons while the
book was in early access. Knowing that our work was being used made the
long haul of wriঞng worthwhile.

https://github.com/tpolecat/tut

10 CONTENTS

Chapter 1

Geমng Started

Throughout this book we will be working with short examples of Scala code.
There are two recommended ways of doing this:

1. Using the Scala console (be�er for people who like command lines)

2. UsingWorksheets feature of Scala IDE (be�er for people who like IDEs)

We’ll walk through the setup for each process here.

1.1 Seমng up the Scala Console

Follow the instrucঞons on http://scala-lang.org to set Scala up on your com-
puter. Once Scala is installed, you should be able to run an interacঞve console
by typing scala at your command line prompt. Here’s an example from OS X:

dave@Jade ~> scala

Welcome to Scala version 2.11.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

11

http://scala-lang.org

12 CHAPTER 1. GETTING STARTED

You can enter individual expressions at the scala> prompt and press Enter to
compile and execute them:

scala> "Hello world!"

res0: String = Hello world!

1.1.1 Entering Single-Line Expressions

Let’s try entering a simple expression:

scala> 1 + 2 + 3

res1: Int = 6

When we press Enter, the console responds with three things:

• an idenࢼfier res1;
• a type Int;
• a value 6.

As we will see in the next chapter, every expression in Scala has a type and a
value. The type is determined at compile ঞme and the value is determined by
execuঞng the expression. Both of these are reported here.

The idenঞfier res1 is a convenience provided by the console to allow us to
refer to the result of the expression in future expressions. For example, we
can mulঞply our result by two as follows:

scala> res1 * 2

res2: Int = 12

If we enter an expression that doesn’t yield a useful value, the console won’t
print anything in response:

scala> println("Hello world!")

Hello world!

Here, the output "Hello world!" is from our println statement—the ex-
pression we entered doesn’t actually return a value. The console doesn’t pro-
vide output similar to the output we saw above.

1.1. SETTING UP THE SCALA CONSOLE 13

1.1.2 Entering Mulঞ-Line Expressions

We can split long expressions across mulঞple lines quite simply. If we press
enter before the end of an expression, the console will print a | character to
indicate that we can conঞnue on the next line:

scala> for(i <- 1 to 3) {

| println(i)

| }

1

2

3

Someঞmes we want to enter mulঞple expressions at once. In these cases
we can use the :paste command. We simply type :paste, press Enter, and
write (or copy-and-paste) our code. When we’re done we press Ctrl+D to
compile and execute the code as normal. The console prints output for every
expression in one big block at the end of the input:

scala> :paste

// Entering paste mode (ctrl-D to finish)

val x = 1

val y = 2

x + y

// Exiting paste mode, now interpreting.

x: Int = 1

y: Int = 2

res6: Int = 3

If we have Scala code in a file, we can use :paste to paste the contents of the
file into the console. This is much more convenient than re-entering expres-
sions in the console. For example, with a file named example.scala contain-
ing 1 + 2 + 3 we can use :paste like so:

14 CHAPTER 1. GETTING STARTED

scala> :paste example.scala

Pasting file example.scala...

res0: Int = 6

1.1.3 Prinঞng the Type of an Expression

One final ঞp for using the console. Occasionally we want to know the type
of an expression without actually running it. To do this we can use the :type
command:

scala> :type println("Hello world!")

Unit

Noঞce that the console doesn’t execute our println statement in this ex-
pression. It simply compiles it and prints out its type, which in this case is
something called Unit.

Unit is Scala’s equivalent of void from Java and C. Read Chapter 1 to find out
more.

1.2 Seমng up Scala IDE

Scala IDE is a plugin that adds Scala language support to Eclipse. A complete
version of Scala IDE with Eclipse is also available as a standalone bundle from
h�p://scala-ide.org. This is the easiest way to install the so[ware so we rec-
ommend you install the standalone bundle for this course.

Go to http://scala-ide.org now, click the Get the Bundle bu�on, and follow
the on-screen instrucঞons to download Scala IDE for your operaঞng system:

http://eclipse.org
http://scala-ide.org

1.2. SETTING UP SCALA IDE 15

Once you have downloaded and uncompressed the bundle you should find an
applicaঞon called Eclipse. Launch this. You will be asked to choose a folder
for your workspace:

Accept the default locaঞon and you will see an empty main Eclipse window:

16 CHAPTER 1. GETTING STARTED

1.2.1 Creaঞng your First Applicaঞon

Your Eclipse workspace is two things: a folder containing files and seমngs, and
a main window where you will be doing most of your Scala programming. In
your workspace you can find projects for each Scala applicaঞon you work on.

Let’s create a project for the book exercises now. Select the File menu and
choose New > Scala Project:

1.2. SETTING UP SCALA IDE 17

Enter a Project name of essential-scala and click Finish. The tree view on
the le[of your workspace should now contain an empty project:

A project is no good without code to run! Let’s create our first simple Scala
applicaঞon - the obligatory Hello World app. Select the File Menu and choose
New > Scala Object:

18 CHAPTER 1. GETTING STARTED

Name your object HelloWorld and click Finish. A new file called Hel-

loWorld.scala should appear in the tree view on the le[of the main
window. Eclipse should open the new file in the main editor ready for you to
start coding:

The content of the file should read as follows:

1.2. SETTING UP SCALA IDE 19

object HelloWorld {

}

Replace this text with the following minimalist applicaঞon:

object HelloWorld {

def main(args: Array[String]): Unit = {

println("Hello world!")

}

}

Select the Run Menu and choose Run. This should execute the code in your
applicaঞon, resulঞng in the words Hello world! appearing in the Console
pane at the bo�om of the window. Congratulaঞons - you just ran your first
Scala applicaঞon!

Developers with Java experience will noঞce the resemblance of the code
above to the Java hello world app:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

20 CHAPTER 1. GETTING STARTED

}

}

The resemblance is, of course, no coincidence. These two applicaঞons compile
to more or less the same bytecode and have exactly the same semanঞcs. We
will learn much more about the similariঞes and differences between Scala and
Java as the course conঞnues.

1.2.2 Creaঞng your First Worksheet

Compiling and running codewhenever youmake a change is a ঞme consuming
process that isn’t parঞcularly suitable to a learning environment.

Fortunately, Scala IDE allows us to create special files called Scala Worksheets
that are specifically designed for training and experimentaঞon. Every ঞme
you save aWorksheet, Eclipse automaঞcally compiles and runs your code and
displays the output on the right-hand side of your editor. This provides instant
feedback, which is exactly what we need when invesঞgaঞng new concepts!

Create your first Scala Worksheet by selecঞng the File Menu and choosing
New > Scala Worksheet:

1.2. SETTING UP SCALA IDE 21

Enter a Worksheet name of FirstSteps and click Finish. A new file called
FirstSteps.sc should appear in the tree viewon the le[of themainwindow,
and should open it in the main editor in the middle:

Note that the object on the le[contains a single line of Scala code:

println("Welcome to the Scala worksheet")

for which Eclipse is displaying the corresponding output on the right:

Welcome to the Scala worksheet

Any expression you add to the le[of the editor is evaluated and printed on
the right. To demonstrate this, change the text in the editor to the following:

object FirstSteps {

println("Welcome to the Scala worksheet")

1 + 1

if(20 > 10) "left" else "right"

22 CHAPTER 1. GETTING STARTED

println("The ultimate answer is " + 42)

}

Save your work by selecঞng the FileMenu and choosing Save (or be�er sঞll by
pressing Ctrl+S). Eclipse should automaঞcally evaluate each line of code and
print the results on the right of the editor:

object FirstSteps {

println("Welcome to the Scala worksheet") //> Welcome to the Scala

worksheet

1 + 1 //> res0: Int(2) = 2

if(20 > 10) "left" else "right" //> res1: String = left

println("The ultimate answer is " + 42) //> The ultimate answer

is 42

}

We’ll dive into what all of the text on the right means as we proceed with the
course ahead. For now you’re all set to start honing your Scala skills!

Chapter 2

Expressions, Types, and Values

In this chapter we look at the fundamental building blocks of Scala programs:
expressions, types, and values. Understanding these concepts is necessary to
build a mental model of how Scala programs work.

2.1 Your First Program

In the Scala console or worksheet enter "Hello world!" and press return (in
the console) or save the worksheet. You should see an interacঞon similar to
this:

"Hello world!"

// res0: String = Hello world!

There is a lot to say about this program. It consists of a single expression, and
in parঞcular a literal expression or literal for short.

Scala runs, or evaluates, our program. When we evaluate a program in the
Scala console or worksheet we are told two pieces of informaঞon: the type of
the program, and the value it evaluates to. In this case the type is String and
the value is "Hello world!".

23

24 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Although the output value “Hello world!” looks the same as the program that
created it, there is a difference between the two. The literal expression is
the program text we entered, while what the console prints is the result of
evaluaঞng that program. (Literals are so-named because they literally look
like what they evaluate to.)

Let’s look at a slightly more complex program

"Hello world!".toUpperCase

// res1: String = HELLO WORLD!

This program extends our first example by adding a method call. Evaluaঞon in
Scala proceeds le[to right. First the literal "Hello world!" is evaluated, as
in the first example. Then the method toUpperCase is called on the result.
This method transforms a string value to its upper case equivalent and returns
this new string. This is the final value we see printed by the console.

Once again the type of this program is String, but in this case it evaluates to
"HELLO WORLD!"

2.1.1 Compile-ঞme and Run-ঞme

There are two disঞnct stages that a Scala program goes through: first it is
compiled, and if it compiles successfully it can then be run or evaluated. We
refer to the first stage as compile-ࢼme and the la�er as run-ࢼme.

When using the Scala console our programs are evaluated as soon as they com-
pile, which gives the appearance that there is only one stage. It is important
to understand that compile- and run-ঞme really are disঞnct, as it is this dis-
ঞncঞon that allows us to properly understand the difference between types
and values.

Compilaঞon is a process of checking that a program makes sense. There are
two ways in which a program must “make sense”:

1. It must be syntacࢼcally correct, meaning the parts of the program must
be arranged according to the grammar of the language. An example
English sentence that is not syntacঞcally correct is “on cat mat sat the”.
An example syntacঞcally incorrect Scala program is

2.1. YOUR FIRST PROGRAM 25

toUpperCase."Hello world!"

// <console>:2: error: identifier expected but string literal found.

// toUpperCase."Hello world!"

// ^

2. It must type check, meaning it must obey certain constraints on what a
sensible program is. An example English sentence that is syntacঞcally
correct but fails to make sense is “the mat sat on the cat”. A simple
program that would fail to type check is trying to convert a number to
uppercase.

2.toUpperCase

// <console>:13: error: value toUpperCase is not a member of Int

// 2.toUpperCase

// ^

The concept of upper and lowercase doesn’t make sense for numbers, and the
type system will catch this error.

If a program passes the checks at compile-ঞme it may then be run. This is the
process of the computer performing the instrucঞons in the program.

Even though a program successfully compiles it can sঞll fail at run-ঞme. Di-
viding an integer by zero causes a run-ঞme error in Scala.

2 / 0

// java.lang.ArithmeticException: / by zero

// ... 362 elided

The type of integers, Int, allows division so the program type checks. At run-
ঞme the program fails because there is no Int that can represent the result
of the division.

2.1.2 Expressions, Types, and Values

So what exactly are expressions, types, and values?

26 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Expressions are part of a program’s text—what we type into a file, or the con-
sole or worksheet. They are the main components of a Scala program. We
will see other components, namely definiࢼons and statements, in due course.
Expressions exist at compile-ঞme.

The defining characterisঞc of an expression is that it evaluates to a value. A
value is informaঞon stored in the computer’s memory. It exists at run-ঞme.
For example, the expression 2 evaluates to a parঞcular sequence of bits in a
parঞcular locaঞon in the computer’s memory.

We compute with values. They are enঞঞes that our programs can pass around
and manipulate. For example, to compute the minimum of two numbers we
might write a program like

2.min(3)

// res4: Int = 2

Here we have two values, 2 and 3, and we combine them into a larger program
that evaluates to 2.

In Scala all values are objects, which has a parঞcular meaning we will see
shortly.

Now let’s turn to types. Types are restricঞons on our programs that limit how
we can manipulate objects. We have already seen two types, String and Int,
and seen that we can perform different operaঞons depending on the type.

At this stage, the most important point about types is that expressions have
types but values do not. We cannot inspect an arbitrary piece of the computer’s
memory and divine how to interpret it without knowing the program that cre-
ated it. For example, in Scala the Int and Float types are both represented by
32-bits of memory. There are no tags or other indicaঞons that a given 32-bits
should be interpreted as an Int or a Float.

We can show that types exist at compile-ঞme by asking the Scala console to
tell us the type of an expression that causes a run-ঞme error.

:type 2 / 0

// Int

2.1. YOUR FIRST PROGRAM 27

2 / 0

// java.lang.ArithmeticException: / by zero

// ... 506 elided

We see that the expression 2 / 0 has type Int even though this expression
fails when we evaluate it.

Types, which exist at compile-ঞme, restrict us to wriঞng programs that give a
consistent interpretaঞon to values. We cannot claim that a parঞcular 32-bits is
at one point an Int and another a Float. When a program type checks, Scala
guarantees that all values are used consistently and thus it does not need to
record type informaঞon in a value’s representaঞon. This process of removing
type informaঞon is called type erasure¹.

Types necessarily do not contain all possible informaঞon about the values that
conform to the type. If they did, type checking would be equivalent to running
the program. We have already seen that the type system will not prevent us
from dividing an Int by zero, which causes a run-ঞme error.

An key part of designing Scala code is deciding which error cases we wish to
rule out using the type system. We will see that we can express many useful
constraints in the type system, improving the reliability of our programs. We
could implement a division operator that used the type system to express the
possibility of error, if we decided this was important enough in our program.
Using the type system well is one of the main themes of this book.

2.1.3 Take Home Points

Wemust build a mental model of Scala programs if we are to use Scala. Three
fundamental components of this model are expressions, types, and values.

¹This is not enঞrely true. The Java Virtual Machine, the program that runs Scala code, disঞn-
guishes between two kinds of objects. Primiঞve types don’t store any type informaঞon along
with the value they represent. Object types do store type informaঞon. However this type
informaঞon is not complete and there are occasions where it is lost. Blurring the disঞncঞon
between compile- and run-ঞme is thus dangerous. If we never rely on type informaঞon being
around at run-ঞme (and the pa�erns we will show you do not) we will never run into these
issues.

28 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Expressions are the parts of a program that evaluate to a value. They are the
major part of a Scala program.

Expressions have types, which express some restricঞons on programs. During
compile-ࢼme the types of our programs are checked. If they are inconsistent
then compilaঞon fails and we cannot evaluate, or run, our program.

Values exist in the computer’s memory, and are what a running program ma-
nipulates. All values in Scala are objects, the meaning of which we will discuss
soon.

2.1.4 Exercises

2.1.4.1 Type and Value

Using the Scala console or worksheet, determine the type and value of the
following expressions:

1 + 2

See the soluঞon

"3".toInt

See the soluঞon

"foo".toInt

See the soluঞon

2.2 Interacঞng with Objects

In the previous secঞon we saw the fundamental components of Scala pro-
grams: expressions, types, and values. We learned that all values are objects.
In this secঞon we will learn more about objects and how we can interact with
them.

2.2. INTERACTINGWITH OBJECTS 29

2.2.1 Objects

An object is a grouping of data and operaঞons on that data. For example, 2
is an object. The data is the integer 2, and the operaঞons on that data are
familiar operaঞons like +, -, and so on.

We have some special terminology for the data and operaঞons of an object.
The operaঞons are known as methods. The data is stored in fields.

2.2.2 Method Calls

We interact with objects by calling methods². We have already seen some
examples of calling methods. For example, we have seen we can get the up-
percase version of a String by calling its toUpperCase method.

"hello".toUpperCase

// res0: String = HELLO

Some methods accept parameters or arguments, which control how the
method works. The take method, for example, takes characters from a
String. We must pass a parameter to take to specify how many characters
we want.

"abcdef".take(3)

// res1: String = abc

"abcdef".take(2)

// res2: String = ab

Method Call Syntax

The syntax for a method call is

²There is anotherway of interacঞngwith objects, called pa�ernmatching. Wewill introduce
pa�ern matching later.

30 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

anExpression.methodName(param1, ...)

or

anExpression.methodName

where

• anExpression is any expression (which evaluates to an object)
• methodName is the name of the method
• the opঞonal param1, ... is one ormore expressions evaluaঞng
to the parameters to the method.

A method call is an expression, and thus evaluates to an object. This means
we can chain method calls together to make more complex programs:

"hello".toUpperCase.toLowerCase

// res3: String = hello

In what order are the various expressions in a method call evaluated? Method
parameters are evaluated le[-to-right, before the method is called. So in the
expression

"Hello world!".take(2 + 3)

// res4: String = Hello

the expression "Hello world!" is evaluated first, then 2 + 3 (which requires
evaluaঞng 2 and then 3 first), then finally "Hello world!".take(5).

2.2.3 Operators

Because every value in Scala is an object we can also call methods on primiঞve
types such as Int and Boolean. This is in contrast to Java where int and
boolean are not objects:

2.2. INTERACTINGWITH OBJECTS 31

123.toShort // this is how we define a `Short` in Scala

// res5: Short = 123

123.toByte // this is how we define a `Byte`

// res6: Byte = 123

But if an Int is an object, what are the basic mathemaঞcal operators such as +
and -? Are they also methods? Yes—Scala methods can have symbolic names
as well as alphanumeric ones!

43 - 3 + 2

// res7: Int = 42

43.-(3).+(2)

// res8: Int = 42

(Note that in Scala 2.10 and earlier you would have to write (43).-(3).+(2)
to prevent 43. being interpreted as a Double.)

Infix Operator Notaঞon

Any Scala expression wri�en a.b(c) can also be wri�en a b c.

Note that a b c d e is equivalent to a.b(c).d(e), not a.b(c, d,

e).

We can use infix operator notaࢼon with any method that takes one parameter,
regardless of whether it has a symbolic or alphanumeric name:

"the quick brown fox" split " "

// res: Array[String] = Array(the, quick, brown, fox)

Infix notaঞon is one of several syntacঞc shorthands that allow us to write sim-
ple operator expressions instead of verbose method calls. There are also no-
taঞons for prefix, postfix, right-associaࢼve, and assignment-style operators, but
there are much less common than infix notaঞon.

32 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

A quesঞon poses itself—what precedence rules should we associate with infix
operators? Scala uses a set of precedence rules derived from the idenঞfiers
we use as method names that follow our intuiঞve understanding from mathe-
maঞcs and logic:

2 * 3 + 4 * 5

// res11: Int = 26

(2 * 3) + (4 * 5)

// res12: Int = 26

2 * (3 + 4) * 5

// res13: Int = 70

2.2.4 Take home points

All Scala values are objects. We interactwith objects by callingmethods on them.
If you come from a Java background note we can call methods on Int or any
other primiঞve value.

The syntax for a method call is

anExpression.methodName(parameter, ...)

or

anExpression methodName parameter

Scala has very few operators - almost everything is a method call. We use syn-
tacঞc convenঞons like infix operator notaঞon to keep our code simple and
readable, but we can always fall back to standard method notaঞon where it
makes sense.

As we will see, Scala’s focus on programming with expressions allows us to
write much shorter code than we can in Java. It also allows us to reason about
code in a very intuiঞve way using values and types.

http://stackoverflow.com/questions/2922347/operator-precedence-in-scala

2.3. LITERAL OBJECTS 33

2.2.5 Exercises

2.2.5.1 Operator Style

Rewrite in operator-style

"foo".take(1)

// res14: String = f

See the soluঞon

Rewrite in method call style

1 + 2 + 3

// res16: Int = 6

See the soluঞon

2.2.5.2 Subsঞtuঞon

What is the difference between the following expressions? What are the sim-
ilariঞes?

1 + 2 + 3

6

See the soluঞon

2.3 Literal Objects

We have already covered some of Scala’s basic types. In this secঞon we’re
going to round out that knowledge by covering all of Scala’s literal expressions.
A literal expression represents a fixed value that stands “for itself”. Here’s an
example:

34 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

42

// res0: Int = 42

This interacঞon at the REPL shows us that the literal 42 evaluates to the Int
42.

Don’t confuse a literal with the value it evaluates to! The literal expression
is the representaঞon in the program text before the program is run, and the
value is the representaঞon in the computer’s memory a[er the program has
run.

If you have prior programming experience, parঞcularly Java experience, the
literals in Scala should be familiar to you.

2.3.1 Numbers

Numbers share the same types available in Java: Int for 32-bit integers,
Double for 64-bit floaঞng point, Float for 32-bit floaঞng point, and Long

for 64-bit integers.

42

// res1: Int = 42

42.0

// res2: Double = 42.0

42.0f

// res3: Float = 42.0

42L

// res4: Long = 42

Scala also has 16-bit Short integers and 8-bit Bytes, but there is no literal syn-
tax for creaঞng them. Instead, we create them using methods called toShort
and toByte.

2.3.2 Booleans

Booleans are exactly the same as Java: true or false.

2.3. LITERAL OBJECTS 35

true

// res5: Boolean = true

false

// res6: Boolean = false

2.3.3 Characters

Chars are 16-bit Unicode values wri�en as a single character enclosed in sin-
gle quotes.

'a'

// res7: Char = a

Scala vs Java’s Type Hierarchy

Although they are wri�en with iniঞal capitals, Scala’s Int, Double,
Float, Long, Short, Byte, Boolen and Char refer to exactly the same
things as int, double, float, long, short, byte, boolean, and char
in Java.

In Scala all of these types act like objects with methods and fields. How-
ever, once your code is compiled, a Scala Int is exactly the same as
a Java int. This makes interoperability between the two languages a
breeze.

2.3.4 Strings

Strings are exactly Java’s strings, and are wri�en the same way.

"this is a string"

// res8: String = this is a string

"the\nusual\tescape characters apply"

// res9: String =

36 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

// the

// usual escape characters apply

2.3.5 Null

Null is the same as Java, though not used nearly as o[en. Scala’s null also
has its own type: Null.

null

// res10: Null = null

Using Nulls in Scala

Although nulls are common in Java code, they are considered very bad
pracঞce in Scala.

The main use of null in Java is to implement opࢼonal values that have
some or no value at different points of a program’s execuঞon. However,
null values cannot be checked by the compiler, leading to possible run-
ঞme errors in the form of NullPointerExceptions.

Later we will see that Scala has the means to define opঞonal values that
are checked by the compiler. This removes the necessity of using null,
making our programs much safer.

2.3.6 Unit

Unit, wri�en (), is the Scala equivalent of Java’s void. Unit is the result of
expressions that evaluate to no interesঞng value, such as prinঞng to standard
output using println. The console doesn’t print unit but we can ask for the
type of an expression to see that unit is in fact the result of some expressions.

()

2.3. LITERAL OBJECTS 37

:type ()

// Unit

println("something")

// something

:type println("something")

// Unit

Unit is an important concept in Scala. Many of Scala’s syntacঞc constructs are
expressions that have types and values. We need a placeholder for expressions
that don’t yield a useful value, and unit provides just that.

2.3.7 Take home points

In this secঞon we have seen literal expressions, which evaluate to basic data
types. These basics types are mostly idenঞcal to Java, except for Unit which
has no equivalent.

We note that every literal expression has a type, and evaluates to a value—
something which is also true for more complex Scala expressions.

In the next secঞon we will learn how to define our own object literals.

2.3.8 Exercises

2.3.8.1 Literally Just Literals

What are the values and types of the following Scala literals?

42

true

123L

38 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

42.0

See the soluঞon

2.3.8.2 Quotes and Misquotes

What is the difference between the following literals? What is the type and
value of each?

'a'

"a"

See the soluঞon

2.3.8.3 An Aside on Side-Effects

What is the difference between the following expressions? What is the type
and value of each?

"Hello world!"

println("Hello world!")

See the soluঞon

2.3.8.4 Learning By Mistakes

What is the type and value of the following literal? Try wriঞng it on the REPL
or in a Scala worksheet and see what happens!

'Hello world!'

See the soluঞon

2.4. OBJECT LITERALS 39

2.4 Object Literals

So far we’ve seen how to create objects of built-in types like Int and String
and combine them into expressions. In this secঞon we will see how to create
objects of our own design using object literals.

Whenwewrite an object literal we use a declaraࢼon, which is a different kind of
program to an expression. A declaraঞon does not evaluate to a value. Instead
it associates a name with a value. This name can then be used to refer to the
value in other code.

We can declare an empty object as follows:

object Test {}

This is not an expression—it does not evaluate to a value. Rather, it binds a
name (Test) to a value (an empty object).

Once we have bound the name Test we can use it in expressions, where it
evaluates to the object we have declared. The simplest expression is just the
name on its own, which evaluates to the value itself:

Test

// res0: Test.type = Test$@779732fb

This expression is equivalent to wriঞng a literal like 123 or "abc". Note that
the type of the object is reported as Test.type. This is not like any typewe’ve
seen before—it’s a new type, created just for our object, called a singleton type.
We cannot create other values of this type.

Empty objects are not so useful. Within the body (between the braces) of an
object declaraঞon we can put expressions. It is more common, however, to
put declaraঞons such as declaring methods, fields, or even more objects.

Object Declaraঞon Syntax

The syntax for declaring an object is

40 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

object name {

declarationOrExpression ...

}

where

• name is the name of the object; and
• the opঞonal declarationOrExpressions are declaraঞons or
expressions.

Let’s see how to declare methods and fields.

2.4.1 Methods

We interact with objects via methods so let’s create an object with a method.

object Test2 {

def name: String = "Probably the best object ever"

}

Here we’ve create a method called name. We can call it in the usual way.

Test2.name

// res1: String = Probably the best object ever

Here’s an object with a more complex method:

object Test3 {

def hello(name: String) =

"Hello " + name

}

Test3.hello("Noel")

// res2: String = Hello Noel

2.4. OBJECT LITERALS 41

Method Declaraঞon Syntax

The syntax for declaring a method is

def name(parameter: type, ...): resultType =

bodyExpression

or

def name: resultType =

bodyExpression

where

• name is the name of the method;
• the opঞonal parameters are the names given to parameters to
the method;

• the types are the types of the method parameters;
• the opঞonal resultType is the type of the result of the method;
• the bodyExpression is an expression that calling the method
evaluates to.

Method parameters are opঞonal, but if a method has parameters their
type must be given. Although the result type is opঞonal it is good prac-
ঞce to define it as it serves as (machine checked!) documentaঞon.

The term argument may be used interchangeably with parameter.

42 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Return is Implicit

The return value of the method is determined by evaluaঞng the body—
there is no need to write return like you would in Java.

2.4.2 Fields

An object can also contain other objects, called fields. We introduce these
using the keywords val or var, which look similar to def:

object Test4 {

val name = "Noel"

def hello(other: String): String =

name + " says hi to " + other

}

Test4.hello("Dave")

// res3: String = Noel says hi to Dave

Field Declaraঞon Syntax

The syntax for declaring a field is

val name: type = valueExpression

or

var name: type = valueExpression

where

• name is the name of the field;
• the opঞonal type declaraঞon gives the type of the field;

2.4. OBJECT LITERALS 43

• the valueExpression evaluates to the object that is bound to
the name.

Using val defines an immutable field, meaning we cannot change the value
bound to the name. A var field is mutable, allowing us to change the bound
value.

Always prefer val to var. Scala programmers prefer to use immutable fields
wherever possible, as this maintains subsঞtuঞon. While you will no doubt
create the occasional mutable field in your applicaঞon code, we will stay away
from var for most of this course and you should do the same in your Scala
programming.

2.4.3 Methods versus fields

You might wonder why we need fields when we can have methods of no ar-
guments that seem to work the same. The difference is subtle—a field gives
a name to a value, whereas a method gives a name to a computaঞon that
produces a value.

Here’s an object that shows the difference:

object Test7 {

val simpleField = {

println("Evaluating simpleField")

42

}

def noParameterMethod = {

println("Evaluating noParameterMethod")

42

}

}

Here we have used a println expression to print something to the console,
and a block expression (expressions surrounded by { and }) to group expres-
sions. We’ll see more about block expressions in the next secঞon.

Noঞce how the console says we’ve defined an object, but it hasn’t run either
of our println statements? This is due to a quirk of Scala and Java called lazy
loading.

44 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Objects and classes (which we’ll see later) aren’t loaded unঞl they are refer-
enced by other code. This is what prevents Scala loading the enঞre standard
library into memory to run a simple "Hello world!" app.

Let’s force Scala to evaluate our object body by referencing Test7 in an ex-
pression:

Test7

// Evaluating simpleField

// res4: Test7.type = Test7$@da0141b

When the object is first loaded, Scala runs through its definiঞons and
calculates the values of each of its fields. This results in the code prinঞng
"Evaluating simpleField" as a side-effect.

The body expression of a field is run only once a[er which the final value is stored
in the object. The expression is never evaluated again—noঞce the lack of
println output below.

Test7.simpleField

// res5: Int = 42

Test7.simpleField

// res6: Int = 42

The body of a method, on the other hand, is evaluated every ঞme we call the
method—noঞce the repeated println output below.

Test7.noParameterMethod

// Evaluating noParameterMethod

// res7: Int = 42

Test7.noParameterMethod

// Evaluating noParameterMethod

// res8: Int = 42

2.4.4 Take home points

In this secঞon we have created our own objects, given them methods and
fields, and referenced them in expressions.

2.4. OBJECT LITERALS 45

We have seen the syntax for declaring objects

object name {

declarationOrExpression ...

}

for declaring methods

def name(parameter: type, ...): resultType = bodyExpression

and for declaring fields

val name = valueExpression

var name = valueExpression

All of these are declaraࢼons, binding names to values. Declaraঞons are differ-
ent to expressions. They do not evaluate to a value and do not have a type.

We have also seen the difference between methods and fields—fields refer to
values stored within an object, whereas methods refer to computaঞons that
produce values.

2.4.5 Exercises

2.4.5.1 Cat-o-maঞque

The table below shows the names, colour, and favourite foods of three cats.
Define an object for each cat. (For experienced programmers: we haven’t
covered classes yet.)

Name Colour Food

Oswald Black Milk
Henderson Ginger Chips
Quenঞn Tabby and white Curry

46 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

See the soluঞon

2.4.5.2 Square Dance!

Define an object called calc with a method square that accepts a Double
as an argument and… you guessed it… squares its input. Add a method called
cube that cubes its input calling square as part of its result calculaঞon.

See the soluঞon

2.4.5.3 Precise Square Dance!

Copy and paste calc from the previous exercise to create a calc2 that is
generalized toworkwith Ints aswell as Doubles. If you have Java experience,
this should be fairly straigh�orward. If not, read the soluঞon below.

See the soluঞon

2.4.5.4 Order of evaluaঞon

When entered on the console, what does the following program output, and
what is the type and value of the final expression? Think carefully about the
types, dependencies, and evaluaঞon behaviour of each field and method.

object argh {

def a = {

println("a")

1

}

val b = {

println("b")

a + 2

}

def c = {

println("c")

a

2.5. WRITING METHODS 47

b + "c"

}

}

argh.c + argh.b + argh.a

See the soluঞon

2.4.5.5 Greeঞngs, human

Define an object called person that contains fields called firstName and
lastName. Define a second object called alien containing a method called
greet that takes your person as a parameter and returns a greeঞng using their
firstName.

What is the type of the greetmethod? Canwe use this method to greet other
objects?

See the soluঞon

2.4.5.6 The Value of Methods

Are methods values? Are they expressions? Why might this be the case?

See the soluঞon

2.5 Wriঞng Methods

In the previous secঞon we saw the syntax of methods. One of our main goals
in this course is to go beyond syntax and give you systemaঞc methods for
construcঞng Scala programs. This is our first secঞon dealingwith suchma�ers.
In this secঞon we’re going to look at a systemaঞc method for construcঞng
methods. As you gain experience with Scala you can drop some of the steps
of this method, but we strongly suggest you follow this method during the
course.

48 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

To make the advice concrete we’ll use this exercise from the previous secঞon
as an example:

Define an object called calcwith a method square that accepts a Double as an
argument and… you guessed it… squares its input. Add a method called cube that
cubes its input, calling square as part of its result calculaࢼon.

2.5.1 Idenঞfy the Input and Output

Your first step is to idenঞfy the types of the input parameters, if any, and the
result of the method.

In many cases the exercises will tell you the types and you can just read them
straight from the descripঞon. In the example above the input type is given as
Double. The result type we can infer is also Double.

2.5.2 Prepare Test Cases

Types alone don’t tell all the story. There are many Double to Double func-
ঞons, but few that implement squaring. Thus we should prepare some test
cases that illustrate the expected behaviour of the method.

We’re not going to use a tesঞng library in this course, as we’re trying to avoid
external dependencies. We can implement a poor-man’s tesঞng library using
the assert funcঞon that Scala provides. For our square example we might
have test cases like

assert(square(2.0) == 4.0)

assert(square(3.0) == 9.0)

assert(square(-2.0) == 4.0)

2.5.3 Write the Declaraঞon

With types and test cases ready we can now write the method declaraঞon.
We haven’t developed the body yet so use ???, another ni[y Scala feature, in
its place.

2.5. WRITING METHODS 49

def square(in: Double): Double =

???

This step should be mechanical given the informaঞon gathered in the previous
steps.

2.5.4 Run the Code

Run the code and check it compiles (and thus we haven’t made any typos) and
also that our tests fail (and thus are tesঞng something). You may need to place
the tests a[er the method declaraঞon.

2.5.5 Write the Body

We’re now ready to write the body of our method. We will develop a number
of techniques for this throughout the course. For now, we’re going to look at
two techniques.

2.5.5.1 Consider the Result Type

The first technique is to look at the result type, in this case Double. How can
we create Double values? We could write a literal, but that obviously won’t
be correct in this case. The other way we know to create a Double is to call a
method on some object, which brings us to the next technique.

2.5.5.2 Consider the Input Type

Our next technique is to look at the type of input parameters to themethod. In
this case we have a Double. We have established we need to create a Double,
so what methods can we call to create a Double from our input? There are
many such methods, and here we have to use our domain knowledge to select
* as the correct method to call.

We can now write our complete method as

50 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

def square(in: Double): Double =

in * in

2.5.6 Run the Code, Again

Finally we should run the code again and check that the tests all pass in this
case.

This is very simple example but pracঞcing the process now will serve you well
for the more complicated examples we will encounter later.

Process for Wriঞng Methods

We have a six-step process for wriঞng methods in a systemaঞc way.

1. Idenঞfy the type of the inputs and output of the method.
2. Write some test cases for the expected output of the method
given example input. We can use the assert funcঞon to write
down these cases.

3. Write the method declaraঞon using ??? for the body like so:

def name(parameter: type, ...): resultType =

???

4. Run the code to check the test cases do in fact fail.
5. Write the body of the method. We currently have two tech-
niques to apply here:

• consider the result type and how we can create an instance of it;
and

• consider the input type and methods we can call to transform it
to the result type.

2.6. COMPOUND EXPRESSIONS 51

6. Run the code again and check the test cases pass.

2.6 Compound Expressions

We have almost finished our basic introducঞon to Scala. In this secঞon we are
going to look at two special kinds of expressions, condiࢼonals and blocks, we
will need in more complicated programs.

2.6.1 Condiঞonals

A condiঞonal allows us to choose an expression to evaluate based on some
condiঞon. For example, we can choose a string based on which of two num-
bers is the smallest.

if(1 < 2) "Yes" else "No"

// res0: String = Yes

Condiঞonals are Expressions

Scala’s if statement has the same syntax as Java’s. One important dif-
ference is that Scala’s condiࢼonal is an expression—it has a type and re-
turns a value.

The expression that is not selected does not get evaluated. This is apparent if
we use an expression with a side-effect.

if(1 < 2) println("Yes") else println("No")

// Yes

We can tell the expression println("No") is not evaluated because No is not
output to the console.

52 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Condiঞonal Expression Syntax

The syntax for a condiঞonal expression is

if(condition)

trueExpression

else

falseExpression

where

• condition is an expression with Boolean type;
• trueExpression is the expression evaluated if condition eval-
uates to true; and

• falseExpression is the expression evaluated if condition
evaluates to false.

2.6.2 Blocks

Blocks are expressions that allow us to sequence computaঞons together. They
are wri�en as a pair of braces containing sub-expressions separated by semi-
colons or newlines.

{ 1; 2; 3 }

// <console>:13: warning: a pure expression does nothing in statement

position; you may be omitting necessary parentheses

// { 1; 2; 3 }

// ^

// <console>:13: warning: a pure expression does nothing in statement

position; you may be omitting necessary parentheses

// { 1; 2; 3 }

// ^

// error: No warnings can be incurred under -Xfatal-warnings.

As you can see, execuঞng this code causes the console to raise a number of
warnings and return the Int value 3.

2.6. COMPOUND EXPRESSIONS 53

A block is a sequence of expressions or declaraঞons surrounded by braces. A
block is also an expression: it executes each of its sub-expressions in order
and returns the value of the last expression.

Why execute 1 and 2 if we’re going to throw their values away? This is a good
quesঞon, and is the reason the Scala compiler raised those warnings above.

One reason to use a block is to use code that produces side-effects before
calculaঞng a final value:

{

println("This is a side-effect")

println("This is a side-effect as well")

3

}

// This is a side-effect

// This is a side-effect as well

// res3: Int = 3

We can also use a block when we want to name intermediate results, such as

def name: String = {

val title = "Professor"

val name = "Funkenstein"

title + " " + name

}

name

// res4: String = Professor Funkenstein

Block Expression Syntax

The syntax of a block expression is

{

declarationOrExpression ...

expression

}

54 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

where

• the opঞonal declarationOrExpressions are declaraঞons or
expression; and

• expression is an expression determining the type and value of
the block expression.

2.6.3 Take home points

Condiঞonal expressions allow us to choose an expression to evaluate based
on a Boolean condiঞon. The syntax is

if(condition)

trueExpression

else

falseExpression

A condiঞonal, being an expression, has a type and evaluates to an object.

A block allows us to sequence expressions and declaraঞons. It is commonly
used when we want to sequence expressions with side-effects, or name inter-
mediate results in a computaঞon. The syntax is

{

declarationOrExpression ...

expression

}

The type and value of a block is that of the last expression in the block.

2.6.4 Exercises

2.6.4.1 A Classic Rivalry

What is the type and value of the following condiঞonal?

2.7. CONCLUSION 55

if(1 > 2) "alien" else "predator"

See the soluঞon

2.6.4.2 A Less Well Known Rivalry

What about this condiঞonal?

if(1 > 2) "alien" else 2001

See the soluঞon

2.6.4.3 An if Without an else

What about this condiঞonal?

if(false) "hello"

See the soluঞon

2.7 Conclusion

We have had a very brief introducঞon to the fundamentals of Scala:

• expressions, which evaluate to values; and
• declaraঞons, which gives names to values.

We’ve seen how we can write literals for many objects, and use method calls
and compound expressions to create new objects from exisঞng ones.

We have also declared our own objects, and constructed methods and fields.

Next we’re going to see how a new kind of declaraঞon, a class, provides a
template for creaঞng objects. Classes allow us to reuse code and unify similar
objects with a common type.

56 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Chapter 3

Objects and Classes

In the previous chapter we saw how to create objects and interact with them
via method calls. In this secঞon we’re going to see how we can abstract over
objects using classes. Classes are a template for construcঞng objects. Given a
class we can make many objects that have the same type and share common
properঞes.

3.1 Classes

A class is a template for creaঞng objects that have similar methods and fields.
In Scala a class also defines a type, and objects created from a class all share the
same type. This allows us to overcome the problem we had in the Greeࢼngs,
Human exercise in the last chapter.

3.1.1 Defining a Class

Here is a declaraঞon for a simple Person class:

class Person {

val firstName = "Noel"

val lastName = "Welsh"

57

58 CHAPTER 3. OBJECTS AND CLASSES

def name = firstName + " " + lastName

}

Like an object declaraঞon, a class declaraঞon binds a name (in this case
Person) and is not an expression. However, unlike an object name, we
cannot use a class name in an expression. A class is not a value, and there is a
different namespace in which classes live.

Person

// <console>:13: error: not found: value Person

// Person

// ^

Wecan create a new Person object using the new operator. Objects are values
and we access their methods and fields in the usual way:

val noel = new Person

// noel: Person = Person@3a1d255f

noel.firstName

// res1: String = Noel

Noঞce the type of the object is Person. The printed value contains a code in
the format @xxxxxxxx, which is a unique idenঞfier for that parঞcular object.
Each call to new creates a disঞnct object of the same type:

noel

// res2: Person = Person@3a1d255f

val newNoel = new Person

// newNoel: Person = Person@d31acc3

val anotherNewNoel = new Person

// anotherNewNoel: Person = Person@73b7d0e4

This means we can write a method that takes any Person as a parameter:

3.1. CLASSES 59

object alien {

def greet(p: Person) =

"Greetings, " + p.firstName + " " + p.lastName

}

alien.greet(noel)

// res3: String = Greetings, Noel Welsh

alien.greet(newNoel)

// res4: String = Greetings, Noel Welsh

Java Tip

Scala classes are all subclasses of java.lang.Object and are, for
the most part, usable from Java as well as Scala. The default prinঞng
behaviour of Person comes from the toString method defined in
java.lang.Object.

3.1.2 Constructors

As it stands our Person class is rather useless: we can create as many new ob-
jects as we want but they all have the same firstName and lastName. What
if we want to give each person a different name?

The soluঞon is to introduce a constructor, which allows us to pass parameters
to new objects as we create them:

class Person(first: String, last: String) {

val firstName = first

val lastName = last

def name = firstName + " " + lastName

}

60 CHAPTER 3. OBJECTS AND CLASSES

val dave = new Person("Dave", "Gurnell")

// dave: Person = Person@24718052

dave.name

// res5: String = Dave Gurnell

The constructor parameters first and last can only be usedwithin the body
of the class. We must declare a field or method using val or def to access
data from outside the object.

Constructor arguments and fields are o[en redundant. Fortunately, Scala pro-
vides us a useful short-hand way of declaring both in one go. We can prefix
constructor parameters with the val keyword to have Scala define fields for
them automaঞcally:

class Person(val firstName: String, val lastName: String) {

def name = firstName + " " + lastName

}

new Person("Dave", "Gurnell").firstName

// res6: String = Dave

val fields are immutable—they are iniঞalized once a[er which we cannot
change their values. Scala also provides the var keyword for definingmutable
fields.

Scala programmers tend to prefer to write immutability and side-effect-free
code so we can reason about it using the subsঞtuঞon model. In this course
we will concentrate almost exclusively on immutable val fields.

Class Declaraঞon Syntax

The syntax for declaring a class is

class Name(parameter: type, ...) {

declarationOrExpression ...

}

3.1. CLASSES 61

or

class Name(val parameter: type, ...) {

declarationOrExpression ...

}

where

• Name is the name of the class;
• the opঞonal parameters are the names given to constructor pa-
rameters;

• the types are the types of the constructor parameters;
• the opঞonal declarationOrExpressions are declaraঞons or
expressions.

3.1.3 Default and Keyword Parameters

All Scala methods and constructors support keyword parameters and default
parameter values.

When we call a method or constructor, we can use parameter names as key-
words to specify the parameters in an arbitrary order:

new Person(lastName = "Last", firstName = "First")

// res7: Person = Person@58a18e0f

This comes in doubly useful when used in combinaঞon with default parameter
values, defined like this:

def greet(firstName: String = "Some", lastName: String = "Body") =

"Greetings, " + firstName + " " + lastName + "!"

If a parameter has a default value we can omit it in the method call:

greet("Busy")

// res8: String = Greetings, Busy Body!

62 CHAPTER 3. OBJECTS AND CLASSES

Combining keywords with default parameter values let us skip earlier param-
eters and just provide values for later ones:

greet(lastName = "Dave")

// res9: String = Greetings, Some Dave!

Keyword Parameters

Keyword parameters are robust to changes in the number and order
of parameters. For example, if we add a title parameter to the
greet method, the meaning of keywordless method calls changes but
keyworded calls remain the same:

def greet(title: String = "Citizen", firstName: String = "Some",

lastName: String = "Body") =

"Greetings, " + title + " " + firstName + " " + lastName + "!"

greet("Busy") // this is now incorrect

// res10: String = Greetings, Busy Some Body!

greet(firstName = "Busy") // this is still correct

// res11: String = Greetings, Citizen Busy Body!

This is parঞcularly useful when creaঞng methods and constructors with
a large number of parameters.

3.1.4 Scala’s Type Hierarchy

Unlike Java, which separates primiঞve and object types, everything in Scala is
an object. As a result, “primiঞve” value types like Int and Boolean form part
of the same type hierarchy as classes and traits.

3.1. CLASSES 63

Any

AnyVal

Int
= java int

Double
= java double

Boolean
= java boolean

Array[T]
= java array

All Java
classes

All Scala
classes

java.lang.String

AnyRef
= java.lang.Object

Nothing
type of throw

Null
type of null

Unit
~ java void

etc…

Scala has a grand supertype called Any, under which there are two types,
AnyVal and AnyRef. AnyVal is the supertype of all value types, which AnyRef
is the supertype of all “reference types” or classes. All Scala and Java classes
are subtypes of AnyRef¹.

Some of these types are simply Scala aliases for types that exist in Java: Int
is int, Boolean is boolean, and AnyRef is java.lang.Object.

There are two special types at the bo�om of the hierarchy. Nothing is the
type of throw expressions, and Null is the type of the value null. These
special types are subtypes of everything else, which helps us assign types to
throw and null while keeping other types in our code sane. The following
code illustrates this:

def badness = throw new Exception("Error")

// badness: Nothing

def otherbadness = null

// otherbadness: Null

val bar = if(true) 123 else badness

// bar: Int = 123

val baz = if(false) "it worked" else otherbadness

// baz: String = null

Although the types of badness and res are Nothing and Null respecঞvely,

¹We can actually define subtypes of AnyVal, which are known as value classes. These are
useful in a few specialised circumstances and we’re not going to discuss them here.

http://docs.scala-lang.org/overviews/core/value-classes.html

64 CHAPTER 3. OBJECTS AND CLASSES

the types of bar and baz are sঞll sensible. This is because Int is the least
common supertype of Int and Nothing, and String is the least common
supertype of String and Null.

3.1.5 Take Home Points

In this secঞonwe learned how to define classes, which allow us to create many
objects with the same type. Thus, classes let us abstract across objects that
have similar properঞes.

The properঞes of the objects of a class take the form of fields and methods.
Fields are pre-computed values storedwithin the object andmethods are com-
putaঞons we can call.

The syntax for declaring classes is

class Name(parameter: type, ...) {

declarationOrExpression ...

}

We create objects from a class by calling the constructor using the keyword
new.

We also learned about keyword parameters and default parameters.

Finally we learned about Scala’s type hierarchy, including the overlap with
Java’s type hierarchy, the special types Any, AnyRef, AnyVal, Nothing, Null,
and Unit, and the fact that Java and Scala classes both occupy the same sub-
tree of the type hierarchy.

3.1.6 Exercises

We now have enough machinery to have some fun playing with classes.

3.1.6.1 Cats, Again

Recall the cats from a previous exercise:

3.1. CLASSES 65

Name Colour Food

Oswald Black Milk
Henderson Ginger Chips
Quenঞn Tabby and white Curry

Define a class Cat and then create an object for each cat in the table above.

See the soluঞon

3.1.6.2 Cats on the Prowl

Define an object ChipShop with a method willServe. This method should
accept a Cat and return true if the cat’s favourite food is chips, and false
otherwise.

See the soluঞon

3.1.6.3 Directorial Debut

Write two classes, Director and Film, with fields and methods as follows:

• Director should contain:

– a field firstName of type String
– a field lastName of type String
– a field yearOfBirth of type Int
– a method called name that accepts no parameters and returns the
full name

• Film should contain:

– a field name of type String
– a field yearOfRelease of type Int
– a field imdbRating of type Double
– a field director of type Director

66 CHAPTER 3. OBJECTS AND CLASSES

– a method directorsAge that returns the age of the director at
the ঞme of release

– a method isDirectedBy that accepts a Director as a parame-
ter and returns a Boolean

Copy-and-paste the following demo data into your code and adjust your con-
structors so that the code works without modificaঞon:

val eastwood = new Director("Clint", "Eastwood", 1930)

val mcTiernan = new Director("John", "McTiernan", 1951)

val nolan = new Director("Christopher", "Nolan", 1970)

val someBody = new Director("Just", "Some Body", 1990)

val memento = new Film("Memento", 2000, 8.5, nolan)

val darkKnight = new Film("Dark Knight", 2008, 9.0, nolan)

val inception = new Film("Inception", 2010, 8.8, nolan)

val highPlainsDrifter = new Film("High Plains Drifter", 1973, 7.7,

eastwood)

val outlawJoseyWales = new Film("The Outlaw Josey Wales", 1976, 7.9,

eastwood)

val unforgiven = new Film("Unforgiven", 1992, 8.3, eastwood)

val granTorino = new Film("Gran Torino", 2008, 8.2, eastwood)

val invictus = new Film("Invictus", 2009, 7.4, eastwood)

val predator = new Film("Predator", 1987, 7.9, mcTiernan)

val dieHard = new Film("Die Hard", 1988, 8.3, mcTiernan)

val huntForRedOctober = new Film("The Hunt for Red October", 1990,

7.6, mcTiernan)

val thomasCrownAffair = new Film("The Thomas Crown Affair", 1999, 6.8,

mcTiernan)

eastwood.yearOfBirth

// res16: Int = 1930

dieHard.director.name

// res17: String = John McTiernan

invictus.isDirectedBy(nolan)

// res18: Boolean = false

3.1. CLASSES 67

Implement a method of Film called copy. This method should accept the
same parameters as the constructor and create a new copy of the film. Give
each parameter a default value so you can copy a film changing any subset of
its values:

highPlainsDrifter.copy(name = "L'homme des hautes plaines")

// res19: Film = Film(L'homme des hautes plaines,1973,7.7,Director(

Clint,Eastwood,1930))

thomasCrownAffair.copy(yearOfRelease = 1968,

director = new Director("Norman", "Jewison", 1926))

// res20: Film = Film(The Thomas Crown Affair,1968,6.8,Director(Norman

,Jewison,1926))

inception.copy().copy().copy()

// res21: Film = Film(Inception,2010,8.8,Director(Christopher,Nolan

,1970))

See the soluঞon

3.1.6.4 A Simple Counter

Implement a Counter class. The constructor should take an Int. The meth-
ods inc and dec should increment and decrement the counter respecঞvely
returning a new Counter. Here’s an example of the usage:

new Counter(10).inc.dec.inc.inc.count

// res23: Int = 12

See the soluঞon

3.1.6.5 Counঞng Faster

Augment the Counter from the previous exercise to allow the user can op-
ঞonally pass an Int parameter to inc and dec. If the parameter is omi�ed it
should default to 1.

See the soluঞon

68 CHAPTER 3. OBJECTS AND CLASSES

3.1.6.6 Addiঞonal Counঞng

Here is a simple class called Adder.

class Adder(amount: Int) {

def add(in: Int) = in + amount

}

Extend Counter to add a method called adjust. This method should accept
an Adder and return a new Counter with the result of applying the Adder to
the count.

See the soluঞon

3.2 Objects as Funcঞons

In the final exercise of the previous secঞon, we defined a class called Adder:

class Adder(amount: Int) {

def add(in: Int): Int = in + amount

}

In the discussion we described an Adder as an object represenঞng a
computaঞon—a bit like having a method that we can pass around as a value.

This is such a powerful concept that Scala has a fully blown set of language
features for creaঞng objects that behave like computaঞons. These objects are
called funcࢼons, and are the basis of funcࢼonal programming.

3.2.1 The apply method

For now we are going to look at just one of Scala’s features supporঞng func-
ঞonal programming—funcࢼon applicaࢼon syntax.

In Scala, by convenঞon, an object can be “called” like a funcঞon if it has a
method called apply. Naming a method apply affords us a special shortened
call syntax: foo.apply(args) becomes foo(args).

For example, let’s rename the add method in Adder to apply:

3.2. OBJECTS AS FUNCTIONS 69

class Adder(amount: Int) {

def apply(in: Int): Int = in + amount

}

val add3 = new Adder(3)

// add3: Adder = Adder@4185f338

add3.apply(2)

// res0: Int = 5

add3(4) // shorthand for add3.apply(4)

// res1: Int = 7

With this one simple trick, objects can “look” syntacঞcally like funcঞons. There
are lots of things that we can do with objects that we can’t do with methods,
including assign them to variables and pass them around as arguments.

Funcঞon Applicaঞon Syntax

The method call object.apply(parameter, ...) can also be writ-
ten as object(parameter, ...)

3.2.2 Take home points

In this secঞon we looked at funcࢼon applicaࢼon syntax, which lets us “call” an
object as if it is a funcঞon.

Funcঞon applicaঞon syntax is available for any object defining an apply

method.

With funcঞon applicaঞon syntax, we now have first class values that behave
like computaঞons. Unlikemethods, objects can be passed around as data. This
takes us one step closer towards true funcঞonal programming in Scala.

70 CHAPTER 3. OBJECTS AND CLASSES

3.2.3 Exercises

3.2.3.1 When is a Funcঞon not a Funcঞon?

We’ll get a chance to write some code at the end of the next secঞon. For now
we should think about an important theoreঞcal quesঞon:

How close does funcঞon applicaঞon syntax get us to creaঞng truly reusable
objects to do computaঞons for us? What are we missing?

See the soluঞon

3.3 Companion Objects

Someঞmes we want to create a method that logically belongs to a class but
is independent of any parঞcular object. In Java we would use a staࢼc method
for this, but Scala has a simpler soluঞon that we’ve seen already: singleton
objects.

One common use case is auxiliary constructors. Although Scala does have
syntax that lets us define mulঞple constructors for a class, Scala programmers
almost always prefer to implement addiঞonal constructors as applymethods
on an object with the same name as the class. We refer to the object as the
companion object of the class. For example:

class Timestamp(val seconds: Long)

object Timestamp {

def apply(hours: Int, minutes: Int, seconds: Int): Timestamp =

new Timestamp(hours*60*60 + minutes*60 + seconds)

}

Timestamp(1, 1, 1).seconds

// res1: Long = 3661

3.3. COMPANION OBJECTS 71

Using the Console Effecঞvely

Note our use of the :paste command in the transcript above. Compan-
ion objects must be defined in the same compilaঞon unit as the classes
they support. In a normal codebase this simply means defining the class
and object in the same file, but on the REPL we have to enter then in
one command using :paste.

You can enter :help on the REPL to find out more.

As we saw earlier, Scala has two namespaces: a space of type names and a
space of value names. This separaঞon allows us to name our class and com-
panion object the same thing without conflict.

It is important to note that the companion object is not an instance of the class—it
is a singleton object with its own type:

Timestamp // note that the type is `Timestamp.type`, not `Timestamp`

// res2: Timestamp.type = Timestamp$@137bf92e

Companion Object Syntax

To define a companion object for a class, in the same file as the class
define an object with the same name.

class Name {

...

}

object Name {

...

}

72 CHAPTER 3. OBJECTS AND CLASSES

3.3.1 Take home points

Companion objects provide us with a means to associate funcঞonality with a
class without associaঞng it with any instance of that class. They are commonly
used to provide addiঞonal constructors.

Companion objects replace Java’s staࢼc methods. They provide equivalent
funcঞonality and are more flexible.

A companion object has the same name as its associated class. This doesn’t cause
a naming conflict because Scala has twonamespaces: the namespace of values
and the namespace of types.

A companion objectmust be defined in the same file as the associated class.When
typing on the REPL, the class and companion object must be entered in the
same block of code using :paste mode.

3.3.2 Exercises

3.3.2.1 Friendly Person Factory

Implement a companion object for Person containing an apply method that
accepts a whole name as a single string rather than individual first and last
names.

Tip: you can split a String into an Array of components as follows:

val parts = "John Doe".split(" ")

// parts: Array[String] = Array(John, Doe)

parts(0)

// res3: String = John

See the soluঞon

3.3.2.2 Extended Body of Work

Write companion objects for Director and Film as follows:

3.3. COMPANION OBJECTS 73

• the Director companion object should contain:

– an apply method that accepts the same parameters as the con-
structor of the class and returns a new Director;

– a method older that accepts two Directors and returns the
oldest of the two.

• the Film companion object should contain:

– an apply method that accepts the same parameters as the con-
structor of the class and returns a new Film;

– a method highestRating that accepts two Films and returns
the highest imdbRating of the two;

– a method oldestDirectorAtTheTime that accepts two Films
and returns the Directorwho was oldest at the respecঞve ঞme
of filming.

See the soluঞon

3.3.2.3 Type or Value?

The similarity in naming of classes and companion objects tends to cause con-
fusion for new Scala developers. When reading a block of code it is important
to knowwhich parts refer to a class or type andwhich parts refer to a singleton
object or value.

This is the inspiraঞon for the new hit quiz, Type or Value?, which we will be
piloঞng below. In each case idenঞfy whether the word Film refers to the
type or value:

val prestige: Film = bestFilmByChristopherNolan()

See the soluঞon

new Film("Last Action Hero", 1993, mcTiernan)

See the soluঞon

74 CHAPTER 3. OBJECTS AND CLASSES

Film("Last Action Hero", 1993, mcTiernan)

See the soluঞon

Film.newer(highPlainsDrifter, thomasCrownAffair)

See the soluঞon

Finally a tough one…

Film.type

See the soluঞon

3.4 Case Classes

Case classes are an excepঞonally useful shorthand for defining a class, a com-
panion object, and a lot of sensible defaults in one go. They are ideal for cre-
aঞng lightweight data-holding classes with the minimum of hassle.

Case classes are created simply by prepending a class definiঞon with the key-
word case:

case class Person(firstName: String, lastName: String) {

def name = firstName + " " + lastName

}

Whenever we declare a case class, Scala automaঞcally generates a class and
companion object:

val dave = new Person("Dave", "Gurnell") // we have a class

// dave: Person = Person(Dave,Gurnell)

Person // and a companion object too

// res0: Person.type = Person

What’s more, the class and companion are pre-populated with some very use-
ful features.

3.4. CASE CLASSES 75

3.4.1 Features of a case class

1. A field for each constructor argument—we don’t even need to write val
in our constructor definiঞon, although there’s no harm in doing so.

dave.firstName

// res1: String = Dave

2. A default toString method that prints a sensible constructor-like rep-
resentaঞon of the class (no more @ signs and crypঞc hex numbers):

dave

// res2: Person = Person(Dave,Gurnell)

3. Sensibleequals, andhashCodemethods that operate on the field values
in the object.

This makes it easy to use case classes with collecঞons like Lists, Sets and
Maps. It also means we can compare objects on the basis of their contents
rather than their reference idenঞty:

new Person("Noel", "Welsh").equals(new Person("Noel", "Welsh"))

// res3: Boolean = true

new Person("Noel", "Welsh") == new Person("Noel", "Welsh")

// res4: Boolean = true

4. A copymethod that creates a new object with the same field values as
the current one:

dave.copy()

// res5: Person = Person(Dave,Gurnell)

76 CHAPTER 3. OBJECTS AND CLASSES

Note that the copymethod creates and returns a new object of the class rather
than returning the current one.

The copy method actually accepts opঞonal parameters matching each of the
constructor parameters. If a parameter is specified the new object uses that
value instead of the exisঞng value from the current object. This is ideal for use
with keyword parameters to let us copy an object while changing the values
of one or more fields:

dave.copy(firstName = "Dave2")

// res6: Person = Person(Dave2,Gurnell)

dave.copy(lastName = "Gurnell2")

// res7: Person = Person(Dave,Gurnell2)

Value and Reference Equality

Scala’s == operator is different from Java’s—it delegates to equals

rather than comparing values on reference idenঞty.

Scala has an operator called eq with the same behaviour as Java’s ==.
However, it is rarely used in applicaঞon code:

new Person("Noel", "Welsh") eq (new Person("Noel", "Welsh"))

// res8: Boolean = false

dave eq dave

// res9: Boolean = true

5. Case classes implement two traits: java.io.Serializable and
scala.Product. Neither are used directly. The la�er provides
methods for inspecঞng the number of fields and the name of the case
class.

3.4. CASE CLASSES 77

3.4.2 Features of a case class companion object

The companion object contains an apply method with the same arguments
as the class constructor. Scala programmers tend to prefer the applymethod
over the constructor for the brevity of omiমng new, whichmakes constructors
much easier to read inside expressions:

Person("Dave", "Gurnell") == Person("Noel", "Welsh")

// res10: Boolean = false

Person("Dave", "Gurnell") == Person("Dave", "Gurnell")

// res11: Boolean = true

Finally, the companion object also contains code to implement an extractor
pa�ern for use in pa�ern matching. We’ll see this later this chapter.

Case Class Declaraঞon Syntax

The syntax to declare a case class is

case class Name(parameter: type, ...) {

declarationOrExpression ...

}

where

• Name is the name of the case class;
• the opঞonal parameters are the names given to constructor pa-
rameters;

• the types are the types of the constructor parameters;
• the opঞonal declarationOrExpressions are declaraঞons or
expressions.

78 CHAPTER 3. OBJECTS AND CLASSES

3.4.3 Case objects

A final note. If you find yourself defining a case class with no constructor
arguments you can instead a define a case object. A case object is defined just
like a regular singleton object, but has a more meaningful toString method
and extends the Product and Serializable traits:

case object Citizen {

def firstName = "John"

def lastName = "Doe"

def name = firstName + " " + lastName

}

Citizen.toString

// res12: String = Citizen

3.4.4 Take Home Points

Case classes are the bread and bu�er of Scala data types. Use them, learn them,
love them.

The syntax for declaring a case class is the same as for declaring a class, but
with case appended

case class Name(parameter: type, ...) {

declarationOrExpression ...

}

Case classes have numerous auto-generated methods and features that save
typing. We can override this behaviour on a piece-by-piece basis by imple-
menঞng the relevant methods ourselves.

In Scala 2.10 and earlier we can define case classes containing 0 to 22 fields.
In Scala 2.11 we gain the ability to define arbitrarily-sized case classes.

3.4. CASE CLASSES 79

3.4.5 Exercises

3.4.5.1 Case Cats

Recall that a Cat has a String colour and food. Define a case class to repre-
sent a Cat.

See the soluঞon

3.4.5.2 Roger Ebert Said it Best…

No good movie is too long and no bad movie is short enough.

The same can’t always be said for code, but in this case we can get rid of a
lot of boilerplate by converঞng Director and Film to case classes. Do this
conversion and work out what code we can cut.

See the soluঞon

3.4.5.3 Case Class Counter

Reimplement Counter as a case class, using copy where appropriate. Addi-
ঞonally iniঞalise count to a default value of 0.

See the soluঞon

3.4.5.4 Applicaঞon, Applicaঞon, Applicaঞon

What happens when we define a companion object for a case class? Let’s see.

Take our Person class from the previous secঞon and turn it into a case class
(hint: the code is above). Make sure you sঞll have the companion object with
the alternate apply method as well.

See the soluঞon

80 CHAPTER 3. OBJECTS AND CLASSES

3.5 Pa�ern Matching

Unঞl now we have interacted with objects by calling methods or accessing
fields. With case classes we can interact in another way, via pa�ern matching.

Pa�ern matching is like an extended if expression that allows us to evaluate
an expression depending on the “shape” of the data. Recall the Person case
class we’ve seen in previous examples:

case class Person(firstName: String, lastName: String)

Now imagine we wanted to implement a Stormtrooper that is looking for
members of the rebellion. We could use pa�ern matching like this:

object Stormtrooper {

def inspect(person: Person): String =

person match {

case Person("Luke", "Skywalker") => "Stop, rebel scum!"

case Person("Han", "Solo") => "Stop, rebel scum!"

case Person(first, last) => s"Move along, $first"

}

}

Noঞce the syntax for a pa�ern (Person("Luke", "Skywalker")) matches
the syntax for construcঞng the object the pa�ern matches (Person("Luke",
"Skywalker")).

Here it is in use:

Stormtrooper.inspect(Person("Noel", "Welsh"))

// res0: String = Move along, Noel

Stormtrooper.inspect(Person("Han", "Solo"))

// res1: String = Stop, rebel scum!

Pa�ern Matching Syntax

The syntax of a pa�ern matching expression is

3.5. PATTERN MATCHING 81

expr0 match {

case pattern1 => expr1

case pattern2 => expr2

...

}

where

• the expression expr0 evaluates to the value we match;
• the pa�erns, or guards, pattern1, pattern2, and so on are
checked against this value in order; and

• the right-hand side expression (expr1, expr2, and so on) of the
first pa�ern that matches is evaluated�.

Pa�ern matching is itself an expression and thus evaluates to a value—
the value of the matched expression.

�In reality pa�erns are compiled to a more efficient form than a sequence of tests,
but the semanঞcs are the same.

3.5.1 Pa�ern Syntax

Scala has an expressive syntax for wriঞng pa�erns or guards. For case classes
the pa�ern syntax matches the constructor syntax. Take the data

Person("Noel", "Welsh")

// res2: Person = Person(Noel,Welsh)

A pa�ern to match against the Person type is wri�en

Person(pat0, pat1)

where pat0 and pat1 are pa�erns to match against the firstName and
lastName respecঞvely. There are four possible pa�erns we could use in
place of pat0 or pat1:

82 CHAPTER 3. OBJECTS AND CLASSES

1. A name, which matches any value at that posiঞon and binds it to the
given name. For example, the pa�ern Person(first, last) binds
the name first to the value "Noel", and the name last to the value
"Welsh".

2. An underscore (_), whichmatches any value and ignores it. For example,
as Stormtroopers only care about the first name of ordinary ciঞzens we
could just write Person(first, _) to avoid binding a name to the
value of the lastName.

3. A literal, which successfully matches only the value the literal respre-
sents. So , for example, the pa�ern Person("Han", "Solo")matches
the Person with first name "Han" and last name "Solo".

4. Another case class using the same constructor style syntax.

Note there is a lot more we can do with pa�ern matching, and pa�ern match-
ing is actually extensible. We’ll look at these features in a later secঞon.

3.5.2 Take Home Points

Case classes allow a new form of interacঞon, called pa�ern matching. Pa�ern
matching allows us to take apart a case class, and evaluate different expres-
sions depending on what the case class contains.

The syntax for pa�ern matching is

expr0 match {

case pattern1 => expr1

case pattern2 => expr2

...

}

A pa�ern can be one of

1. a name, binding any value to that name;
2. an underscore, matching any value and ignoring it;
3. a literal, matching the value the literal denotes; or
4. a constructor-style pa�ern for a case class.

3.6. CONCLUSIONS 83

3.5.3 Exercises

3.5.3.1 Feed the Cats

Define an object ChipShop with a method willServe. This method should
accept a Cat and return true if the cat’s favourite food is chips, and false oth-
erwise. Use pa�ern matching.

See the soluঞon

3.5.3.2 Get Off My Lawn!

In this exercise we’re going to write a simulator of my Dad, the movie criঞc.
It’s quite simple: any movie directed by Clint Eastwood gets a raঞng 10.0, any
movie directed by JohnMcTiernan gets a 7.0, while any other movie gets a 3.0.
Implement an object called Dadwith amethod ratewhich accepts a Film and
returns a Double. Use pa�ern matching.

See the soluঞon

3.6 Conclusions

In this secঞon we’ve explored classes. We have seen that classes allow us
to abstract over objects. That is, to define objects that share properঞes in
common and have a common type.

We also looked at companion objects, which are used in Scala to define auxillary
constructors and other uঞlity methods that don’t belong on a class.

Finally, we introduced case classes, which greatly reduce boilerplate code and
allow pa�ern-matching, a new way of interacঞng with objects, in addiঞon to
method calls.

84 CHAPTER 3. OBJECTS AND CLASSES

Chapter 4

Modelling Data with Traits

We looked in depth at classes in the previous chapter. Classes provide us with
away to abstract over objects that have similar properঞes, allowing us towrite
code that works with any object in a class.

In this chapter we explore abstracࢼon over classes, allowing us to write code
thatworkswith objects of different classes. We achieve this with amechanism
called traits.

This chapter also marks a change in our focus. In previous chapters we have
addressed the technical aspects of construcঞng Scala code. In this chapter we
will iniঞally focus on the technical aspects of traits. Our focus will then change
to using Scala as a medium to express our thoughts.

We will see how we can mechanically transform a descripঞon of data, called
an algebraic datatype, into code. Using structural recursionwe canmechanically
write code that transforms an algebraic datatype.

4.1 Traits

Traits are templates for creaঞng classes, in the same way that classes are tem-
plates for creaঞng objects. Traits allow us to express that two or more classes
can be considered the same, and thus both implement the same operaঞons.

85

86 CHAPTER 4. MODELLING DATAWITH TRAITS

In other words, traits allow us to express that mulঞple classes share a common
super-type (outside of the Any super-type that all classes share).

Traits vs Java Interfaces

Traits are very much like Java 8’s interfaces with default methods. If you
have not used Java 8, you can think of traits as being like a cross between
interfaces and abstract classes.

4.1.1 An Example of Traits

Let’s start with an example of a trait. Imagine we’re modelling visitors to a
website. There are two types of visitor: those who have registered on our site
and those who are anonymous. We can model this with two classes:

import java.util.Date

case class Anonymous(id: String, createdAt: Date = new Date())

case class User(

id: String,

email: String,

createdAt: Date = new Date()

)

With these class definiঞons we’re saying that both anonymous and registered
visitors have an id and a creaঞon date. But we only know the email address
of registered visitors.

There is obvious duplicaঞon here, and it would be nice to not have to write
the same definiঞons twice. More important though, is to create some common
type for the two kinds of visitors. If they had some type in common (other than
AnyRef and Any) we could write methods that worked on any kind of visitor.
We can do this with a trait like so:

4.1. TRAITS 87

import java.util.Date

trait Visitor {

def id: String // Unique id assigned to each user

def createdAt: Date // Date this user first visited the site

// How long has this visitor been around?

def age: Long = new Date().getTime - createdAt.getTime

}

case class Anonymous(

id: String,

createdAt: Date = new Date()

) extends Visitor

case class User(

id: String,

email: String,

createdAt: Date = new Date()

) extends Visitor

Note the two changes:

• we defined the trait Visitor; and
• we declared that Anonymous and User are subtypes of the Visitor
trait by using the extends keyword.

The Visitor trait expresses an interface that any subtype must implement:
they must implement a String called id and a createdAt Date. Any sub-
type of Visitor also automaঞcally has a method age as defined in Visitor.

By defining the Visitor trait we can write methods that work with any sub-
type of visitor, like so:

def older(v1: Visitor, v2: Visitor): Boolean =

v1.createdAt.before(v2.createdAt)

88 CHAPTER 4. MODELLING DATAWITH TRAITS

older(Anonymous("1"), User("2", "test@example.com"))

// res5: Boolean = true

Here the method older can be called with either an Anonymous or a User as
they are both subtypes of Visitor.

Trait Syntax

To declare a trait we write

trait TraitName {

declarationOrExpression ...

}

To declare that a class is a subtype of a trait we write

class Name(...) extends TraitName {

...

}

More commonly we’ll use case classes, but the syntax is the same

case class Name(...) extends TraitName {

...

}

4.1.2 Traits Compared to Classes

Like a class, a trait is a named set of field and method definiঞons. However, it
differs from a class in a few important ways:

• A trait cannot have a constructor—we can’t create objects directly from a
trait. Insteadwe can use a trait to create a class, and then create objects
from that class. We can base as many classes as we like on a trait.

4.1. TRAITS 89

• Traits can define abstract methods that have names and type signatures
but no implementaঞon. We saw this in the Visitor trait. We must
specify the implementaঞon when we create a class that extends the
trait, but unঞl that point we’re free to leave definiঞons abstract.

Let’s return to the Visitor trait to further explore abstract definiঞons. Recall
the definiঞon of Visitor is

import java.util.Date

trait Visitor {

def id: String // Unique id assigned to each user

def createdAt: Date // Date this user first visited the site

// How long has this visitor been around?

def age: Long = new Date().getTime - createdAt.getTime

}

Visitor prescribes two abstract methods. That is, methods which do not
have an implementaঞon but must be implemented by extending classes.
These are id and createdAt. It also defines a concrete method, age, that is
defined in terms of one of the abstract methods.

Visitor is used as a building block for two classes: Anonymous and User.
Each class extends Visitor, meaning it inherits all of its fields and methods:

val anon = Anonymous("anon1")

// anon: Anonymous = Anonymous(anon1,Mon Jul 06 10:51:40 UTC 2020)

anon.createdAt

// res7: java.util.Date = Mon Jul 06 10:51:40 UTC 2020

anon.age

// res8: Long = 65

id and createdAt are abstract so they must be defined in extending classes.
Our classes implement them as vals rather than defs. This is legal in Scala,
which sees def as a more general version of val¹. It is good pracঞce to never
define vals in a trait, but rather to use def. A concrete implementaঞon can
then implement it using using a def or val as appropriate.

¹This is all part of the uniform access principle we saw in the exercises for Object Literals.

http://en.wikipedia.org/wiki/Uniform_access_principle
object-literals.html

90 CHAPTER 4. MODELLING DATAWITH TRAITS

4.1.3 Take Home Points

Traits are a way of abstracࢼng over classes that have similar properঞes, just like
classes are a way of abstracঞng over objects.

Using a traits has two parts. Declaring the trait

trait TraitName {

declarationOrExpression ...

}

and extending the trait from a class (usually a case class)

case class Name(...) extends TraitName {

...

}

4.1.4 Exercises

4.1.4.1 Cats, and More Cats

Demand for Cat Simulator 1.0 is exploding! For v2 we’re going to go beyond
the domesঞc cat tomodel Tigers, Lions, and Panthers in addiঞon to the Cat.
Define a trait Feline and then define all the different species as subtypes of
Feline. To make things interesঞng, define:

• on Feline a colour as before;
• on Feline a String sound, which for a cat is "meow" and is "roar"
for all other felines;

• only Cat has a favourite food; and
• Lions have an Int maneSize.

See the soluঞon

4.2. THIS OR THAT AND NOTHING ELSE: SEALED TRAITS 91

4.1.4.2 Shaping UpWith Traits

Define a trait called Shape and give it three abstract methods:

• sides returns the number of sides;
• perimeter returns the total length of the sides;
• area returns the area.

Implement Shape with three classes: Circle, Rectangle, and Square. In
each case provide implementaঞons of each of the three methods. Ensure that
the main constructor parameters of each shape (e.g. the radius of the circle)
are accessible as fields.

Tip: The value of π is accessible as math.Pi.

See the soluঞon

4.1.4.3 Shaping Up 2 (Da Streets)

The soluঞon from the last exercise delivered three disঞnct types of shape.
However, it doesn’t model the relaঞonships between the three correctly. A
Square isn’t just a Shape—it’s also a type of Rectangle where the width and
height are the same.

Refactor the soluঞon to the last exercise so that Square and Rectangle are
subtypes of a common type Rectangular.

Tip: A trait can extend another trait.

See the soluঞon

4.2 This or That and Nothing Else: Sealed Traits

In many cases we can enumerate all the possible classes that can extend a
trait. For example, we previously modelled a website visitor as Anonymous
or a logged in User. These two cases cover all the possibiliঞes as one is the

92 CHAPTER 4. MODELLING DATAWITH TRAITS

negaঞon of the other. We can model this case with a sealed trait, which allows
the compiler to provide extra checks for us.

We create a sealed trait by simply wriঞng sealed in front of our trait declara-
ঞon:

import java.util.Date

sealed trait Visitor {

def id: String

def createdAt: Date

def age: Long = new Date().getTime() - createdAt.getTime()

}

When wemark a trait as sealedwemust define all of its subtypes in the same
file. Once the trait is sealed, the compiler knows the complete set of subtypes
and will warn us if a pa�ern matching expression is missing a case:

def missingCase(v: Visitor) =

v match {

case User(_, _, _) => "Got a user"

}

// <console>:17: warning: match may not be exhaustive.

// It would fail on the following input: Anonymous(_, _)

// v match {

// ^

// error: No warnings can be incurred under -Xfatal-warnings.

We will not get a similar warning from an unsealed trait.

We can sঞll extend the subtypes of a sealed trait outside of the file where
they are defined. For example, we could extend User or Anonymous further
elsewhere. If we want to prevent this possibility we should declare them as
sealed (if we want to allow extensions within the file) or final if we want
to disallow all extensions. For the visitors example it probably doesn’t make
sense to allow any extension to User or Anonymous, so the simplified code
should look like this:

4.2. THIS OR THAT AND NOTHING ELSE: SEALED TRAITS 93

sealed trait Visitor { /* ... */ }

final case class User(/* ... */) extends Visitor

final case class Anonymous(/* ... */) extends Visitor

This is a very powerful pa�ern and one we will use frequently.

Sealed Trait Pa�ern

If all the subtypes of a trait are known, seal the trait

sealed trait TraitName {

...

}

Consider making subtypes final if there is no case for extending them

final case class Name(...) extends TraitName {

...

}

Remember subtypes must be defined in the same file as a sealed trait.

4.2.1 Take home points

Sealed traits and final (case) classes allow us to control extensibility of types.
The majority of cases should use the sealed trait / final case class pa�ern.

sealed trait TraitName { ... }

final case class Name(...) extends TraitName

The main advantages of this pa�ern are:

• the compiler will warn if we miss a case in pa�ern matching; and
• we can control extension points of sealed traits and thus make stronger
guarantees about the behaviour of subtypes.

94 CHAPTER 4. MODELLING DATAWITH TRAITS

4.2.2 Exercises

4.2.2.1 Prinঞng Shapes

Let’s revisit the Shapes example from Secঞon [@sec:traits:shaping-up-2].

First make Shape a sealed trait. Then write a singleton object called Drawwith
an applymethod that takes a Shape as an argument and returns a descripঞon
of it on the console. For example:

Draw(Circle(10))

// res1: String = A circle of radius 10.0cm

Draw(Rectangle(3, 4))

// res2: String = A rectangle of width 3.0cm and height 4.0cm

Finally, verify that the compiler complains when you comment out a case
clause.

See the soluঞon

4.2.2.2 The Color and the Shape

Write a sealed trait Color to make our shapes more interesঞng.

• give Color three properঞes for its RGB values;
• create three predefined colours: Red, Yellow, and Pink;
• provide a means for people to produce their own custom Colors with
their own RGB values;

• provide a means for people to tell whether any Color is “light” or “dark”.

A lot of this exercise is le[deliberately open to interpretaঞon. The important
thing is to pracঞce working with traits, classes, and objects.

Decisions such as how to model colours and what is considered a light or dark
colour can either be le[up to you or discussed with other class members.

Edit the code for Shape and its subtypes to add a colour to each shape.

4.2. THIS OR THAT AND NOTHING ELSE: SEALED TRAITS 95

Finally, update the code for Draw.apply to print the colour of the argument
as well as its shape and dimensions:

• if the argument is a predefined colour, print that colour by name:

Draw(Circle(10, Yellow))

// res8: String = A yellow circle of radius 10.0cm

• if the argument is a custom colour rather than a predefined one, print
the word “light” or “dark” instead.

You may want to deal with the colour in a helper method.

See the soluঞon

4.2.2.3 A Short Division Exercise

Good Scala developers don’t just use types to model data. Types are a great
way to put arঞficial limitaঞons in place to ensure we don’t make mistakes in
our programs. In this exercise we will see a simple (if contrived) example of
this—using types to prevent division by zero errors.

Dividing by zero is a tricky problem—it can lead to excepঞons. The JVM has
us covered as far as floaঞng point division is concerned but integer division is
sঞll a problem:

1.0 / 0.0

// res31: Double = Infinity

1 / 0

// java.lang.ArithmeticException: / by zero

// ... 1024 elided

Let’s solve this problem once and for all using types!

96 CHAPTER 4. MODELLING DATAWITH TRAITS

Create an object called dividewith an applymethod that accepts two Ints
and returns DivisionResult. DivisionResult should be a sealed trait with
two subtypes: a Finite type encapsulaঞng the result of a valid division, and
an Infinite type represenঞng the result of dividing by 0.

Here’s some example usage:

val x = divide(1, 2)

// x: DivisionResult = Finite(0)

val y = divide(1, 0)

// y: DivisionResult = Infinite

Finally, write some sample code that calls divide, matches on the result, and
returns a sensible descripঞon.

See the soluঞon

4.3 Modelling Data with Traits

In this secঞon we’re going to shi[our focus from language features to pro-
gramming pa�erns. We’re going to look at modelling data and learn a process
for expressing in Scala any data model defined in terms of logical ors and ands.
Using the terminology of object-oriented programming, we will express is-a
and has-a relaঞonships. In the terminology of funcঞonal programming we are
learning about sum and product types, which are together called algebraic data
types.

Our goal in this secঞon is to see how to translate a data model into Scala code.
In the next secঞon we’ll see pa�erns for code that uses algebraic data types.

4.3.1 The Product Type Pa�ern

Our first pa�ern is to model data that contains other data. We might describe
this as “A has a B and C”. For example, a Cat has a colour and a favourite food;
a Visitor has an id and a creaঞon date; and so on.

4.4. THE SUM TYPE PATTERN 97

The way we write this is to use a case class. We’ve already done this many
ঞmes in exercises; now we’re formalising the pa�ern.

Product Type Pa�ern

If A has a b (with type B) and a c (with type C) write

case class A(b: B, c: C)

or

trait A {

def b: B

def c: C

}

4.4 The Sum Type Pa�ern

Our next pa�ern is to model data that is two or more disঞnct cases. Wemight
describe this as “A is a B or C”. For example, a Feline is a Cat, Lion, or Tiger;
a Visitor is an Anonymous or User; and so on.

We write this using the sealed trait / final case class pa�ern.

Sum Type Pa�ern

If A is a B or C write

sealed trait A

final case class B() extends A

final case class C() extends A

98 CHAPTER 4. MODELLING DATAWITH TRAITS

4.4.1 Algebraic Data Types

An algebraic data type is any data that uses the above two pa�erns. In the
funcঞonal programming literature, data using the “has-a and” pa�ern is known
as a product type, and the “is-a or” pa�ern is a sum type.

4.4.2 The Missing Pa�erns

We have looked at relaঞonships along two dimensions: is-a/has-a, and and/or.
We can draw up a li�le table and see we only have pa�erns for two of the four
table cells.

And Or

Is-a Sum type
Has-a Product type

What about the missing two pa�erns?

The “is-a and” pa�ern means that A is a B and C. This pa�ern is in some ways
the inverse of the sum type pa�ern, and we can implement it as

trait B

trait C

trait A extends B with C

In Scala a trait can extend as many traits as we like using the with keyword
like A extends B with C with D and so on. We aren’t going to use this
pa�ern in this course. If we want to represent that some data conforms to
a number of different interfaces we will o[en be be�er off using a type class,
which we will explore later. There are, however, several legiঞmate uses of this
pa�ern:

• for modularity, using what’s known as the cake pa�ern; and
• sharing implementaঞon across several classes where it doesn’t make
sense to make default implementaঞons in the main trait.

http://jonasboner.com/real-world-scala-dependency-injection-di/

4.4. THE SUM TYPE PATTERN 99

The “has-a or” pa�erns means that A has a B or C. There are two ways we can
implement this. We can say that A has a d of type D, where D is a B or C. We
can mechanically apply our two pa�erns to implement this:

trait A {

def d: D

}

sealed trait D

final case class B() extends D

final case class C() extends D

Alternaঞvely we could implement this as A is a D or E, and D has a B and E has
a C. Again this translates directly into code

sealed trait A

final case class D(b: B) extends A

final case class E(c: C) extends A

4.4.3 Take Home Points

We have seen that we can mechanically translate data using the “has-a and”
and “is-a or” pa�erns (or, more succinctly, the product and sum types) into
Scala code. This type of data is known as an algebraic data type. Understand-
ing these pa�erns is very important for wriঞng idiomaঞc Scala code.

4.4.4 Exercises

4.4.4.1 Stop on a Dime

A traffic light is red, green, or yellow. Translate this descripঞon into Scala code.

See the soluঞon

4.4.4.2 Calculator

A calculaঞon may succeed (with an Int result) or fail (with a Stringmessage).
Implement this.

See the soluঞon

100 CHAPTER 4. MODELLING DATAWITH TRAITS

4.4.4.3 Water, Water, Everywhere

Bo�led water has a size (an Int), a source (which is a well, spring, or tap), and
a Boolean carbonated. Implement this in Scala.

See the soluঞon

4.5 Working With Data

In the previous secঞon we saw how to define algebraic data types using a
combinaঞon of the sum (or) and product type (and) pa�erns. In this secঞon
we’ll see a pa�ern for using algebraic data types, known as structural recursion.
We’ll actually see two variants of this pa�ern: one using polymorphism and
one using pa�ern matching.

Structural recursion is the precise opposite of the process of building an alge-
braic data type. If A has a B and C (the product-type pa�ern), to construct an
Awe must have a B and a C. The sum and product type pa�erns tell us how to
combine data to make bigger data. Structural recursion says that if we have an
A as defined before, we must break it into its consঞtuent B and C that we then
combine in some way to get closer to our desired answer. Structural recursion
is essenঞally the process of breaking down data into smaller pieces.

Just as we have two pa�erns for building algebraic data types, we will have
two pa�erns for decomposing them using structural recursion. We will actu-
ally have two variants of each pa�ern, one using polymorphism, which is the
typical object-oriented style, and one using pa�ern matching, which is typical
funcঞonal style. We’ll end this secঞon with some rules for choosing which
pa�ern to use.

4.5.1 Structural Recursion using Polymorphism

Polymorphic dispatch, or just polymorphism for short, is a fundamental object-
oriented technique. If we define a method in a trait, and have different im-
plementaঞons in classes extending that trait, when we call that method the
implementaঞon on the actual concrete instance will be used. Here’s a very

4.5. WORKINGWITH DATA 101

simple example. We start with a simple definiঞon using the familiar sum type
(or) pa�ern.

sealed trait A {

def foo: String

}

final case class B() extends A {

def foo: String =

"It's B!"

}

final case class C() extends A {

def foo: String =

"It's C!"

}

We declare a value with type A but we see the concrete implementaঞon on B
or C is used.

val anA: A = B()

// anA: A = B()

anA.foo

// res0: String = It's B!

val anA: A = C()

// anA: A = C()

anA.foo

// res1: String = It's C!

We can define an implementaঞon in a trait, and change the implementaঞon in
an extending class using the override keyword.

sealed trait A {

def foo: String =

"It's A!"

}

final case class B() extends A {

override def foo: String =

"It's B!"

}

final case class C() extends A {

102 CHAPTER 4. MODELLING DATAWITH TRAITS

override def foo: String =

"It's C!"

}

The behaviour is as before; the implementaঞon on the concrete class is se-
lected.

val anA: A = B()

// anA: A = B()

anA.foo

// res2: String = It's B!

Remember that if you provide a default implementaঞon in a trait, you should
ensure that implementaঞon is valid for all subtypes.

Now we understand how polymorphism works, how do we use it with an al-
gebraic data types? We’ve actually seen everything we need, but let’s make it
explicit and see the pa�erns.

The Product Type Polymorphism Pa�ern

If A has a b (with type B) and a c (with type C), and we want to write a
method f returning an F, simply write the method in the usual way.

case class A(b: B, c: C) {

def f: F = ???

}

In the body of themethodwemust use b, c, and anymethod parameters
to construct the result of type F.

4.5. WORKINGWITH DATA 103

The Sum Type Polymorphism Pa�ern

If A is a B or C, and we want to write a method f returning an F, define
f as an abstract method on A and provide concrete implementaঞons in
B and C.

sealed trait A {

def f: F

}

final case class B() extends A {

def f: F =

???

}

final case class C() extends A {

def f: F =

???

}

4.5.2 Structural Recursion using Pa�ern Matching

Structural recursion with pa�ern matching proceeds along the same lines as
polymorphism. We simply have a case for every subtype, and each pa�ern
matching case must extract the fields we’re interested in.

The Product Type Pa�ern Matching Pa�ern

If A has a b (with type B) and a c (with type C), and we want to write a
method f that accepts an A and returns an F, write

def f(a: A): F =

a match {

case A(b, c) => ???

}

In the body of the method we use b and c to construct the result of type
F.

104 CHAPTER 4. MODELLING DATAWITH TRAITS

The Sum Type Pa�ern Matching Pa�ern

If A is a B or C, and we want to write a method f accepঞng an A and
returning an F, define a pa�ern matching case for B and C.

def f(a: A): F =

a match {

case B() => ???

case C() => ???

}

4.5.3 A Complete Example

Let’s look at a complete example of the algebraic data type and structural re-
cursion pa�erns, using our familiar Feline data type.

We start with a descripঞon of the data. A Feline is a Lion, Tiger, Panther,
or Cat. We’re going to simplify the data descripঞon, and just say that a Cat has
a String favouriteFood. From this descripঞon we can immediately apply
our pa�ern to define the data.

sealed trait Feline

final case class Lion() extends Feline

final case class Tiger() extends Feline

final case class Panther() extends Feline

final case class Cat(favouriteFood: String) extends Feline

Now let’s implement amethod using both polymorphism and pa�ernmatching.
Ourmethod, dinner, will return the appropriate food for the feline in quesঞon.
For a Cat their dinner is their favouriteFood. For Lions it is antelope, for
Tigers it is ঞger food, and for Panthers it is licorice.

We could represent food as a String, but we can do be�er and represent it
with a type. This avoids, for example, spelling mistakes in our code. So let’s
define our Food type using the now familiar pa�erns.

4.5. WORKINGWITH DATA 105

sealed trait Food

case object Antelope extends Food

case object TigerFood extends Food

case object Licorice extends Food

final case class CatFood(food: String) extends Food

Now we can implement dinner as a method returning Food. First using poly-
morphism:

sealed trait Feline {

def dinner: Food

}

final case class Lion() extends Feline {

def dinner: Food =

Antelope

}

final case class Tiger() extends Feline {

def dinner: Food =

TigerFood

}

final case class Panther() extends Feline {

def dinner: Food =

Licorice

}

final case class Cat(favouriteFood: String) extends Feline {

def dinner: Food =

CatFood(favouriteFood)

}

Now using pa�ern matching. We actually have two choices when using pat-
tern matching. We can implement our code in a single method on Feline or
we can implement it in a method on another object. Let’s see both.

sealed trait Feline {

def dinner: Food =

this match {

case Lion() => Antelope

case Tiger() => TigerFood

case Panther() => Licorice

case Cat(favouriteFood) => CatFood(favouriteFood)

}

}

106 CHAPTER 4. MODELLING DATAWITH TRAITS

object Diner {

def dinner(feline: Feline): Food =

feline match {

case Lion() => Antelope

case Tiger() => TigerFood

case Panther() => Licorice

case Cat(food) => CatFood(food)

}

}

Note how we can directly apply the pa�erns, and the code falls out. This is
the main point we want to make with structural recursion: the code follows
the shape of the data, and can be produced in an almost mechanical way.

4.5.4 Choosing Which Pa�ern to Use

We have three way of implemenঞng structural recursion:

1. polymorphism;
2. pa�ern matching in the base trait; and
3. pa�ern matching in an external object (as in the Diner example above).

Which should we use? The first two methods give the same result: a method
defined on the classes of interest. We should use whichever is more conve-
nient. This normally ends up being pa�ern matching on the base trait as it
requires less code duplicaঞon.

When we implement a method in the classes of interest we can have only one
implementaঞon of the method, and everything that method requires to work
must be contained within the class and parameters we pass to the method.
When we implement methods using pa�ern matching in an external object
we can provide mulঞple implementaঞons, one per object (mulঞple Diners in
the example above).

The general rule is: if a method only depends on other fields and methods
in a class it is a good candidate to be implemented inside the class. If the
method depends on other data (for example, if we needed a Cook to make

4.5. WORKINGWITH DATA 107

dinner) consider implemenঞng it using pa�ern matching outside of the classes
in quesঞon. If we want to have more than one implementaঞon we should use
pa�ern matching and implement it outside the classes.

4.5.5 Object-Oriented vs Funcঞonal Extensibility

In classic funcঞonal programming style we have no objects, only data with-
out methods and funcঞons. This style of programming makes extensive use
of pa�ern matching. We can mimic it in Scala using the algebraic data type
pa�ern and pa�ern matching in methods defined on external objects.

Classic object oriented style uses polymorphism and allow open extension of
classes. In Scala terms this means no sealed traits.

What are the tradeoffs we make in the two different styles?

One advantage of funcঞonal style is it allows the compiler to help us more. By
sealing traits we are telling the compiler it knows all the possible subtypes of
that trait. It can then tell us if we miss out a case in our pa�ern matching. This
is especially useful if we add or remove subtypes later in development. We
could argue we get the same benefit from object-oriented style, as we must
implement all methods defined on the base trait in any subtypes. This is true,
but in pracঞce classes with a large number of methods are very difficult to
maintain and we’ll inevitably end up factoring some of the code into different
classes – essenঞally duplicaঞng the funcঞonal style.

This doesn’t mean funcঞonal style is to be preferred in all cases. There is a
fundamental difference between the kind of extensibility that object-oriented
style and funcঞonal style gives us. With OO style we can easily add new data,
by extending a trait, but adding a new method requires us to change exisঞng
code. With funcঞonal style we can easily add a new method but adding new
data requires us to modify exisঞng code. In tabular form:

Add new method Add new data

OO Change exisঞng code Exisঞng code unchanged
FP Exisঞng code unchanged Change exisঞng code

108 CHAPTER 4. MODELLING DATAWITH TRAITS

In Scala we have the flexibility to use both polymorphism and pa�ern match-
ing, andwe should usewhichever is appropriate. However we generally prefer
sealed traits as it gives us greater guarantees about our code’s semanঞcs, and
we can use typeclasses, which we’ll explore later, to get us OO-style extensi-
bility.

4.5.6 Exercises

4.5.6.1 Traffic Lights

In the previous secঞon we implemented a TrafficLight data type like so:

sealed trait TrafficLight

case object Red extends TrafficLight

case object Green extends TrafficLight

case object Yellow extends TrafficLight

Using polymorphism and then using pa�ern matching implement a method
called next which returns the next TrafficLight in the standard Red ->
Green -> Yellow -> Red cycle. Do you think it is be�er to implement this
method inside or outside the class? If inside, would you use pa�ern matching
or polymorphism? Why?

See the soluঞon

4.5.6.2 Calculaঞon

In the last secঞon we created a Calculation data type like so:

sealed trait Calculation

final case class Success(result: Int) extends Calculation

final case class Failure(reason: String) extends Calculation

We’re now going to write some methods that use a Calculation to perform
a larger calculaঞon. These methods will have a somewhat unusual shape—this
is a precursor to things we’ll be exploring soon—but if you follow the pa�erns
you will be fine.

4.6. RECURSIVE DATA 109

Create a Calculator object. On Calculator define methods + and - that
accept a Calculation and an Int, and return a new Calculation. Here are
some examples

assert(Calculator.+(Success(1), 1) == Success(2))

assert(Calculator.-(Success(1), 1) == Success(0))

assert(Calculator.+(Failure("Badness"), 1) == Failure("Badness"))

See the soluঞon

Now write a division method that fails if the divisor is 0. The following tests
should pass. Note the behavior for the last test. This indicates “fail fast” be-
havior. If a calculaঞon has already failed we keep that failure and don’t process
any more data even if, as is the case in the test, doing so would lead to another
failure.

assert(Calculator./(Success(4), 2) == Success(2))

assert(Calculator./(Success(4), 0) == Failure("Division by zero"))

assert(Calculator./(Failure("Badness"), 0) == Failure("Badness"))

See the soluঞon

4.5.6.3 Email

Recall the Visitor trait we looked at earlier: a website Visitor is either
Anonymous or a signed-in User. Now imagine we wanted to add the ability
to send emails to visitors. We can only email signed-in users, and sending an
email requires a lot of knowledge about SMTP seমngs, MIME headers, and
so on. Would an email method be be�er implemented using polymorphism
on the Visitor trait or using pa�ern matching in an EmailService object?
Why?

See the soluঞon

4.6 Recursive Data

A parঞcular use of algebraic data types that comes up very o[en is defining
recursive data. This is data that is defined in terms of itself, and allows us to

110 CHAPTER 4. MODELLING DATAWITH TRAITS

create data of potenঞally unbounded size (though any concrete instance will
be finite).

We can’t define recursive data like²

final case class Broken(broken: Broken)

as we could never actually create an instance of such a type—the recursion
never ends. To define valid recursive data we must define a base case, which
is the case that ends the recursion.

Here is a more useful recursive definiঞon: an IntList is either the empty list
End, or a Pair³ containing an Int and an IntList. We can directly translate
this to code using our familiar pa�erns:

sealed trait IntList

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Here End is the base case. We construct the list containing 1, 2, and 3 as
follows:

Pair(1, Pair(2, Pair(3, End)))

This data structure is known as a singly-linked list. In this examplewe have four
links in our chain. We can write this out in a longer form to be�er understand
the structure of the list. Below, d represents an empty list, and a, b, and c are
pairs built on top of it.

²We actually can define data in this manner if we delay the construcঞon of the recursive
case, like final case class LazyList(head: Int, tail: () => LazyList). This uses
a feature of Scala, funcঞons, that we haven’t seen yet. We can do some fairly mind-bending
things with this construcঞon, such as defining an infinite stream of ones with the declaraঞon
val ones: LazyList = LazyList(1, () => ones). Since we only ever realise a finite
amount of this list we can use it to implement certain types of data that would be difficult
to implement in other ways. If you’re interested in exploring this area further, what we have
implemented in called a lazy list, and an “odd lazy list” in parঞcular. The “even list”, described
in How to add laziness to a strict language wihtout even being odd, is a be�er implementaঞon.
If you wish to explore further, there is a rich literature on lazy datastructures and more mind
melঞng theory under the name of “coinducঞve data”.
³The tradiঞonal name this element is a Cons cell. We don’t use this name as it’s a bit con-

fusing if you don’t know the story behind it.

http://www.cs.rice.edu/~taha/publications/conference/sml98.pdf

4.6. RECURSIVE DATA 111

val d = End()

val c = Pair(3, d)

val b = Pair(2, c)

val a = Pair(1, b)

In addiঞon to being links in a chain, these data structures all represent com-
plete sequences of integers:

• a represents the sequence 1, 2, 3

• b represents the sequence 2, 3

• c represents the sequence 3 (only one element)
• d represents an empty sequence

Using this implementaঞon, we can build lists of arbitrary length by repeatedly
taking an exisঞng list and prepending a new element⁴.

We can apply the same structural recursion pa�erns to process a recursive
algebraic data type. The only wrinkle is that we must make a recursive call
when the data definiঞon is recursion.

Let’s add together all the elements of an IntList. We’ll use pa�ern matching,
but as we know the same process applies to using polymorphism.

Start with the tests and method declaraঞon.

val example = Pair(1, Pair(2, Pair(3, End)))

assert(sum(example) == 6)

assert(sum(example.tail) == 5)

assert(sum(End) == 0)

def sum(list: IntList): Int = ???

Note how the tests define 0 to be the sum of the elements of an End list. It is
important that we define an appropriate base case for our method as we will
build our final result of this base case.

Now we apply our structural recursion pa�ern to fill out the body of the
method.

⁴This is how Scala’s built-in List data structure works. We will be introduced to List in
the chapter on Collecࢼons.

112 CHAPTER 4. MODELLING DATAWITH TRAITS

def sum(list: IntList): Int =

list match {

case End => ???

case Pair(hd, tl) => ???

}

Finally we have to decide on the bodies of our cases. We have already decided
that 0 is answer for End. For Pair we have two bits of informaঞon to guide
us. We know we need to return an Int and we know that we need to make a
recursive call on tl. Let’s fill in what we have.

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => ??? sum(tl)

}

The recursive call will return the sum of the tail of the list, by definiঞon. Thus
the correct thing to do is to add hd to this result. This gives us our final result:

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => hd + sum(tl)

}

4.6.1 Understanding the Base Case and Recursive Case

Our pa�erns will carry us most of the way to a correct answer, but we sঞll
need to supply the method bodies for the base and recursive cases. There is
some general guidance we can use:

• For the base case we should generally return the idenࢼty for the func-
ঞon we’re trying to compute. The idenঞty is an element that doesn’t
change the result. E.g. 0 is the idenঞty for addiঞon, because a + 0 ==

a for any a. If we were calculaঞng the product of elements the idenঞty
would be 1 as a * 1 == a for all a.

4.6. RECURSIVE DATA 113

• For the recursive case, assume the recursion will return the correct re-
sult and work out what you need to add to get the correct answer. We
saw this for sum, where we assume the recursive call will give us the
correct result for the tail of the list and we then just add on the head.

Recursive Algebraic Data Types Pa�ern

When defining recursive algebraic data types, there must be at least
two cases: one that is recursive, and one that is not. Cases that are not
recursive are known as base cases. In code, the general skeleton is:

sealed trait RecursiveExample

final case class RecursiveCase(recursion: RecursiveExample)

extends RecursiveExample

case object BaseCase extends RecursiveExample

Recursive Structural Recursion Pa�ern

When wriঞng structurally recursive code on a recursive algebraic data
type:

• whenever we encounter a recursive element in the data wemake
a recursive call to our method; and

• whenever we encounter a base case in the data we return the
idenঞty for the operaঞon we are performing.

4.6.2 Tail Recursion

You may be concerned that recursive calls will consume excessive stack space.
Scala can apply an opঞmisaঞon, called tail recursion, to many recursive func-
ঞons to stop them consuming stack space.

114 CHAPTER 4. MODELLING DATAWITH TRAITS

A tail call is a method call where the caller immediately returns the value. So
this is a tail call

def method1: Int =

1

def tailCall: Int =

method1

because tailCall immediately returns the result of calling method1 while

def notATailCall: Int =

method1 + 2

because notATailCall does not immediatley return—it adds an number to
the result of the call.

A tail call can be opঞmised to not use stack space. Due to limitaঞons in the
JVM, Scala only opঞmises tail calls where the caller calls itself. Since tail re-
cursion is an important property to maintain, we can use the @tailrec anno-
taঞon to ask the compiler to check that methods we believe are tail recursion
really are. Here we have two versions of sum annotated. One is tail recursive
and one is not. You can see the compiler complains about the method that is
not tail recursive.

import scala.annotation.tailrec

@tailrec

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => hd + sum(tl)

}

// <console>:20: error: could not optimize @tailrec annotated method

sum: it contains a recursive call not in tail position

// list match {

// ^

4.6. RECURSIVE DATA 115

@tailrec

def sum(list: IntList, total: Int = 0): Int =

list match {

case End => total

case Pair(hd, tl) => sum(tl, total + hd)

}

// sum: (list: IntList, total: Int)Int

Any non-tail recursion funcঞon can be transformed into a tail recursive ver-
sion by adding an accumulator as we have done with sum above. This trans-
forms stack allocaঞon into heap allocaঞon, which someঞmes is a win, and
other ঞmes is not.

In Scala we tend not to work directly with tail recursive funcঞons as there is a
rich collecঞons library that covers themost common caseswhere tail recursion
is used. Should you need to go beyond this, because you’re implemenঞng your
own datatypes or are opঞmising code, it is useful to know about tail recursion.

4.6.3 Exercises

4.6.3.1 A List of Methods

Using our definiঞon of IntList

sealed trait IntList

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

define a method length that returns the length of the list. There is test data
below you can use to check your soluঞon. For this exercise it is best to use
pa�ern matching in the base trait.

val example = Pair(1, Pair(2, Pair(3, End)))

assert(example.length == 3)

assert(example.tail.length == 2)

assert(End.length == 0)

116 CHAPTER 4. MODELLING DATAWITH TRAITS

See the soluঞon

Define a method to compute the product of the elements in an IntList. Test
cases are below.

assert(example.product == 6)

assert(example.tail.product == 6)

assert(End.product == 1)

See the soluঞon

Define amethod to double the value of each element in an IntList, returning
a new IntList. The following test cases should hold:

assert(example.double == Pair(2, Pair(4, Pair(6, End))))

assert(example.tail.double == Pair(4, Pair(6, End)))

assert(End.double == End)

See the soluঞon

4.6.3.2 The Forest of Trees

A binary tree of integers can be defined as follows:

A Tree is a Node with a le[and right Tree or a Leaf with an element of type
Int.

Implement this algebraic data type.

See the soluঞon

Implement sum and double on Tree using polymorphism and pa�ern match-
ing.

See the soluঞon

4.7 Extended Examples

To test your skills with algebraic data types and structural recursion here are
some larger projects to a�empt.

4.7. EXTENDED EXAMPLES 117

4.7.0.1 A Calculator

In this exercise we’ll implement a simple interpreter for programs containing
only numeric operaঞons.

We start by defining some types to represent the expressions we’ll be operat-
ing on. In the compiler literature this is known as an abstract syntax tree.

Our representaঞon is:

• An Expression is an Addition, Subtraction, or a Number;
• An Addiঞon has a left and right Expression;
• A Subtracঞon has a left and right Expression; or
• A Number has a value of type Double.

Implement this in Scala.

See the soluঞon

Now implement a method eval that converts an Expression to a Double.
Use polymorphism or pa�ern matching as you see fit. Explain your choice of
implementaঞon method.

See the soluঞon

We’re now going to add some expressions that call fail: division and square
root. Start by extending the abstract syntax tree to include representaঞons
for Division and SquareRoot.

See the soluঞon

Now we’re going to change eval to represent that a computaঞon can fail.
(Double uses NaN to indicate a computaঞon failed, but we want to be helpful
to the user and tell them why the computaঞon failed.) Implement an appro-
priate algebraic data type.

See the soluঞon

Now change eval to return your result type, which I have called Calculation
in my implementaঞon. Here are some examples:

118 CHAPTER 4. MODELLING DATAWITH TRAITS

assert(Addition(SquareRoot(Number(-1.0)), Number(2.0)).eval ==

Failure("Square root of negative number"))

assert(Addition(SquareRoot(Number(4.0)), Number(2.0)).eval == Success

(4.0))

assert(Division(Number(4), Number(0)).eval == Failure("Division by

zero"))

See the soluঞon

4.7.0.2 JSON

In the calculator exercise we gave you the algebraic data type representaঞon.
In this exercise we want you to design the algebraic data type yourself. We’re
going to work in what is hopefully a familiar domain: JSON.

Design an algebraic data type to represent JSON. Don’t go directly to code.
Start by sketching out the design in terms of logical ands and ors—the building
blocks of algebraic data types. Youmight find it useful to use a notaঞon similar
to BNF. For example, we could represent the Expression data type from the
previous exercise as follows:

Expression ::= Addition left:Expression right:Expression

| Subtraction left:Expression right:Expression

| Division left:Expression right:Expression

| SquareRoot value:Expression

| Number value:Int

This simplified notaঞon allows us to concentrate on the structure of the alge-
braic data type without worrying about the intricacies of Scala syntax.

Note you’ll need a sequence type to model JSON, and we haven’t looked at
Scala’s collecঞon library yet. However we have seen how to implement a list
as an algebraic data type.

Here are some examples of JSON you’ll need to be able to represent

http://www.json.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

4.7. EXTENDED EXAMPLES 119

["a string", 1.0, true]

{

"a": [1,2,3],

"b": ["a","b","c"]

"c": { "doh":true, "ray":false, "me":1 }

}

See the soluঞon

Translate your representaঞon to Scala code.

See the soluঞon

Now add a method to convert your JSON representaঞon to a String. Make
sure you enclose strings in quotes, and handle arrays and objects properly.

See the soluঞon

Test your method works. Here are some examples using the representaঞon I
chose.

SeqCell(JsString("a string"), SeqCell(JsNumber(1.0), SeqCell(JsBoolean

(true), SeqEnd))).print

// res0: String = ["a string", 1.0, true]

ObjectCell(

"a", SeqCell(JsNumber(1.0), SeqCell(JsNumber(2.0), SeqCell(JsNumber

(3.0), SeqEnd))),

ObjectCell(

"b", SeqCell(JsString("a"), SeqCell(JsString("b"), SeqCell(

JsString("c"), SeqEnd))),

ObjectCell(

"c", ObjectCell("doh", JsBoolean(true),

ObjectCell("ray", JsBoolean(false),

ObjectCell("me", JsNumber(1.0), ObjectEnd))),

ObjectEnd

)

)

).print

// res1: String = {"a": [1.0, 2.0, 3.0], "b": ["a", "b", "c"], "c": {"

doh": true, "ray": false, "me": 1.0}}

120 CHAPTER 4. MODELLING DATAWITH TRAITS

4.7.0.3 Music

In the JSON exercise there was a well defined specificaঞon to model. In this
exercise we want to work on modelling skills given a rather fuzzy specificaঞon.
The goal is to model music. You can choose to interpret this how you want,
making your model as simple or complex as you like. The criঞcal thing is to be
able to jusঞfy the decisions you made, and to understand the limits of your
model.

You might find it easiest to use the BNF notaঞon, introduced in the JSON
exercise, to write down your model.

See the soluঞon

4.8 Conclusions

In this chapter we have made an extremely important change in our focus,
away from language features and towards the programming pa�erns they sup-
port. This conঞnues for the rest of the book.

We have explored two extremely important pa�erns: algebraic data types and
structural recursion. These pa�erns allow us to go from amental model of data,
to the representaঞon and processing of that data in Scala in an almost enঞrely
mechanical way. Not only in the structure of our code formulaic, and thus easy
to comprehend, but the compiler can catch common errors for us whichmakes
development and maintenance easier. These two tools are among the most
commonly used in idiomaঞc funcঞonal code, and it is hard to over-emphasize
their importance.

In the exercises we developed a few common data structures, but we were
limited to storing a fixed type of data, and our code contained a lot of repeঞ-
ঞon. In the next secঞon we will look at how we can abstract over types and
methods, and introduce some important concepts of sequencing operaঞons.

Chapter 5

Sequencing Computaঞons

In this secঞon we’re going to look at two more language features, generics
and funcࢼons, and see some abstracঞons we can build using these features:
functors, and monads.

Our starঞng point is code that we developed in the previous secঞon. We
developed IntList, a list of integers, and wrote code like the following:

sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

def sum: Int =

this match {

121

122 CHAPTER 5. SEQUENCING COMPUTATIONS

case End => 0

case Pair(hd, tl) => hd + tl.sum

}

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

There are two problems with this code. The first is that our list is restricted
to storing Ints. The second problem is that here is a lot of repeঞঞon. The
code has the same general structure, which is unsurprising given we’re using
our structural recursion pa�ern, and it would be nice to reduce the amount of
duplicaঞon.

We will address both problems in this secঞon. For the former we will use
generics to abstract over types, so we can create data that works with user
specified types. For the la�er we will use funcঞons to abstract over methods,
so we can reduce duplicaঞon in our code.

As we work with these techniques we’ll see some general pa�erns emerge.
We’ll name and invesঞgate these pa�erns in more detail at the end of this
secঞon.

5.1 Generics

Generic types allow us to abstract over types. There are useful for all sorts
of data structures, but commonly encountered in collecঞons so that’s where
we’ll start.

5.1.1 Pandora’s Box

Let’s start with a collecঞon that is even simpler than our list—a box that stores
a single value. We don’t care what type is stored in the box, but we want to
make sure we preserve that type when we get the value out of the box. To do
this we use a generic type.

5.1. GENERICS 123

final case class Box[A](value: A)

Box(2)

// res0: Box[Int] = Box(2)

res0.value

// res1: Int = 2

Box("hi") // if we omit the type parameter, scala will infer its value

// res2: Box[String] = Box(hi)

res2.value

// res3: String = hi

The syntax [A] is called a type parameter. We can also add type parameters to
methods, which limits the scope of the parameter to the method declaraঞon
and body:

def generic[A](in: A): A = in

generic[String]("foo")

// res4: String = foo

generic(1) // again, if we omit the type parameter, scala will infer

it

// res5: Int = 1

Type parameters work in a way analogous to method parameters. When we
call a method we bind the method’s parameter names to the values given in
themethod call. For example, whenwe call generic(1) the name in is bound
to the value 1 within the body of generic.

When we call a method or construct a class with a type parameter, the type
parameter is bound to the concrete type within the method or class body. So
when we call generic(1) the type parameter A is bound to Int in the body
of generic.

124 CHAPTER 5. SEQUENCING COMPUTATIONS

Type Parameter Syntax

We declare generic types with a list of type names within square brack-
ets like [A, B, C]. By convenঞon we use single uppercase le�ers for
generic types.

Generic types can be declared in a class or trait declaraঞon in which
case they are visible throughout the rest of the declaraঞon.

case class Name[A](...){ ... }

trait Name[A]{ ... }

Alternaঞvely they may be declared in a method declaraঞon, in which
case they are only visible within the method.

def name[A](...){ ... }

5.1.2 Generic Algebraic Data Types

We described type parameters as analogous to method parameters, and this
analogy conঞnues when extending a trait that has type parameters. Extend-
ing a trait, as we do in a sum type, is the type level equivalent of calling a
method and we must supply values for any type parameters of the trait we’re
extending.

In previous secঞons we’ve seen sum types like the following:

sealed trait Calculation

final case class Success(result: Double) extends Calculation

final case class Failure(reason: String) extends Calculation

Let’s generalise this so that our result is not restricted to a Double but can
be some generic type. In doing so let’s change the name from Calculation

to Result as we’re not restricted to numeric calculaঞons anymore. Now our
data definiঞon becomes:

5.1. GENERICS 125

A Result of type A is either a Success of type A or a Failurewith a String
reason. This translates to the following code

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

Noঞce that both Success and Failure introduce a type parameter A which
is passed to Result when it is extended. Success also has a value of type A,
but Failure only introduces A so it can pass it onward to Result. In a later
secঞon we’ll introduce variance, giving us a cleaner way to implement this, but
for now this is the pa�ern we’ll use.

Invariant Generic Sum Type Pa�ern

If A of type T is a B or C write

sealed trait A[T]

final case class B[T]() extends A[T]

final case class C[T]() extends A[T]

5.1.3 Exercises

5.1.3.1 Generic List

Our IntList type was defined as

sealed trait IntList

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Change the name to LinkedList and make it generic in the type of data
stored in the list.

See the soluঞon

126 CHAPTER 5. SEQUENCING COMPUTATIONS

5.1.3.2 Working With Generic Types

There isn’t much we can do with our LinkedList type. Remember that types
define the available operaঞons, and with a generic type like A there isn’t a
concrete type to define any available operaঞons. (Generic types are made
concrete when a class is instanঞated, which is too late to make use of the
informaঞon in the definiঞon of the class.)

However, we can sঞll do some useful things with our LinkedList! Implement
length, returning the length of the LinkedList. Some test cases are below.

val example = Pair(1, Pair(2, Pair(3, End())))

assert(example.length == 3)

assert(example.tail.length == 2)

assert(End().length == 0)

See the soluঞon

On the JVM we can compare all values for equality. Implement a method
contains that determines whether or not a given item is in the list. Ensure
your code works with the following test cases:

val example = Pair(1, Pair(2, Pair(3, End())))

assert(example.contains(3) == true)

assert(example.contains(4) == false)

assert(End().contains(0) == false)

// This should not compile

// example.contains("not an Int")

See the soluঞon

Implement a method apply that returns the nth item in the list

Hint: If you need to signal an error in your code (there’s one situaঞon in which
you will need to do this), consider throwing an excepঞon. Here is an example:

throw new Exception("Bad things happened")

Ensure your soluঞon works with the following test cases:

5.2. FUNCTIONS 127

val example = Pair(1, Pair(2, Pair(3, End())))

assert(example(0) == 1)

assert(example(1) == 2)

assert(example(2) == 3)

assert(try {

example(3)

false

} catch {

case e: Exception => true

})

See the soluঞon

Throwing an excepঞon isn’t cool. Whenever we throw an excepঞon we lose
type safety as there is nothing in the type system that will remind us to deal
with the error. It would be much be�er to return some kind of result that
encodes we can succeed or failure. We introduced such a type in this very
secঞon.

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

Change apply so it returns a Result, with a failure case indicaঞng what went
wrong. Here are some test cases to help you:

assert(example(0) == Success(1))

assert(example(1) == Success(2))

assert(example(2) == Success(3))

assert(example(3) == Failure("Index out of bounds"))

See the soluঞon

5.2 Funcঞons

Funcঞons allow us to abstract over methods, turning methods into values that
we can pass around and manipulate within our programs.

Let’s look at three methods we wrote that manipulate IntList.

128 CHAPTER 5. SEQUENCING COMPUTATIONS

sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

def sum: Int =

this match {

case End => 0

case Pair(hd, tl) => hd + tl.sum

}

}

case object End extends IntList

case class Pair(hd: Int, tl: IntList) extends IntList

All of these methods have the same general pa�ern, which is not surprising
as they all use structural recursion. It would be nice to be able to remove the
duplicaঞon.

Let’s start by focusing on the methods that return an Int: length, product,
and sum. We want to write a method like

def abstraction(end: Int, f: ???): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.abstraction(end, f))

}

I’ve used f to denote some kind of object that does the combinaঞon of the
head and recursive call for the Pair case. At the moment we don’t know how

5.2. FUNCTIONS 129

to write down the type of this value, or how to construct one. However, we
can guess from the ঞtle of this secঞon that what we want is a funcঞon!

A funcঞon is like a method: we can call it with parameters and it evaluates
to a result. Unlike a method a funcঞon is value. We can pass a funcঞon to a
method or to another funcঞon. We can return a funcঞon from a method, and
so on.

Much earlier in this course we introduced the apply method, which lets us
treat objects as funcঞons in a syntacঞc sense:

object add1 {

def apply(in: Int) = in + 1

}

add1(2)

// res0: Int = 3

This is a big step towards doing real funcঞonal programming in Scala but we’re
missing one important component: types.

As we have seen, types allow us to abstract across values. We’ve seen special
case funcঞons like Adders, but what we really want is a generalised set of
types that allow us to represent computaঞons of any kind.

Enter Scala’s Function types.

5.2.1 Funcঞon Types

We write a funcঞon type like (A, B) => C where A and B are the types of
the parameters and C is the result type. The same pa�ern generalises from
funcঞons of no arguments to an arbitrary number of arguments.

In our example above we want f to be a funcঞon that accepts two Ints as
parameters and returns an Int. Thus we can write it as (Int, Int) => Int.

130 CHAPTER 5. SEQUENCING COMPUTATIONS

Funcঞon Type Declaraঞon Syntax

To declare a funcঞon type, write

(A, B, ...) => C

where

• A, B, ... are the types of the input parameters; and
• C is the type of the result.

If a funcঞon only has one parameter the parentheses may be dropped:

A => B

5.2.2 Funcঞon literals

Scala also gives us a funcࢼon literal syntax specifically for creaঞng new func-
ঞons. Here are some example funcঞon literals:

val sayHi = () => "Hi!"

// sayHi: () => String = <function0>

sayHi()

// res1: String = Hi!

val add1 = (x: Int) => x + 1

// add1: Int => Int = <function1>

add1(10)

// res2: Int = 11

val sum = (x: Int, y:Int) => x + y

// sum: (Int, Int) => Int = <function2>

5.2. FUNCTIONS 131

sum(10, 20)

// res3: Int = 30

In code where we know the argument types, we can someঞmes drop the type
annotaࢼons and allow Scala to infer them¹. There is no syntax for declaring the
result type of a funcঞon and it is normally inferred, but if we find ourselves
needing to do this we can put a type on the funcঞon’s body expression:

(x: Int) => (x + 1): Int

Funcঞon Literal Syntax

The syntax for declaring a funcঞon literal is

(parameter: type, ...) => expression

where - the opঞonal parameters are the names given to the funcঞon
parameters; - the types are the types of the funcঞon parameters; and -
the expression determines the result of the funcঞon.

5.2.3 Exercises

5.2.3.1 A Be�er Abstracঞon

We started developing an abstracঞon over sum, length, and product which
we sketched out as

def abstraction(end: Int, f: ???): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.abstraction(end, f))

¹Note that we only can drop the parentheses around the argument list on single-argument
funcঞons—we sঞll have to write () => foo and (a, b) => foo on funcঞons of other ariঞes.

132 CHAPTER 5. SEQUENCING COMPUTATIONS

}

Rename this funcঞon to fold, which is the name it is usually known as, and
finish the implementaঞon.

See the soluঞon

Now reimplement sum, length, and product in terms of fold.

See the soluঞon

Is it more convenient to rewrite methods in terms of fold if they were imple-
mented using pa�ern matching or polymorphic? What does this tell us about
the best use of fold?

See the soluঞon

Why can’t we write our double method in terms of fold? Is it feasible we
could if we made some change to fold?

See the soluঞon

Implement a generalised version of fold and rewrite double in terms of it.

See the soluঞon

5.3 Generic Folds for Generic Data

We’ve seen that when we define a class with generic data, we cannot imple-
ment very many methods on that class. The user supplies the generic type,
and thus we must ask the user to supply funcঞons that work with that type.
Nonetheless, there are some common pa�erns for using generic data, which
is what we explore in this secঞon. We have already seen fold in the context of
our IntList. Here we will explore fold in more detail, and learn the pa�ern
for implemenঞng fold for any algebraic data type.

5.3.1 Fold

Last ঞme we saw fold we were working with a list of integers. Let’s generalise
to a list of a generic type. We’ve already seen all the tools we need. First our

5.3. GENERIC FOLDS FOR GENERIC DATA 133

data definiঞon, in this instance slightly modified to use the invariant sum type
pa�ern.

sealed trait LinkedList[A]

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

The last version of fold that we saw on IntList was

def fold[A](end: A, f: (Int, A) => A): A =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

It’s reasonably straigh�orward to extend this to LinkedList[A]. We merely
have to account for the head element of a Pair being of type A not Int.

sealed trait LinkedList[A] {

def fold[B](end: B, f: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Fold is just an adaptaঞon of structural recursion where we allow the user to
pass in the funcঞons we apply at each case. As structural recursion is the
generic pa�ern for wriঞng any funcঞon that transforms an algebraic datatype,
fold is the concrete realisaঞon of this generic pa�ern. That is, fold is the
generic transformaঞon or iteraঞon method. Any funcࢼon you care to write
on an algebraic datatype can be wri�en in terms of fold.

134 CHAPTER 5. SEQUENCING COMPUTATIONS

Fold Pa�ern

For an algebraic datatype A, fold converts it to a generic type B. Fold is
a structural recursion with:

• one funcঞon parameter for each case in A;
• each funcঞon takes as parameters the fields for its associated
class;

• if A is recursive, any funcঞon parameters that refer to a recursive
field take a parameter of type B.

The right-hand side of pa�ernmatching cases, or the polymorphic meth-
ods as appropriate, consists of calls to the appropriate funcঞon.

Let’s apply the pa�ern to derive the fold method above. We start with our
basic template:

sealed trait LinkedList[A] {

def fold[B](???): B =

this match {

case End() => ???

case Pair(hd, tl) => ???

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

This is just the structural recursion template with the addiঞon of a generic
type parameter for the return type.

Now we add one funcঞon for each of the two classes in LinkedList.

def fold[B](end: ???, pair: ???): B =

this match {

case End() => ???

case Pair(hd, tl) => ???

5.3. GENERIC FOLDS FOR GENERIC DATA 135

}

From the rules for the funcঞon types:

• end has no parameters (as End stores no values) and returns B. Thus its
type is () => B, which we can opঞmise to just a value of type B; and

• pair has two parameters, one for the list head and one for the tail. The
argument for the head has type A, and the tail is recursive and thus has
type B. The final type is therefore (A, B) => B.

Subsঞtuঞng in we get

def fold[B](end: B, pair: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => pair(hd, tl.fold(end, pair))

}

5.3.2 Working With Funcঞons

There are a few tricks in Scala for working with funcঞons and methods that
accept funcঞons (known as higher-order methods). Here we are going to look
at:

1. a compact syntax for wriঞng funcঞons;
2. converঞng methods to funcঞons; and
3. a way to write higher-order methods that assists type inference.

5.3.2.1 Placeholder syntax

In very simple situaঞons we can write inline funcঞons using an extreme short-
hand called placeholder syntax. It looks like this:

136 CHAPTER 5. SEQUENCING COMPUTATIONS

((_: Int) * 2)

// res: Int => Int = <function1>

(_: Int) * 2 is expanded by the compiler to (a: Int) => a * 2. It is
more idiomaঞc to use the placeholder syntax only in the cases where the com-
piler can infer the types. Here are a few more examples:

_ + _ // expands to `(a, b) => a + b`

foo(_) // expands to `(a) => foo(a)`

foo(_, b) // expands to `(a) => foo(a, b)`

_(foo) // expands to `(a) => a(foo)`

// and so on...

Placeholder syntax, while wonderfully terse, can be confusing for large expres-
sions and should only be used for very small funcঞons.

5.3.3 Converঞng methods to funcঞons

Scala contains another feature that is directly relevant to this secঞon—the abil-
ity to convert method calls to funcঞons. This is closely related to placeholder
syntax—simply follow a method with an underscore:

object Sum {

def sum(x: Int, y: Int) = x + y

}

Sum.sum

// <console>:23: error: missing argument list for method sum in object

Sum

// Unapplied methods are only converted to functions when a function

type is expected.

// You can make this conversion explicit by writing `sum _` or `sum(_,

_)` instead of `sum`.

// Sum.sum

// ^

5.3. GENERIC FOLDS FOR GENERIC DATA 137

(Sum.sum _)

// res1: (Int, Int) => Int = <function2>

In situaঞons where Scala can infer that we need a funcঞon, we can even drop
the underscore and simply write the method name—the compiler will promote
the method to a funcঞon automaঞcally:

object MathStuff {

def add1(num: Int) = num + 1

}

Counter(2).adjust(MathStuff.add1)

// res2: Counter = Counter(3)

5.3.3.1 Mulঞple Parameter Lists

Methods in Scala can actually have mulঞple parameter lists. Such methods
work just like normal methods, except we must bracket each parameter list
separately.

def example(x: Int)(y: Int) = x + y

// example: (x: Int)(y: Int)Int

example(1)(2)

// res3: Int = 3

Mulঞple parameter lists have two relevant uses: they look nicer when defining
funcঞons inline and they assist with type inference.

The former is the ability to write funcঞons that look like code blocks. For
example, if we define fold as

def fold[B](end: B)(pair: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => pair(hd, tl.fold(end, pair))

}

then we can call it as

138 CHAPTER 5. SEQUENCING COMPUTATIONS

fold(0){ (total, elt) => total + elt }

which is a bit easier to read than

fold(0, (total, elt) => total + elt)

More important is the use of mulঞple parameter lists to ease type inference.
Scala’s type inference algorithm cannot use a type inferred for one parame-
ter for another parameter in the same list. For example, given fold with a
signature like

def fold[B](end: B, pair: (A, B) => B): B

if Scala infers B for end it cannot then use this inferred type for the B in pair,
so we must o[en write a type declaraঞon on pair. However, Scala can use
types inferred for one parameter list in another parameter list. So if we write
fold as

def fold[B](end: B)(pair: (A, B) => B): B

then inferring B from end (which is usually easy) allows B to be used when
inferring the type pair. This means fewer type declaraঞons and a smoother
development process.

5.3.4 Exercises

5.3.4.1 Tree

A binary tree can be defined as follows:

A Tree of type A is a Nodewith a le[and right Tree or a Leafwith an element
of type A.

Implement this algebraic data type along with a fold method.

See the soluঞon

Using fold convert the following Tree to a String

5.4. MODELLING DATAWITH GENERIC TYPES 139

val tree: Tree[String] =

Node(Node(Leaf("To"), Leaf("iterate")),

Node(Node(Leaf("is"), Leaf("human,")),

Node(Leaf("to"), Node(Leaf("recurse"), Leaf("divine")))))

Remember you can append Strings using the + method.

See the soluঞon

5.4 Modelling Data with Generic Types

In this secঞon we’ll see the addiঞonal power the generic types give us when
modelling data. We see that with generic types we can implement generic
sum and product types, and also model some other useful abstracঞons such as
opࢼonal values.

5.4.1 Generic Product Types

Let’s look at using generics to model a product type. Consider a method that
returns two values—for example, an Int and a String, or a Boolean and a
Double:

def intAndString: ??? = // ...

def booleanAndDouble: ??? = // ...

The quesঞon is what do we use as the return types? We could use a regular
class without any type parameters, with our usual algebraic data type pa�erns,
but then we would have to implement one version of the class for each com-
binaঞon of return types:

case class IntAndString(intValue: Int, stringValue: String)

def intAndString: IntAndString = // ...

case class BooleanAndDouble(booleanValue: Boolean, doubleValue: Double

)

140 CHAPTER 5. SEQUENCING COMPUTATIONS

def booleanAndDouble: BooleanAndDouble = // ...

The answer is to use generics to create a product type—for example a Pair—
that contains the relevant data for both return types:

def intAndString: Pair[Int, String] = // ...

def booleanAndDouble: Pair[Boolean, Double] = // ...

Generics provide a different approach to defining product types— one that
relies on aggregaঞon as opposed to inheritance.

5.4.1.1 Exercise: Pairs

Implement the Pair class from above. It should store two values—one and
two—and be generic in both arguments. Example usage:

val pair = Pair[String, Int]("hi", 2)

// pair: Pair[String,Int] = Pair(hi,2)

pair.one

// res0: String = hi

pair.two

// res1: Int = 2

See the soluঞon

5.4.2 Tuples

A tuple is the generalisaঞon of a pair to more terms. Scala includes built-in
generic tuple types with up to 22 elements, along with special syntax for cre-
aঞng them. With these classes we can represent any kind of this and that
relaঞonship between almost any number of terms.

5.4. MODELLING DATAWITH GENERIC TYPES 141

The classes are called Tuple1[A] through to Tuple22[A, B, C, ...] but
they can also be wri�en in the sugared² form (A, B, C, ...). For example:

Tuple2("hi", 1) // unsugared syntax

// res2: (String, Int) = (hi,1)

("hi", 1) // sugared syntax

// res3: (String, Int) = (hi,1)

("hi", 1, true)

// res4: (String, Int, Boolean) = (hi,1,true)

We can define methods that accept tuples as parameters using the same syn-
tax:

def tuplized[A, B](in: (A, B)) = in._1

// tuplized: [A, B](in: (A, B))A

tuplized(("a", 1))

// res5: String = a

We can also pa�ern match on tuples as follows:

(1, "a") match {

case (a, b) => a + b

}

// res6: String = 1a

Although pa�ernmatching is the natural way to deconstruct a tuple, each class
also has a complement of fields named _1, _2 and so on:

val x = (1, "b", true)

// x: (Int, String, Boolean) = (1,b,true)

x._1

// res7: Int = 1

²The term “syntacঞc sugar” is used to refer to convenience syntax that is not needed but
makes programming sweeter. Operator syntax is another example of syntacঞc sugar that Scala
provides.

142 CHAPTER 5. SEQUENCING COMPUTATIONS

x._3

// res8: Boolean = true

5.4.3 Generic Sum Types

Now let’s look at using generics to model a sum type. Again, we have previ-
ously implemented this using our algebraic data type pa�ern, factoring out
the common aspects into a supertype. Generics allow us to abstract over this
pa�ern, providing a … well … generic implementaঞon.

Consider a method that, depending on the value of its parameters, returns one
of two types:

def intOrString(input: Boolean) =

if(input == true) 123 else "abc"

// intOrString: (input: Boolean)Any

Wecan’t simplywrite this method as shown above because the compiler infers
the result type as Any. Instead we have to introduce a new type to explicitly
represent the disjuncঞon:

def intOrString(input: Boolean): Sum[Int, String] =

if(input == true) {

Left[Int, String](123)

} else {

Right[Int, String]("abc")

}

// intOrString: (input: Boolean)sum.Sum[Int,String]

How do we implement Sum? We just have to use the pa�erns we’ve already
seen, with the addiঞon of generic types.

5.4.3.1 Exercise: Generic Sum Type

Implement a trait Sum[A, B]with two subtypes Left and Right. Create type
parameters so that Left and Right can wrap up values of two different types.

Hint: you will need to put both type parameters on all three types. Example
usage:

5.4. MODELLING DATAWITH GENERIC TYPES 143

Left[Int, String](1).value

// res9: Int = 1

Right[Int, String]("foo").value

// res10: String = foo

val sum: Sum[Int, String] = Right("foo")

// sum: sum.Sum[Int,String] = Right(foo)

sum match {

case Left(x) => x.toString

case Right(x) => x

}

// res11: String = foo

See the soluঞon

5.4.4 Generic Opঞonal Values

Many expressions may someঞmes produce a value and someঞmes not. For
example, when we look up an element in a hash table (associaঞve array) by
a key, there may not be a value there. If we’re talking to a web service, that
service may be down and not reply to us. If we’re looking for a file, that file
may have been deleted. There are a number of ways to model this situaঞon
of an opঞonal value. We could throw an excepঞon, or we could return null
when a value is not available. The disadvantage of both these methods is they
don’t encode any informaঞon in the type system.

We generally want to write robust programs, and in Scala we try to uঞlise the
type system to encode properঞes we want our programs to maintain. One
common property is “correctly handle errors”. If we can encode an opࢼonal
value in the type system, the compiler will force us to consider the case where
a value is not available, thus increasing the robustness of our code.

5.4.4.1 Exercise: Maybe that Was a Mistake

Create a generic trait called Maybe of a generic type Awith two subtypes, Full
containing an A, and Empty containing no value. Example usage:

144 CHAPTER 5. SEQUENCING COMPUTATIONS

val perhaps: Maybe[Int] = Empty[Int]

val perhaps: Maybe[Int] = Full(1)

See the soluঞon

5.4.5 Take Home Points

In this secঞon we have used generics to model sum types, product types, and
opঞonal values using generics.

These abstracঞons are commonly used in Scala code and have implementa-
ঞons in the Scala standard library. The sum type is called Either, products
are tuples, and opঞonal values are modelled with Option.

5.4.6 Exercises

5.4.6.1 Generics versus Traits

Sum types and product types are general concepts that allow us to model
almost any kind of data structure. We have seen twomethods of wriঞng these
types—traits and generics. When should we consider using each?

See the soluঞon

5.4.6.2 Folding Maybe

In this secঞon we implemented a sum type for modelling opঞonal data:

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Implement fold for this type.

See the soluঞon

5.5. SEQUENCING COMPUTATION 145

5.4.6.3 Folding Sum

In this secঞon we implemented a generic sum type:

sealed trait Sum[A, B]

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Implement fold for Sum.

See the soluঞon

5.5 Sequencing Computaঞon

We have now mastered generic data and folding over algebraic data types.
Now we will look as some other common pa�erns of computaঞon that are
1) o[en more convenient to use than fold for algebraic data types and 2) can
be implemented for certain types of data that do not support a fold. These
methods are known as map and flatMap.

5.5.1 Map

Imagine we have a list of Int user IDs, and a funcঞon which, given a user ID,
returns a User record. We want to get a list of user records for all the IDs in
the list. Wri�en as types we have List[Int] and a funcঞon Int => User,
and we want to get a List[User].

Imagine we have an opঞonal value represenঞng a user record loaded from the
database and a funcঞon that will load their most recent order. If we have a
record wewant to then lookup the user’s most recent order. That is, we have a
Maybe[User] and a funcঞon User => Order, and wewant a Maybe[Order].

Imagine we have a sum type represenঞng an error message or a completed
order. If we have a completed order we want to get the total value of the
order. That is, we have a Sum[String, Order] and a funcঞon Order =>

Double, and we want Sum[String, Double].

146 CHAPTER 5. SEQUENCING COMPUTATIONS

What these all have in common is we have a type F[A] and a funcঞon A => B,
and we want a result F[B]. The method that performs this operaঞon is called
map.

Let’s implement map for LinkedList. We start by outlining the types and
adding the general structural recursion skeleton:

sealed trait LinkedList[A] {

def map[B](fn: A => B): LinkedList[B] =

this match {

case Pair(hd, tl) => ???

case End() => ???

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

We know we can use the structural recursion pa�ern as we know that fold
(which is just the structural recursion pa�ern abstracted) is the universal iter-
ator for an algebraic data type. Thus:

• For Pairwehave to combine head and tail to return a LinkedList[B]
(as the types tell us) and we also know we need to recurse on tail.
We can write

case Pair(hd, tl) => {

val newTail: LinkedList[B] = tail.map(fn)

// Combine newTail and head to create LinkedList[B]

}

We can convert head to a B using fn, and then build a larger list from newTail

and our B giving us the final soluঞon

case Pair(hd, tl) => Pair(fn(hd), tl.map(fn))

• For Endwe don’t have any value of A to apply to the funcঞon. The only
thing we can return is an End.

Therefore the complete soluঞon is

5.5. SEQUENCING COMPUTATION 147

sealed trait LinkedList[A] {

def map[B](fn: A => B): LinkedList[B] =

this match {

case Pair(hd, tl) => Pair(fn(hd), tl.map(fn))

case End() => End[B]()

}

}

case class Pair[A](hd: A, tl: LinkedList[A]) extends LinkedList[A]

case class End[A]() extends LinkedList[A]

Noঞce how using the types and pa�erns guided us to a soluঞon.

5.5.2 FlatMap

Now imagine the following examples:

• We have a list of users and we want to get a list of all their or-
ders. That is, we have LinkedList[User] and a funcঞon User =>

LinkedList[Order], and we want LinkedList[Order].

• We have an opঞonal value represenঞng a user loaded from the
database, and we want to lookup their most recent order—another
opঞonal value. That is, we have Maybe[User] and User =>

Maybe[Order], and we want Maybe[Order].

• We have a sum type holding an error message or an Order, and we
want to email an invoice to the user. Emailing returns either an error
message or a message ID. That is, we have Sum[String, Order] and
a funcঞon Order => Sum[String, Id], and we want Sum[String,
Id].

What these all have in common is we have a type F[A] and a funcঞon A =>

F[B], and we want a result F[B]. The method that performs this operaঞon is
called flatMap.

Let’s implement flatMap for Maybe (we need an appendmethod to implement
flatMap for LinkedList). We start by outlining the types:

148 CHAPTER 5. SEQUENCING COMPUTATIONS

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] = ???

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

We use the same pa�ern as before: it’s a structural recursion and our types
guide us in filling in the method bodies.

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

5.5.3 Functors and Monads

A type like F[A] with a map method is called a functor. If a functor also has a
flatMap method it is called a monad³.

Although the most immediate applicaঞons of map and flatMap are in collec-
ঞon classes like lists, the bigger picture is sequencing computaঞons. Imagine
we have a number of computaঞons that can fail. For instance

def mightFail1: Maybe[Int] =

Full(1)

def mightFail2: Maybe[Int] =

Full(2)

³There is a li�le bit more to being a functor or monad. For a monad we require a constructor,
typically called point, and there are some algebraic laws that our map and flatMap operaঞons
must obey. A quick search online will find more informaঞon on monads, or they are covered in
more detail in our book on Scala with Cats.

https://underscore.io/books/advanced-scala

5.5. SEQUENCING COMPUTATION 149

def mightFail3: Maybe[Int] =

Empty() // This one failed

Wewant to run these computaঞons one a[er another. If any one of them fails
the whole computaঞon fails. Otherwise we’ll add up all the numbers we get.
We can do this with flatMap as follows.

mightFail1 flatMap { x =>

mightFail2 flatMap { y =>

mightFail3 flatMap { z =>

Full(x + y + z)

}

}

}

The result of this is Empty. If we drop mightFail3, leaving just

mightFail1 flatMap { x =>

mightFail2 flatMap { y =>

Full(x + y)

}

}

the computaঞon succeeds and we get Full(3).

The general idea is a monad represents a value in some context. The context
depends on the monad we’re using. We’ve seen examples where the context
is:

• an opঞonal value, such as we might get when retrieving a value from a
database;

• an sum of values, which might represent a error message and a value
we’re compuঞng with; and

• a list of values.

We use mapwhen we want to transform the value within the context to a new
value, while keeping the context the same. We use flatMap when we want
to transform the value and provide a new context.

150 CHAPTER 5. SEQUENCING COMPUTATIONS

5.5.4 Exercises

5.5.4.1 Mapping Lists

Given the following list

val list: LinkedList[Int] = Pair(1, Pair(2, Pair(3, End())))

• double all the elements in the list;
• add one to all the elements in the list; and
• divide by three all the elements in the list.

See the soluঞon

5.5.4.2 Mapping Maybe

Implement map for Maybe.

See the soluঞon

For bonus points, implement map in terms of flatMap.

See the soluঞon

5.5.4.3 Sequencing Computaঞons

We’re going to use Scala’s builঞn List class for this exercise as it has a
flatMap method.

Given this list

val list = List(1, 2, 3)

return a List[Int] containing both all the elements and their negaঞon. Order
is not important. Hint: Given an element create a list containing it and its
negaঞon.

See the soluঞon

Given this list

5.5. SEQUENCING COMPUTATION 151

val list: List[Maybe[Int]] = List(Full(3), Full(2), Full(1))

return a List[Maybe[Int]] containing None for the odd elements. Hint: If
x % 2 == 0 then x is even.

See the soluঞon

5.5.4.4 Sum

Recall our Sum type.

sealed trait Sum[A, B] {

def fold[C](left: A => C, right: B => C): C =

this match {

case Left(a) => left(a)

case Right(b) => right(b)

}

}

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

To prevent a name collision between the built-in Either, rename the Left
and Right cases to Failure and Success respecঞvely.

See the soluঞon

Now things are going to get a bit trickier. We are going to implement map and
flatMap, again using pa�ern matching in the Sum trait. Start with map. The
general recipe for map is to start with a type like F[A] and apply a funcঞon
A => B to get F[B]. Sum however has two generic type parameters. To make
it fit the F[A] pa�ern we’re going to fix one of these parameters and allow
map to alter the other one. The natural choice is to fix the type parameter
associated with Failure and allow map to alter a Success. This corresponds
to “fail-fast” behaviour. If our Sum has failed, any sequenced computaঞons
don’t get run.

In summary map should have type

152 CHAPTER 5. SEQUENCING COMPUTATIONS

def map[C](f: B => C): Sum[A, C]

See the soluঞon

Now implement flatMap using the same logic as map.

See the soluঞon

5.6 Variance

In this secঞon we cover variance annotaࢼons, which allow us to control sub-
class relaঞonships between types with type parameters. Tomoঞvate this, let’s
look again at our invariant generic sum type pa�ern.

Recall our Maybe type, which we defined as

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Ideally we would like to drop the unused type parameter on Empty and write
something like

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

case object Empty extends Maybe[???]

Objects can’t have type parameters. In order to make Empty an object we
need to provide a concrete type in the extends Maybe part of the definiঞon.
But what type parameter should we use? In the absence of a preference for a
parঞcular data type, we could use something like Unit or Nothing. However
this leads to type errors:

sealed trait Maybe[A]

// defined trait Maybe

final case class Full[A](value: A) extends Maybe[A]

// defined class Full

5.6. VARIANCE 153

case object Empty extends Maybe[Nothing]

// defined object Empty

// warning: previously defined class Empty is not a companion to

object Empty.

// Companions must be defined together; you may wish to use :paste

mode for this.

val possible: Maybe[Int] = Empty

// <console>:14: error: type mismatch;

// found : Empty.type

// required: Maybe[Int]

// Note: Nothing <: Int (and Empty.type <: Maybe[Nothing]), but trait

Maybe is invariant in type A.

// You may wish to define A as +A instead. (SLS 4.5)

// val possible: Maybe[Int] = Empty

// ^

The problem here is that Empty is a Maybe[Nothing] and a Maybe[Nothing]
is not a subtype of Maybe[Int]. To overcome this issue we need to introduce
variance annotaঞons.

5.6.1 Invariance, Covariance, and Contravariance

Variance is Hard

Variance is one of the trickier aspects of Scala’s type system. Although
it is useful to be aware of its existence, we rarely have to use it in appli-
caঞon code.

If we have some type Foo[A], and A is a subtype of B, is Foo[A] a subtype of
Foo[B]? The answer depends on the variance of the type Foo. The variance
of a generic type determines how its supertype/subtype relaঞonships change
with respect with its type parameters:

A type Foo[T] is invariant in terms of T, meaning that the types Foo[A] and
Foo[B] are unrelated regardless of the relaঞonship between A and B. This is
the default variance of any generic type in Scala.

154 CHAPTER 5. SEQUENCING COMPUTATIONS

A type Foo[+T] is covariant in terms of T, meaning that Foo[A] is a supertype
of Foo[B] if A is a supertype of B. Most Scala collecঞon classes are covariant
in terms of their contents. We’ll see these next chapter.

A type Foo[-T] is contravariant in terms of T, meaning that Foo[A] is a subtype
of Foo[B] if A is a supertype of B. The only example of contravariance that I
am aware of is funcঞon arguments.

5.6.2 Funcঞon Types

When we discussed funcঞon types we glossed over how exactly they are im-
plemented. Scala has 23 built-in generic classes for funcঞons of 0 to 22 argu-
ments. Here’s what they look like:

trait Function0[+R] {

def apply: R

}

trait Function1[-A, +B] {

def apply(a: A): B

}

trait Function2[-A, -B, +C] {

def apply(a: A, b: B): C

}

// and so on...

Funcঞons are contravariant in terms of their arguments and covariant in terms
of their return type. This seems counterintuiঞve but it makes sense if we look
at it from the point of view of funcঞon arguments. Consider some code that
expects a Function1[A, B]:

case class Box[A](value: A) {

/** Apply `func` to `value`, returning a `Box` of the result. */

def map[B](func: Function1[A, B]): Box[B] =

Box(func(value))

}

5.6. VARIANCE 155

To understand variance, consider what funcঞons can we safely pass to this
map method:

• A funcঞon from A to B is clearly ok.

• A funcঞon from A to a subtype of B is ok because it’s result type will
have all the properঞes of B that we might depend on. This indicates
that funcঞons are covariant in their result type.

• A funcঞon expecঞng a supertype of A is also ok, because the Awe have
in the Box will have all the properঞes that the funcঞon expects.

• A funcঞon expecঞng a subtype of A is not ok, because our value may
in reality be a different subtype of A.

5.6.3 Covariant Sum Types

Now we know about variance annotaঞons we can solve our problem with
Maybe by making it covariant.

sealed trait Maybe[+A]

final case class Full[A](value: A) extends Maybe[A]

case object Empty extends Maybe[Nothing]

In use we get the behaviour we expect. Empty is a subtype of all Full values.

val perhaps: Maybe[Int] = Empty

// perhaps: Maybe[Int] = Empty

This pa�ern is the most commonly used one with generic sum types. We
should only use covariant types where the container type is immutable. If the
container allows mutaঞon we should only use invariant types.

Covariant Generic Sum Type Pa�ern

If A of type T is a B or C, and C is not generic, write

156 CHAPTER 5. SEQUENCING COMPUTATIONS

sealed trait A[+T]

final case class B[T](t: T) extends A[T]

case object C extends A[Nothing]

This pa�ern extends to more than one type parameter. If a type param-
eter is not needed for a specific case of a sum type, we can subsঞtute
Nothing for that parameter.

5.6.4 Contravariant Posiঞon

There is another pa�ern we need to learn for covariant sum types, which in-
volves the interacঞon of covariant type parameters and contravariant method
and funcঞon parameters. To illustrate this issue let’s develop a covariant Sum.

5.6.4.1 Exercise: Covariant Sum

Implement a covariant Sum using the covariant generic sum type pa�ern.

See the soluঞon

Now let’s see what happens when we implement flatMap on Sum.

5.6.4.2 Exercise: Some sort of flatMap

Implement flatMap and verify you receive an error like

error: covariant type A occurs in contravariant position in type B =>

Sum[A,C] of value f

def flatMap[C](f: B => Sum[A, C]): Sum[A, C] =

^

See the soluঞon

What is going on here? Let’s momentarily switch to a simpler example that
illustrates the problem.

5.6. VARIANCE 157

case class Box[+A](value: A) {

def set(a: A): Box[A] = Box(a)

}

which causes the error

error: covariant type A occurs in contravariant position in type A of

value a

def set(a: A): Box[A] = Box(a)

^

Remember that funcঞons, and hence methods, which are just like funcঞons,
are contravariant in their input parameters. In this case we have specified that
A is covariant but in set we have a parameter of type A and the type rules
requires A to be contravariant here. This is what the compiler means by a
“contravariant posiঞon”.

The soluঞon is introduce a new type that is a supertype of A. We can do this
with the notaঞon [AA >: A] like so:

case class Box[+A](value: A) {

def set[AA >: A](a: AA): Box[AA] = Box(a)

}

This successfully compiles.

Back to flatMap, the funcঞon f is a parameter, and thus in a contravariant
posiঞon. This means we accept supertypes of f. It is declared with type B =>

Sum[A, C] and thus a supertype is covariant in B and contravariant in A and C.
B is declared as covariant, so that is fine. C is invariant, so that is fine as well.
A on the other hand is covariant but in a contravariant posiঞon. Thus we have
to apply the same soluঞon we did for Box above.

sealed trait Sum[+A, +B] {

def flatMap[AA >: A, C](f: B => Sum[AA, C]): Sum[AA, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A](value: A) extends Sum[A, Nothing]

158 CHAPTER 5. SEQUENCING COMPUTATIONS

final case class Success[B](value: B) extends Sum[Nothing, B]

Contravariant Posiঞon Pa�ern

If A of a covariant type T and a method f of A complains that T is used
in a contravariant posiঞon, introduce a type TT >: T in f.

case class A[+T]() {

def f[TT >: T](t: TT): A[TT] = ???

}

5.6.5 Type Bounds

We have seen some type bounds above, in the contravariant posiঞon pa�ern.
Type bounds extend to specify subtypes as well as supertypes. The syntax is
A <: Type to declare Amust be a subtype of Type and A >: Type to declare
a supertype.

For example, the following type allows us to store a Visitor or any subtype:

case class WebAnalytics[A <: Visitor](

visitor: A,

pageViews: Int,

searchTerms: List[String],

isOrganic: Boolean

)

5.6.6 Exercises

5.6.6.1 Covariance and Contravariance

Using the notaঞon A <: B to indicate A is a subtype of B and assuming:

• Siamese <: Cat <: Animal; and

5.6. VARIANCE 159

• Purr <: CatSound <: Sound

if I have a method

def groom(groomer: Cat => CatSound): CatSound = {

val oswald = Cat("Black", "Cat food")

groomer(oswald)

}

which of the following can I pass to groom?

• A funcঞon of type Animal => Purr

• A funcঞon of type Siamese => Purr

• A funcঞon of type Animal => Sound

See the soluঞon

5.6.6.2 Calculator Again

We’re going to return to the interpreter example we saw at the end of the last
chapter. This ঞme we’re going to use the general abstracঞons we’ve created
in this chapter, and our new knowledge of map, flatMap, and fold.

We’re going to represent calculaঞons as Sum[String, Double], where the
String is an error message. Extend Sum to have map and fold method.

See the soluঞon

Now we’re going to reimplement the calculator from last ঞme. We have an
abstract syntax tree defined via the following algebraic data type:

sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Division(left: Expression, right: Expression) extends

Expression

160 CHAPTER 5. SEQUENCING COMPUTATIONS

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Double) extends Expression

Now implement a method eval: Sum[String, Double] on Expression.
Use flatMap and map on Sum and introduce any uঞlity methods you see fit to
make the code more compact. Here are some test cases:

assert(Addition(Number(1), Number(2)).eval == Success(3))

assert(SquareRoot(Number(-1)).eval == Failure("Square root of negative

number"))

assert(Division(Number(4), Number(0)).eval == Failure("Division by

zero"))

assert(Division(Addition(Subtraction(Number(8), Number(6)), Number(2))

, Number(2)).eval == Success(2.0))

See the soluঞon

5.7 Conclusions

In this secঞon we have explored generic types and funcঞons, which allow us
to abstract over types and methods respecঞvely.

We have seen new pa�erns for generic algebraic types, and generic structural
recursion. Using these building blocks we have seen some common pa�erns
for working with generic types, namely fold, map, and flatMap.

In the next secঞon we will explore these topics further by working with the
collecঞons classes in Scala.

Chapter 6

Collecঞons

We hardly need to state how important collecঞon classes are. The Collecঞons
API was one of the most significant addiঞons to Java, and Scala’s collecঞons
framework, completely revised and updated in 2.8, is an equally important
addiঞon to Scala.

In this secঞon we’re going to look at three key datastructures in Scala’s collec-
ঞon library: sequences, opࢼons, and maps.

We will start with sequences. We begin with basic operaঞons on sequences,
and then briefly examine the disঞncঞon Scala makes between interface and
implementaঞon, and mutable and immutable sequences. We then explore in
depth the methods Scala provides to transform sequences.

A[er covering the main collecঞon types we turn to for comprehensions, a syn-
tax that allows convenient specificaঞon of operaঞons on collecঞons.

With for comprehensions under our belt we will move onto opࢼons, which are
used frequently in the APIs for sequences andmaps. Opঞons provide a means
to sequence computaঞons and are an essenঞal companion to for comprehen-
sions.

We’ll then look atmonads, whichwe have introduced before, and see how they
work with for comprehensions.

Next we will cover the other main collecঞon classes: maps and sets. We will

161

162 CHAPTER 6. COLLECTIONS

discover that they share a great deal in common with sequences, so most of
our knowledge transfers directly.

We finish with discussion of ranges, which can represent large sequences of
integers without storing every intermediate value in memory.

In the previous two chapters we have been focused on Scala concepts. The
focus in this chapter is not on fundamental concepts, but on gaining pracঞce
with an important API and reinforcing concepts we have previously seen.

6.1 Sequences

A sequence is a collecঞon of items with a defined and stable order. Sequences
are one of the most common data structures. In this secঞon we’re going to
look at the basics of sequences: creaঞng them, key methods on sequences,
and the disঞncঞon between mutable and immutable sequences.

Here’s how you create a sequence in Scala:

val sequence = Seq(1, 2, 3)

// sequence: Seq[Int] = List(1, 2, 3)

This immediately shows off a key feature of Scala’s collecঞons, the separa-
onࢼ between interface and implementaࢼon. In the above, the value has type
Seq[Int] but is implemented by a List.

6.1.1 Basic operaঞons

Sequences implement manymethods. Let’s look at some of themost common.

6.1.1.1 Accessing elements

We can access the elements of a sequence using its apply method, which
accepts an Int index as a parameter. Indices start from 0.

http://docs.scala-lang.org/overviews/collections/seqs.html

6.1. SEQUENCES 163

sequence.apply(0)

// res0: Int = 1

sequence(0) // sugared syntax

// res1: Int = 1

An excepঞon is raised if we use an index that is out of bounds:

sequence(3)

// java.lang.IndexOutOfBoundsException: 3

// at ...

We can also access the head and tail of the sequence:

sequence.head

// res5: Int = 1

sequence.tail

// res6: Seq[Int] = List(2, 3)

sequence.tail.head

// res7: Int = 2

Again, trying to access an element that doesn’t exist throws an excepঞon:

Seq().head

// java.util.NoSuchElementException: head of empty list

// at scala.collection.immutable.Nil$.head(List.scala:337)

// ...

Seq().tail

// java.lang.UnsupportedOperationException: tail of empty list

// at scala.collection.immutable.Nil$.tail(List.scala:339)

// ...

If we want to safely get the head without risking an excepঞon, we can use
headOption:

164 CHAPTER 6. COLLECTIONS

sequence.headOption

// res17: Option[Int] = Some(1)

Seq().headOption

// res18: Option[Nothing] = None

The Option class here is Scala’s built-in equivalent of our Maybe class from
earlier. It has two subtypes—Some and None—represenঞng the presence and
absence of a value respecঞvely.

6.1.2 Sequence length

Finding the length of a sequence is straigh�orward:

sequence.length

// res19: Int = 3

6.1.3 Searching for elements

There are a few ways of searching for elements. The contains method tells
us whether a sequence contains an element (using == for comparison):

sequence.contains(2)

// res20: Boolean = true

The findmethod is like a generalised version of contains - we provide a test
funcঞon and the sequence returns the first item for which the test returns
true:

sequence.find(_ == 3)

// res21: Option[Int] = Some(3)

sequence.find(_ > 4)

// res22: Option[Int] = None

The filtermethod is a variant of find that returns all thematching elements
in the sequence:

6.1. SEQUENCES 165

sequence.filter(_ > 1)

// res23: Seq[Int] = List(2, 3)

6.1.4 Sorঞng elements

We can use the sortWith method to sort a list using a binary funcঞon. The
funcঞon takes two list items as parameters and returns true if they are in the
correct order and false if they are the wrong way around. For example, to
sort a list of Ints in descending order:

sequence.sortWith(_ > _)

// res24: Seq[Int] = List(3, 2, 1)

6.1.5 Appending/prepending elements

There are many ways to add elements to a sequence. We can append an ele-
ment with the :+ method:

sequence.:+(4)

// res25: Seq[Int] = List(1, 2, 3, 4)

It is more idiomaঞc to call :+ as an infix operator:

sequence :+ 4

// res26: Seq[Int] = List(1, 2, 3, 4)

We can similarly prepend an element using the +: method:

sequence.+:(0)

// res27: Seq[Int] = List(0, 1, 2, 3)

Again, it is more idiomaঞc to call +: as an infix operator. Here the trailing colon
makes it right associaࢼve, so we write the operator-style expression the other
way around:

166 CHAPTER 6. COLLECTIONS

0 +: sequence

// res28: Seq[Int] = List(0, 1, 2, 3)

This is another of Scala’s general syntax rules—any method ending with a :
character becomes right associaࢼve when wri�en as an infix operator. This
rule is designed to replicate Haskell-style operators for things like list prepend
(::) and list concatenaঞon (:::). We’ll look at this in more detail in a moment.

Finally we can concatenate enঞre sequences using the ++ method.

sequence ++ Seq(4, 5, 6)

// res29: Seq[Int] = List(1, 2, 3, 4, 5, 6)

6.1.6 Lists

The default implementaঞon of Seq is a List, which is a classic linked list data
structure similar to the one we developed in an earlier exercise. Some Scala
libraries work specifically with Lists rather than using more generic types
like Seq. For this reason we should familiarize ourselves with a couple of list-
specific methods.

We can write an empty list using the singleton object Nil:

Nil

// res31: scala.collection.immutable.Nil.type = List()

Longer lists can be created by prepending elements in classic linked-list style
using the :: method, which is equivalent to +::

val list = 1 :: 2 :: 3 :: Nil

// list: List[Int] = List(1, 2, 3)

4 :: 5 :: list

// res32: List[Int] = List(4, 5, 1, 2, 3)

We can also use the List.applymethod for a more convenঞonal constructor
notaঞon:

https://en.wikipedia.org/wiki/Linked_list

6.1. SEQUENCES 167

List(1, 2, 3)

// res33: List[Int] = List(1, 2, 3)

Finally, the ::: method is a right-associaঞve List-specific version of ++:

List(1, 2, 3) ::: List(4, 5, 6)

// res34: List[Int] = List(1, 2, 3, 4, 5, 6)

:: and ::: are specific to lists whereas +:, :+ and ++ work on any type of
sequence.

Lists have well known performance characterisঞcs—constant-ঞme in prepend,
head and tail operaঞons and linear-ঞme in append, apply and update opera-
ঞons. Other immutable sequences are available in Scala with different perfor-
mance characterisঞcs to match all situaঞons. So it is up to us as developers to
decide whether we want to ঞe our code to a specific sequence type like List
or prefer the sequence type Seq which is normally used to simplify swapping
implementaঞons.

6.1.7 Imporঞng Collecঞons and Other Libraries

The Seq and List types are so ubiquitous in Scala that they are made auto-
maঞcally available at all ঞmes. Other collecঞons like Stack and Queue have
to be brought into scope manually.

The main collecঞons package is called scala.collection.immutable. We
can import specific collecঞons from this package as follows:

import scala.collection.immutable.Vector

Vector(1, 2, 3)

// res35: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

We can also use wildcard imports to import everything in a package:

https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html

168 CHAPTER 6. COLLECTIONS

import scala.collection.immutable._

Queue(1, 2, 3)

// res36: scala.collection.immutable.Queue[Int] = Queue(1, 2, 3)

We can also use import to bring methods and fields into scope from a single-
ton:

import scala.collection.immutable.Vector.apply

apply(1, 2, 3)

// res37: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

We can write import statements anywhere in our code—imported idenঞfiers
are lexically scoped to the block where we use them:

// `empty` is unbound here

def someMethod = {

import scala.collection.immutable.Vector.empty

// `empty` is bound to `Vector.empty` here

empty[Int]

}

// `empty` is unbound here again

Import Statements

Import statements in Scala are very flexible. The main points are nicely
described in the Scala Wikibook.

http://en.wikibooks.org/wiki/Scala/Import

6.1. SEQUENCES 169

6.1.8 Take Home Points

Seq is Scala’s general sequence datatype. It has a number of general subtypes
such as List, Stack, Vector, Queue, and Array, and specific subtypes such
as String.

The default sequences in Scala are immutable. We also have access to mutable
sequences, which are covered separately in the Collecঞons Redux chapter.

We have covered a variety of methods that operate on sequences. Here is a
type table of everything we have seen so far:

Method We have We provide We get

Seq(...) [A], … Seq[A]

apply Seq[A] Int A

head Seq[A] A

tail Seq[A] Seq[A]

length Seq[A] Int

contains Seq[A] A Boolean

find Seq[A] A => Boolean Option[A]

filter Seq[A] A => Boolean Seq[A]

sortWith Seq[A] (A, A) =>

Boolean

Seq[A]

:+, +: Seq[A] A Seq[A]

++ Seq[A] Seq[A] Seq[A]

:: List[A] A List[A]

::: List[A] List[A] List[A]

Wecan always use Seq and List in our code. Other collecঞons can be brought
into scope using the import statement as we have seen.

/collections-redux/index.html

170 CHAPTER 6. COLLECTIONS

6.1.9 Exercises

6.1.9.1 Documentaঞon

Discovering Scala’s collecঞon classes is all about knowing how to read the
API documentaঞon. Look up the Seq and List types now and answer the
following:

• There is a synonym of length defined on Seq—what is it called?

• There are twomethods for retrieving the first item in a List – what are
they called and how do they differ?

• What method can be used to display the elements of the sequence as
a string?

• What method of Option can be used to determine whether the opঞon
contains a value?

Tip: There is a link to the Scala API documentaঞon at http://scala-lang.org.

See the soluঞon

6.1.9.2 Animals

Create a Seq containing the Strings "cat", "dog", and "penguin". Bind it
to the name animals.

See the soluঞon

Append the element "tyrannosaurus" to animals and prepend the element
"mouse".

See the soluঞon

What happens if you prepend the Int 2 to animals? Why? Try it out… were
you correct?

See the soluঞon

http://scala-lang.org

6.1. SEQUENCES 171

6.1.9.3 Intranet Movie Database

Let’s revisit our films and directors example from the Classes chapter.

The code below is a parঞal rewrite of the previous sample code inwhich Films
is stored as a field of Director instead of the other way around. Copy and
paste this into a new Scala worksheet and conঞnue with the exercises below:

case class Film(

name: String,

yearOfRelease: Int,

imdbRating: Double)

case class Director(

firstName: String,

lastName: String,

yearOfBirth: Int,

films: Seq[Film])

val memento = new Film("Memento", 2000, 8.5)

val darkKnight = new Film("Dark Knight", 2008, 9.0)

val inception = new Film("Inception", 2010, 8.8)

val highPlainsDrifter = new Film("High Plains Drifter", 1973, 7.7)

val outlawJoseyWales = new Film("The Outlaw Josey Wales", 1976, 7.9)

val unforgiven = new Film("Unforgiven", 1992, 8.3)

val granTorino = new Film("Gran Torino", 2008, 8.2)

val invictus = new Film("Invictus", 2009, 7.4)

val predator = new Film("Predator", 1987, 7.9)

val dieHard = new Film("Die Hard", 1988, 8.3)

val huntForRedOctober = new Film("The Hunt for Red October", 1990,

7.6)

val thomasCrownAffair = new Film("The Thomas Crown Affair", 1999, 6.8)

val eastwood = new Director("Clint", "Eastwood", 1930,

Seq(highPlainsDrifter, outlawJoseyWales, unforgiven, granTorino,

invictus))

val mcTiernan = new Director("John", "McTiernan", 1951,

Seq(predator, dieHard, huntForRedOctober, thomasCrownAffair))

val nolan = new Director("Christopher", "Nolan", 1970,

172 CHAPTER 6. COLLECTIONS

Seq(memento, darkKnight, inception))

val someGuy = new Director("Just", "Some Guy", 1990,

Seq())

val directors = Seq(eastwood, mcTiernan, nolan, someGuy)

// TODO: Write your code here!

Using this sample code, write implementaঞons of the following methods:

• Accept a parameter numberOfFilms of type Int—find all directorswho
have directed more than numberOfFilms:

See the soluঞon

• Accept a parameter year of type Int—find a director who was born
before that year:

See the soluঞon

• Accept two parameters, year and numberOfFilms, and return a list
of directors who were born before year who have also directed more
than than numberOfFilms:

See the soluঞon

• Accept a parameter ascending of type Boolean that defaults to true.
Sort the directors by age in the specified order:

See the soluঞon

6.2. WORKINGWITH SEQUENCES 173

6.2 Working with Sequences

In the previous secঞon we looked at the basic operaঞons on sequences. Now
we’re going to look at pracঞcal aspects of working with sequences—how func-
ঞonal programming allows us to process sequences in a terse and declaraঞve
style.

6.2.1 Bulk Processing of Elements

When working with sequences we o[en want to deal with the collecঞon as
a whole, rather than accessing and manipulaঞng individual elements. Scala
gives us a number of powerful opঞons that allow us to solve many problems
more directly.

6.2.2 Map

Let’s start with something simple—suppose we want to double every element
of a sequence. Youmight wish to express this as a loop. However, this requires
wriঞng several lines of looping machinery for only one line of actual doubling
funcঞonality.

In Scala we can use the map method defined on any sequence. Map takes a
funcঞon and applies it to every element, creaঞng a sequence of the results.
To double every element we can write:

val sequence = Seq(1, 2, 3)

// sequence: Seq[Int] = List(1, 2, 3)

sequence.map(elt => elt * 2)

// res0: Seq[Int] = List(2, 4, 6)

If we use placeholder syntax we can write this even more compactly:

sequence.map(_ * 2)

// res1: Seq[Int] = List(2, 4, 6)

174 CHAPTER 6. COLLECTIONS

Given a sequence with type Seq[A], the funcঞon we pass to map must have
type A => B and we get a Seq[B] as a result. This isn’t right for every situ-
aঞon. For example, suppose we have a sequence of strings, and we want to
generate a sequence of all the permutaঞons of those strings. We can call the
permutations method on a string to get all permutaঞons of it:

"dog".permutations

// res2: Iterator[String] = non-empty iterator

This returns an Iterable, which is a bit like a Java Iterator. We’re going to
look at iterables in more detail later. For now all we need to know is that we
can call the toList method to convert an Iterable to a List.

"dog".permutations.toList

// res3: List[String] = List(dog, dgo, odg, ogd, gdo, god)

Thus we could write

Seq("a", "wet", "dog").map(_.permutations.toList)

// res4: Seq[List[String]] = List(List(a), List(wet, wte, ewt, etw,

twe, tew), List(dog, dgo, odg, ogd, gdo, god))

but we end up with a sequence of sequences. Let’s look at the types in more
detail to see what’s gone wrong:

Method We have We provide We get

map Seq[A] A => B Seq[B]

map Seq[String] String =>

List[String]

Seq[List[String]]

??? Seq[A] A => Seq[B] Seq[B]

What is the method ??? that we can use to collect a single flat sequence?

6.2. WORKINGWITH SEQUENCES 175

6.2.3 FlatMap

Our mystery method above is called flatMap. If we simply replace map with
flatMap we get the answer we want:

Seq("a", "wet", "dog").flatMap(_.permutations.toList)

// res5: Seq[String] = List(a, wet, wte, ewt, etw, twe, tew, dog, dgo,

odg, ogd, gdo, god)

flatMap is similar to map except that it expects our funcঞon to return a se-
quence. The sequences for each input element are appended together. For
example:

Seq(1, 2, 3).flatMap(num => Seq(num, num * 10))

// res6: Seq[Int] = List(1, 10, 2, 20, 3, 30)

The end result is (nearly) always the same type as the original sequence:
aList.flatMap(...) returns another List, aVector.flatMap(...)

returns another Vector, and so on:

import scala.collection.immutable.Vector

Vector(1, 2, 3).flatMap(num => Seq(num, num * 10))

// res7: scala.collection.immutable.Vector[Int] = Vector(1, 10, 2, 20,

3, 30)

6.2.4 Folds

Now let’s look at another kind of operaঞon. Say we have a Seq[Int] and we
want to add all the numbers together. map and flatMap don’t apply here for
two reasons:

1. they expect a unary funcঞon, whereas + is a binary operaঞon;
2. they both return sequences of items, whereas we want to return a sin-
gle Int.

176 CHAPTER 6. COLLECTIONS

There are also two further wrinkles to consider.

1. What result do we expect if the sequence is empty? If we’re adding
items together then 0 seems like a natural result, but what is the answer
in general?

2. Although + is commutaঞve (i.e. a+b == b+a), in general we may need
to specify an order in which to pass arguments to our binary funcঞon.

Let’s make another type table to see what we’re looking for:

Method We have We provide We get

??? Seq[Int] 0 and (Int, Int) => Int Int

The methods that fit the bill are called folds, with two common cases
foldLeft and foldRight corresponding to the order the fold is applied. The
job of these methods is to traverse a sequence and accumulate a result. The
types are as follows:

Method We have We provide We get

foldLeft Seq[A] B and (B, A) => B B

foldRight Seq[A] B and (A, B) => B B

Given the sequence Seq(1, 2, 3), 0, and + the methods calculate the fol-
lowing:

Method Operaঞons Notes

Seq(1, 2,

3).foldLeft(0)(_ + _)

(((0 + 1) + 2)

+ 3)

Evaluaঞon starts on the
le[

Seq(1, 2,

3).foldRight(0)(_ +

_)

(1 + (2 + (3 +

0)))

Evaluaঞon starts on the
right

6.2. WORKINGWITH SEQUENCES 177

As we know from studying algebraic data types, the fold methods are very
flexible. We can write any transformaঞon on a sequence in terms of fold.

6.2.5 Foreach

There is one more traversal method that is commonly used: foreach. Unlike
map, flatMap and the folds, foreach does not return a useful result—we use
it purely for its side-effects. The type table is:

Method We have We provide We get

foreach Seq[A] A => Unit Unit

A common example of using foreach is prinঞng the elements of a sequence:

List(1, 2, 3).foreach(num => println("And a " + num + "..."))

// And a 1...

// And a 2...

// And a 3...

6.2.6 Algebra of Transformaঞons

We’ve seen the four major traversal funcঞons, map, flatMap, fold, and
foreach. It can be difficult to know which to use, but it turns out there is
a simple way to decide: look at the types! The type table below gives the
types for all the operaঞons we’ve seen so far. To use it, start with the data
you have (always a Seq[A] in the table below) and then look at the funcঞons
you have available and the result you want to obtain. The final column will
tell you which method to use.

We have We provide We want Method

Seq[A] A => Unit Unit foreach

Seq[A] A => B Seq[B] map

Seq[A] A => Seq[B] Seq[B] flatMap

Seq[A] B and (B, A) => B B foldLeft

178 CHAPTER 6. COLLECTIONS

We have We provide We want Method

Seq[A] B and (A, B) => B B foldRight

This type of analysis may seem foreign at first, but you will quickly get used
to it. Your two steps in solving any problem with sequences should be: think
about the types, and experiment on the REPL!

6.2.7 Exercises

The goals of this exercise are for you to learn your way around the collec-
ঞons API, but more importantly to learn to use types to drive implementaঞon.
When approaching each exercise you should answer:

1. What is the type of the data we have available?
2. What is the type of the result we want?
3. What is the type of the operaঞons we will use?

When you have answered these quesঞons look at the type table above to find
the correct method to use. Done in this way the actual programming should
be straigh�orward.

6.2.7.1 Heroes of the Silver Screen

These exercises re-use the example code from the Intranet Movie Database
exercise from the previous secঞon:

Nolan Films

Starঞng with the definiঞon of nolan, create a list containing the names of the
films directed by Christopher Nolan.

See the soluঞon

Cinephile

6.2. WORKINGWITH SEQUENCES 179

Starঞng with the definiঞon of directors, create a list containing the names
of all films by all directors.

See the soluঞon

Vintage McTiernan

Starঞng with mcTiernan, find the date of the earliest McTiernan film.

Tip: you can concisely find the minimum of two numbers a and b using
math.min(a, b).

See the soluঞon

High Score Table

Starঞng with directors, find all films sorted by descending IMDB raঞng:

See the soluঞon

Starঞng with directors again, find the average score across all films:

See the soluঞon

Tonight’s Lisࢼngs

Starঞng with directors, print the following for every film: "Tonight only!

FILM NAME by DIRECTOR!"

See the soluঞon

From the Archives

Finally, starঞng with directors again, find the earliest film by any director:

See the soluঞon

6.2.7.2 Do-It-Yourself

Now we know the essenঞal methods of Seq, we can write our own versions
of some other library methods.

Minimum

Write a method to find the smallest element of a Seq[Int].

180 CHAPTER 6. COLLECTIONS

See the soluঞon

Unique

Given Seq(1, 1, 2, 4, 3, 4) create the sequence containing each num-
ber only once. Order is not important, so Seq(1, 2, 4, 3) or Seq(4, 3,

2, 1) are equally valid answers. Hint: Use contains to check if a sequence
contains a value.

See the soluঞon

Reverse

Write a funcঞon that reverses the elements of a sequence. Your output does
not have to use the same concrete implementaঞon as the input. Hint: use
foldLeft.

See the soluঞon

Map

Write map in terms of foldRight.

See the soluঞon

Fold Le[

Write your own implementaঞon of foldLeft that uses foreach and mutable
state. Remember you can create a mutable variable using the var keyword,
and assign a new value using =. For example

var mutable = 1

// mutable: Int = 1

mutable = 2

// mutable: Int = 2

See the soluঞon

There are many other methods on sequences. Consult the API documentaঞon
for the Seq trait for more informaঞon.

http://www.scala-lang.org/api/current/scala/collection/Seq.html

6.3. FOR COMPREHENSIONS 181

6.3 For Comprehensions

We’ve discussed the main collecঞon transformaঞon funcঞons—map, flatMap,
foldLeft, foldRight, and foreach—and seen that they provide a powerful
way of working with collecঞons. They can become unwieldy to work with
when dealing with many collecঞons or many nested transformaঞons. Fortu-
nately Scala has special syntax for working with collecঞons (in fact any class
that implements map and flatMap) that makes complicated operaঞons sim-
pler to write. This syntax is known as a for comprehension.

Not Your Father’s For Loops

for comprehensions in Scala are very different to the C-style for loops in
Java. There is no direct equivalent of either language’s syntax in the
other.

Let’s start with a simple example. Say we have the sequence Seq(1, 2, 3)

and we wish to create a sequence with every element doubled. We know we
can write

Seq(1, 2, 3).map(_ * 2)

// res0: Seq[Int] = List(2, 4, 6)

The equivalent program wri�en with a for comprehension is:

for {

x <- Seq(1, 2, 3)

} yield x * 2

// res1: Seq[Int] = List(2, 4, 6)

We call the expression containing the <- a generator, with a pa�ern on the le[
hand side and a generator expression on the right. A for comprehension iterates
over the elements in the generator, binding each element to the pa�ern and
calling the yield expression. It combines the yielded results into a sequence
of the same type as the original generator.

182 CHAPTER 6. COLLECTIONS

In simple examples like this one we don’t really see the power of for
comprehensions—direct use of map and flatMap are o[en more compact
in the simplest case. Let’s try a more complicated example. Say we want to
double all the numbers in Seq(Seq(1), Seq(2, 3), Seq(4, 5, 6)) and
return a fla�ened sequence of the results. To do this with map and flatMap
we must nest calls:

val data = Seq(Seq(1), Seq(2, 3), Seq(4, 5, 6))

// data: Seq[Seq[Int]] = List(List(1), List(2, 3), List(4, 5, 6))

data.flatMap(_.map(_ * 2))

// res2: Seq[Int] = List(2, 4, 6, 8, 10, 12)

This is geমng complicated. The equivalent for comprehension is much more
… comprehensible.

for {

subseq <- data

element <- subseq

} yield element * 2

// res3: Seq[Int] = List(2, 4, 6, 8, 10, 12)

This gives us an idea of what the for comprehensions does. A general for
comprehension:

for {

x <- a

y <- b

z <- c

} yield e

translates to:

a.flatMap(x => b.flatMap(y => c.map(z => e)))

The intuiঞve understanding of the code is to iterate through all of the se-
quences in the generators, mapping the yield expression over every element
therein, and accumulaঞng a result of the same type as sequence fed into the
first generator.

6.3. FOR COMPREHENSIONS 183

Note that if we omit the yield keyword before the final expression, the overall
type of the for comprehension becomes Unit. This version of the for com-
prehension is executed purely for its side-effects, and any result is ignored.
Revisiঞng the doubling example from earlier, we can print the results instead
of returning them:

for {

seq <- Seq(Seq(1), Seq(2, 3))

elt <- seq

} println(elt * 2) // Note: no 'yield' keyword

// 2

// 4

// 6

The equivalent method calls use flatMap as usual and foreach in place of
the final map:

a.flatMap(x => b.flatMap(y => c.foreach(z => e)))

We can use parentheses instead of braces to delimit the generators in a for
loop. However, we must use semicolons to separate the generators if we do.
Thus:

for (

x <- a;

y <- b;

z <- c

) yield e

is equivalent to:

for {

x <- a

y <- b

z <- c

} yield e

Some developers prefer to use parentheses when there is only one generator
and braces otherwise:

184 CHAPTER 6. COLLECTIONS

for(x <- Seq(1, 2, 3)) yield {

x * 2

}

We can also use braces to wrap the yield expression and convert it to a block
as usual:

for {

// ...

} yield {

// ...

}

6.3.1 Exercises

(More) Heroes of the Silver Screen

Repeat the following exercises from the previous secঞon without using map or
flatMap:

Nolan Films

List the names of the films directed by Christopher Nolan.

See the soluঞon

Cinephile

List the names of all films by all directors.

See the soluঞon

High Score Table

Find all films sorted by descending IMDB raঞng:

See the soluঞon

Tonight’s Lisࢼngs

Print the following for every film: "Tonight only! FILM NAME by

DIRECTOR!"

See the soluঞon

6.4. OPTIONS 185

6.4 Opঞons

We have seen Options in passing a number of ঞmes already—they represent
values that may or may not be present in our code. Opঞons are an alterna-
ঞve to using null that provide us with a means of chaining computaঞons
together without risking NullPointerExceptions. We have previously pro-
duced code in the spirit of Option with our DivisionResult and Maybe

types in previous chapters.

Let’s look into Scala’s built-in Option type in more detail.

6.4.1 Opঞon, Some, and None

Option is a generic sealed trait with two subtypes—Some and None. Here is
an abbreviated version of the code—we will fill in more methods as we go on:

sealed trait Option[+A] {

def getOrElse[B >: A](default: B): B

def isEmpty: Boolean

def isDefined: Boolean = !isEmpty

// other methods...

}

final case class Some[A](x: A) extends Option[A] {

def getOrElse[B >: A](default: B) = x

def isEmpty: Boolean = false

// other methods...

}

case object None extends Option[Nothing] {

def getOrElse[B >: Nothing](default: B) = default

def isEmpty: Boolean = true

186 CHAPTER 6. COLLECTIONS

// other methods...

}

Here is a typical example of code for generaঞng an opঞon—reading an integer
from the user:

def readInt(str: String): Option[Int] =

if(str matches "-?\\d+") Some(str.toInt) else None

The toIntmethod of String throws a NumberFormatException if the string
isn’t a valid series of digits, so we guard its use with a regular expression. If the
number is correctly forma�edwe return Some of the Int result. Otherwise we
return None. Example usage:

readInt("123")

// res2: Option[Int] = Some(123)

readInt("abc")

// res3: Option[Int] = None

6.4.2 Extracঞng Values from Opঞons

There are several ways to safely extract the value in an opঞon without the risk
of throwing any excepঞons.

Alternaঞve 1: the getOrElsemethod—useful if we want to fall back to a de-
fault value:

readInt("abc").getOrElse(0)

// res4: Int = 0

Alternaঞve 2: pa�ern matching—Some and None both have associated pat-
terns that we can use in a match expression:

readInt("123") match {

case Some(number) => number + 1

case None => 0

}

6.4. OPTIONS 187

// res5: Int = 124

Alternaঞve 3: map and flatMap—Option supports both of these methods,
enabling us to chain off of the value within producing a new Option. This
bears a more thorough explanaঞon—let’s look at it in a li�le more detail.

6.4.3 Opঞons as Sequences

One way of thinking about an Option is as a sequence of 0 or 1 elements. In
fact, Option supports many of the sequence operaঞons we have seen so far:

sealed trait Option[+A] {

def getOrElse[B >: A](default: B): B

def isEmpty: Boolean

def isDefined: Boolean = !isEmpty

def filter(func: A => Boolean): Option[A]

def find(func: A => Boolean): Option[A]

def map[B](func: A => B): Option[B]

def flatMap[B](func: A => Option[B]): Option[B]

def foreach(func: A => Unit): Unit

def foldLeft[B](initial: B)(func: (B, A) => B): B

def foldRight[B](initial: B)(func: (A, B) => B): B

}

Because of the limited size of 0 or 1, there is a bit of redundancy here: filter
and find effecঞvely do the same thing, and foldLeft and foldRight only
differ in the order of their arguments. However, these methods give us a lot
flexibility for manipulaঞng opঞonal values. For example, we can use map and
flatMap to define opঞonal versions of common operaঞons:

def sum(optionA: Option[Int], optionB: Option[Int]): Option[Int] =

optionA.flatMap(a => optionB.map(b => a + b))

188 CHAPTER 6. COLLECTIONS

sum(readInt("1"), readInt("2"))

// res2: Option[Int] = Some(3)

sum(readInt("1"), readInt("b"))

// res3: Option[Int] = None

sum(readInt("a"), readInt("2"))

// res4: Option[Int] = None

The implementaঞon of sum looks complicated at first, so let’s break it down:

• If optionA is None, the result of optionA.flatMap(foo) is also None.
The return value of sum is therefore None.

• If optionA is Some, the result of optionA.flatMap(foo) is what-
ever value foo returns. This value is determined by the outcome of
optionB.map:

– If optionB is None, the result of optionB.map(bar) is also None.
The return value of sum is therefore None.

– If optionB is Some, the result of optionB.map(bar) is Some of
the result of bar. In our case, the return value of sum is a + b.

Although map and flatMap don’t allow us to extract values from our Options,
they allow us to compose computaࢼons together in a safe manner. If all argu-
ments to the computaঞon are Some, the result is a Some. If any of the argu-
ments are None, the result is None.

We can use map and flatMap in combinaঞon with pa�ern matching or
getOrElse to combine several Options and yield a single non-opঞonal
result:

sum(readInt("1"), readInt("b")).getOrElse(0)

// res5: Int = 0

It’s worth noঞng that Option and Seq are also compaঞble in some sense. We
can turn a Seq[Option[A]] into a Seq[A] using flatMap:

6.5. OPTIONS AS FLOW CONTROL 189

Seq(readInt("1"), readInt("b"), readInt("3")).flatMap(x => x)

// res6: Seq[Int] = List(1, 3)

6.5 Opঞons as Flow Control

Because Option supports map and flatMap, it also works with for compre-
hensions. This gives us a nice syntax for combining values without resorঞng
to building custom methods like sum to keep our code clean:

val optionA = readInt("123")

val optionB = readInt("234")

for {

a <- optionA

b <- optionB

} yield a + b

In this code snippet a and b are both Ints—we can add them together directly
using + in the yield block.

Let’s stop to think about this block of code for a moment. There are three
ways of looking at it:

1. We can expand the block into calls to map and flatMap. You will be
unsurprised to see that the resulঞng code is idenঞcal to our implemen-
taঞon of sum above:

scala> optionA.flatMap(a => optionB.map(b => a + b))

res9: Option[Int] = Some(357)

2. We can think of optionA and optionB as sequences of zero or one
elements, in which case the result is going to be a fla�ened sequence
of length optionA.size * optionB.size. If either optionA or
optionB is None then the result is of length 0.

190 CHAPTER 6. COLLECTIONS

3. We can think of each clause in the for comprehension as an expression
that says: if this clause results in a Some, extract the value and conࢼnue…
if it results in a None, exit the for comprehension and return None.

Once we get past the iniঞal foreignness of using for comprehensions to “it-
erate through” opঞons, we find a useful control structure that frees us from
excessive use of map and flatMap.

6.5.1 Exercises

6.5.1.1 Adding Things

Write a method addOptions that accepts two parameters of type
Option[Int] and adds them together. Use a for comprehension to
structure your code.

See the soluঞon

Write a second version of your code using map and flatMap instead of a for
comprehension.

See the soluঞon

6.5.1.2 Adding All of the Things

Overload addOptions with another implementaঞon that accepts three
Option[Int] parameters and adds them all together.

See the soluঞon

Write a second version of your code using map and flatMap instead of a for
comprehension.

See the soluঞon

6.5. OPTIONS AS FLOW CONTROL 191

6.5.1.3 A(nother) Short Division Exercise

Write a method divide that accepts two Int parameters and divides one by
the other. Use Option to avoid excepঞons when the denominator is 0.

See the soluঞon

Using your divide method and a for comprehension, write a method called
divideOptions that accepts two parameters of type Option[Int] and di-
vides one by the other:

See the soluঞon

6.5.1.4 A Simple Calculator

A final, longer exercise. Write a method called calculator that accepts three
string parameters:

def calculator(operand1: String, operator: String, operand2: String):

Unit = ???

and behaves as follows:

1. Convert the operands to Ints;

2. Perform the desired mathemaঞcal operator on the two operands:

• provide support for at least four operaঞons: +, -, * and /;
• use Option to guard against errors (invalid inputs or division by
zero).

3. Finally print the result or a generic error message.

Tip: Start by supporঞng just one operator before extending your method to
other cases.

See the soluঞon

For the enthusiasঞc only, write a second version of your code using flatMap
and map.

See the soluঞon

192 CHAPTER 6. COLLECTIONS

6.6 Monads

We’ve seen that by implemenঞng a few methods (map, flatMap, and opঞon-
ally filter and foreach), we can use any class with a for comprehension. In
the previous chapter we learned that such a class is called a monad. Here we
are going to look in a bit more depth at monads.

6.6.1 What’s in a Monad?

The concept of a monad is notoriously difficult to explain because it is so gen-
eral. We can get a good intuiঞve understanding by comparing some of the
types of monad that we will deal with on a regular basis.

Broadly speaking, a monad is a generic type that allows us to sequence com-
putaঞons while abstracঞng away some technicality. We do the sequencing
using for comprehensions, worrying only about the programming logic we care
about. The code hidden in the monad’s map and flatMapmethods does all of
the plumbing for us. For example:

• Option is a monad that allows us to sequence computaঞons on op-
ঞonal values without worrying about the fact that they may or may not
be present;

• Seq is a monad that allows us to sequence computaঞons that return
mulঞple possible answers without worrying about the fact that there
are lots of possible combinaঞons involved;

• Future is another popular monad that allows us to sequence asyn-
chronous computaঞons without worrying about the fact that they are
asynchronous.

To demonstrate the generality of this principle, here are some examples. This
first example calculates the sum of two numbers that may or may not be there:

6.6. MONADS 193

for {

a <- getFirstNumber // getFirstNumber returns Option[Int]

b <- getSecondNumber // getSecondNumber returns Option[Int]

} yield a + b

// The final result is an Option[Int]---the result of

// applying `+` to `a` and `b` if both values are present

This second example calculate the sums of all possible pairs of numbers from
two sequences:

for {

a <- getFirstNumbers // getFirstNumbers returns Seq[Int]

b <- getSecondNumbers // getSecondNumbers returns Seq[Int]

} yield a + b

// The final result is a Seq[Int]---the results of

// applying `+` to all combinations of `a` and `b`

This third example asynchronously calculates the sum of two numbers that
can only be obtained asynchronously (all without blocking):

for {

a <- getFirstNumber // getFirstNumber returns Future[Int]

b <- getSecondNumber // getSecondNumber returns Future[Int]

} yield a + b

// The final result is a Future[Int]---a data structure

// that will eventually allow us to access the result of

// applying `+` to `a` and `b`

The important point here is that, if we ignore the comments, these three exam-
ples look idenࢼcal. Monads allow us to forget about one part of the problem
at hand—opঞonal values, mulঞple values, or asynchronously available values—
and focus on just the part we care about—adding two numbers together.

There are many other monads that can be used to simplify problems in differ-
ent circumstances. You may come across some of them in your future use of
Scala. In this course we will concentrate enঞrely on Seq and Option.

194 CHAPTER 6. COLLECTIONS

6.6.2 Exercises

6.6.2.1 Adding All the Things ++

We’ve already seen how we can use a for comprehension to neatly add to-
gether three opঞonal values. Let’s extend this to other monads. Use the fol-
lowing definiঞons:

import scala.util.Try

val opt1 = Some(1)

val opt2 = Some(2)

val opt3 = Some(3)

val seq1 = Seq(1)

val seq2 = Seq(2)

val seq3 = Seq(3)

val try1 = Try(1)

val try2 = Try(2)

val try3 = Try(3)

Add together all the opঞons to create a new opঞon. Add together all the
sequences to create a new sequence. Add together all the trys to create a
new try. Use a for comprehension for each. It shouldn’t take you long!

See the soluঞon

6.7 For Comprehensions Redux

Earlier we looked at the fundamentals of for comprehensions. In this secঞon
we’re going to looking at some handy addiঞonal features they offer, and at
idiomaঞc soluঞons to common problems.

6.7.1 Filtering

It’s quite common to only process selected elements. We can do this with
comprehensions by adding an if clause a[er the generator expression. So to

6.7. FOR COMPREHENSIONS REDUX 195

process only the posiঞve elements of sequence we could write

for(x <- Seq(-2, -1, 0, 1, 2) if x > 0) yield x

// res0: Seq[Int] = List(1, 2)

The code is converted to a withFilter call, or if that doesn’t exist to filter.

Note that, unlike the normal if expression, an if clause in a generator does
not have parentheses around the condiঞon. So we write if x > 0 not if(x
> 0) in a for comprehension.

6.7.2 Parallel Iteraঞon

Another common problem is to iterate over two or more collecঞons in parallel.
For example, say we have the sequences Seq(1, 2, 3) and Seq(4, 5, 6)

and we want to add together elements with the same index yielding Seq(5,
7 , 9). If we write

for {

x <- Seq(1, 2, 3)

y <- Seq(4, 5, 6)

} yield x + y

// res1: Seq[Int] = List(5, 6, 7, 6, 7, 8, 7, 8, 9)

we see that iteraঞons are nested. We traverse the first element from the first
sequence and then all the elements of the second sequence, then the second
element from the first sequence and so on.

The soluঞon is to zip together the two sequences, giving a sequence contain-
ing pairs of corresponding elements

Seq(1, 2, 3).zip(Seq(4, 5, 6))

// res2: Seq[(Int, Int)] = List((1,4), (2,5), (3,6))

With this we can easily compute the result we wanted

196 CHAPTER 6. COLLECTIONS

for(x <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield { val (a, b) = x; a + b

}

// res3: Seq[Int] = List(5, 7, 9)

Someঞmes you want to iterate over the values in a sequence and their indices.
For this case the zipWithIndex method is provided.

for(x <- Seq(1, 2, 3).zipWithIndex) yield x

// res4: Seq[(Int, Int)] = List((1,0), (2,1), (3,2))

Finally note that zip and zipWithIndex are available on all collecঞon classes,
including Map and Set.

6.7.3 Pa�ern Matching

The pa�ern on the le[hand side of a generator is not named accidentally. We
can include any pa�ern there and only process results matching the pa�ern.
This provides another way of filtering results. So instead of:

for(x <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield { val (a, b) = x; a + b

}

// res5: Seq[Int] = List(5, 7, 9)

we can write:

for((a, b) <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield a + b

// res6: Seq[Int] = List(5, 7, 9)

6.7.4 Intermediate Results

It is o[en useful to create an intermediate result within a sequence of gener-
ators. We can do this by inserঞng an assignment expression like so:

for {

x <- Seq(1, 2, 3)

square = x * x

y <- Seq(4, 5, 6)

} yield square * y

6.8. MAPS AND SETS 197

// res7: Seq[Int] = List(4, 5, 6, 16, 20, 24, 36, 45, 54)

6.8 Maps and Sets

Up to now we’ve spent all of our ঞme working with sequences. In this secঞon
we’ll go through the two other most common collecঞon types: Maps and Sets.

6.8.1 Maps

A Map is very much like its counterpart in Java - it is a collecঞon that maps keys
to values. The keys must form a set and in most cases are unordered. Here is
how to create a basic map:

val example = Map("a" -> 1, "b" -> 2, "c" -> 3)

// example: scala.collection.immutable.Map[String,Int] = Map(a -> 1, b

-> 2, c -> 3)

The type of the resulঞng map is Map[String,Int], meaning all the keys are
type String and all the values are of type Int.

A quick aside on ->. The constructor funcঞon for Map actually accepts an ar-
bitrary number of Tuple2 arguments. -> is actually a funcঞon that generates
a Tuple2.

"a" -> 1

// res0: (String, Int) = (a,1)

Let’s look at the most common operaঞons on a map.

6.8.1.1 Accessing values using keys

The raison d’etre of a map is to convert keys to values. There are two main
methods for doing this: apply and get.

198 CHAPTER 6. COLLECTIONS

example("a") // The same as example.apply("a")

// res1: Int = 1

example.get("a")

// res2: Option[Int] = Some(1)

apply a�empts to look up a key and throws an excepঞon if it is not found. By
contrast, get returns an Option, forcing you to handle the not found case in
your code.

example("d")

// java.util.NoSuchElementException: key not found: d

// at scala.collection.MapLike$class.default(MapLike.scala:228)

// at scala.collection.AbstractMap.default(Map.scala:59)

// at scala.collection.MapLike$class.apply(MapLike.scala:141)

// at scala.collection.AbstractMap.apply(Map.scala:59)

// ... 302 elided

java.util.NoSuchElementException: key not found: d

// <console>:2: error: ';' expected but ':' found.

// java.util.NoSuchElementException: key not found: d

// ^

example.get("d")

// res4: Option[Int] = None

Finally, the getOrElse method accepts a default value to return if the key is
not found.

example.getOrElse("d", -1)

// res5: Int = -1

6.8.1.2 Determining membership

The contains method determines whether a map contains a key.

6.8. MAPS AND SETS 199

example.contains("a")

// res6: Boolean = true

6.8.1.3 Determining size

Finding the size of a map is just as easy as finding the size of a sequence.

example.size

// res7: Int = 3

6.8.1.4 Adding and removing elements

As with Seq, the default implementaঞon of Map is immutable. We add and
remove elements by creaঞng newmaps as opposed to mutaঞng exisঞng ones.

We can add new elements using the + method. Note that, as with Java’s
HashMap, keys are overwri�en and order is non-determinisঞc.

example.+("c" -> 10, "d" -> 11, "e" -> 12)

// res8: scala.collection.immutable.Map[String,Int] = Map(e -> 12, a

-> 1, b -> 2, c -> 10, d -> 11)

We can remove keys using the - method:

example.-("b", "c")

// res9: scala.collection.immutable.Map[String,Int] = Map(a -> 1)

If we are only specifying a single argument, we can write + and - as infix op-
erators.

example + ("d" -> 4) - "c"

// res10: scala.collection.immutable.Map[String,Int] = Map(a -> 1, b

-> 2, d -> 4)

Note that we sঞll have to write the pair "d" -> 4 in parentheses because +
and -> have the same precedence.

There are many other methods for manipulaঞng immutable maps. For exam-
ple, the ++ and -- methods return the union and intersecঞon of their argu-
ments. See the Scaladoc for Map for more informaঞon.

http://www.scala-lang.org/api/current/scala/collection/Map.html

200 CHAPTER 6. COLLECTIONS

6.8.1.5 Mutable maps

The scala.collection.mutable package contains several mutable imple-
mentaঞons of Map:

val example2 = scala.collection.mutable.Map("x" -> 10, "y" -> 11, "z"

-> 12)

// example2: scala.collection.mutable.Map[String,Int] = Map(z -> 12, y

-> 11, x -> 10)

The in-place mutaঞon equivalents of + and - are += and -= respecঞvely.

example2 += ("x" -> 20)

// res11: example2.type = Map(z -> 12, y -> 11, x -> 20)

example2 -= ("y", "z")

// res12: example2.type = Map(x -> 20)

Note that, like their immutable cousins, += and -= both return a result of type
Map. In this case, however, the return value is the same object that we called
the method on. The return value is useful for chaining method calls together,
but we can discard it if we see fit.

We can also use the update method, or its assignment-style syntacঞc-sugar,
to update elements in the map:

example2("w") = 30

example2

// res14: scala.collection.mutable.Map[String,Int] = Map(w -> 30, x ->

20)

Note that, as with mutable sequences, a(b) = c is shorthand for
a.update(b, c). The update method does not return a value, but
the map is mutated as a side-effect.

There are many other methods for manipulaঞng mutable maps. See the Scal-
adoc for scala.collection.mutable.Map for more informaঞon.

http://www.scala-lang.org/api/current#scala.collection.mutable.Map
http://www.scala-lang.org/api/current#scala.collection.mutable.Map

6.8. MAPS AND SETS 201

6.8.1.6 Sorted maps

The maps we have seen so far do not guarantee an ordering over their keys.
For example, note that in this example, the order of keys in the resulঞng map
is different from the order of addiঞon operaঞons.

Map("a" -> 1) + ("b" -> 2) + ("c" -> 3) + ("d" -> 4) + ("e" -> 5)

// res15: scala.collection.immutable.Map[String,Int] = Map(e -> 5, a

-> 1, b -> 2, c -> 3, d -> 4)

Scala also provides ordered immutable and mutable versions of a ListMap
class that preserves the order in which keys are added:

scala.collection.immutable.ListMap("a" -> 1) + ("b" -> 2) + ("c" -> 3)

+ ("d" -> 4) + ("e" -> 5)

// res16: scala.collection.immutable.ListMap[String,Int] = Map(a -> 1,

b -> 2, c -> 3, d -> 4, e -> 5)

Scala’s separaঞon of interface and implementaঞonmeans that themethods on
ordered and unordered maps are almost idenঞcal, although their performance
may vary. See this useful page for more informaঞon on the performance char-
acterisঞcs of the various types of collecঞon.

6.8.1.7 map and flatMap

Maps, like sequences, extend the Traversable trait, which means they
inherit the standard map and flatMap methods. In fact, a Map[A,B] is a
Traversable[Tuple2[A,B]], which means that map and flatMap operate
on instances of Tuple2.

Here is an example of map:

example.map(pair => pair._1 -> pair._2 * 2)

// res17: scala.collection.immutable.Map[String,Int] = Map(a -> 2, b

-> 4, c -> 6)

Note that the resulঞng object is also a Map as you might expect. However,
what happens when the funcঞon we supply doesn’t return a pair? What does
map return then? Is it a compile error? Let’s try it.

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

202 CHAPTER 6. COLLECTIONS

example.map(pair => pair._1 + " = " + pair._2)

// res18: scala.collection.immutable.Iterable[String] = List(a = 1, b

= 2, c = 3)

It turns out the code does work, but we get back an Iterable result (look at
the type, not the value)—a far more general data type.

Scala’s collecঞons framework is built in a clever (and complicated) way that
always ensures you get something sensible back out of one of the standard
operaঞons like map and flatMap. We won’t go into the details here (it’s prac-
ঞcally a training course in its own right). Suffice to say that you can normally
guess using common sense (and judicious use of the REPL) the type of collec-
ঞon you will get back from any operaঞon.

Here is a more complicated example using flatMap:

example.flatMap {

case (str, num) =>

(1 to 3).map(x => (str + x) -> (num * x))

}

// res19: scala.collection.immutable.Map[String,Int] = Map(c3 -> 9, b2

-> 4, b3 -> 6, c2 -> 6, b1 -> 2, c1 -> 3, a3 -> 3, a1 -> 1, a2

-> 2)

and the same example wri�en using for syntax:

for{

(str, num) <- example

x <- 1 to 3

} yield (str + x) -> (num * x)

// res20: scala.collection.immutable.Map[String,Int] = Map(c3 -> 9, b2

-> 4, b3 -> 6, c2 -> 6, b1 -> 2, c1 -> 3, a3 -> 3, a1 -> 1, a2

-> 2)

Note that the result is a Map again. The argument to flatMap returns a se-
quence of pairs, so in the end we are able to make a new Map from them. If
our funcঞon returns a sequence of non-pairs, we get back a more generic data
type.

6.8. MAPS AND SETS 203

for{

(str, num) <- example

x <- 1 to 3

} yield (x + str) + "=" + (x * num)

// res21: scala.collection.immutable.Iterable[String] = List(1a=1, 2a

=2, 3a=3, 1b=2, 2b=4, 3b=6, 1c=3, 2c=6, 3c=9)

6.8.1.8 In summary

Here is a type table of all the methods we have seen so far:

Method We have We provide We get

Map(...) Tuple2[A,B], … Map[A,B]

apply Map[A,B] A B

get Map[A,B] A Option[B]

+ Map[A,B] Tuple2[A,B], … Map[A,B]

- Map[A,B] Tuple2[A,B], … Map[A,B]

++ Map[A,B] Map[A,B] Map[A,B]

-- Map[A,B] Map[A,B] Map[A,B]

contains Map[A,B] A Boolean

size Map[A,B] Int

map Map[A,B] Tuple2[A,B] => Tuple2[C,D] Map[C,D]

map Map[A,B] Tuple2[A,B] => E Iterable[E]

flatMap Map[A,B] Tuple2[A,B] =>

Traversable[Tuple2[C,D]]

Map[C,D]

flatMap Map[A,B] Tuple2[A,B] =>

Traversable[E]

Iterable[E]

Here are the extras for mutable Maps:

Method We have We provide We get

+= Map[A,B] A Map[A,B]

-= Map[A,B] A Map[A,B]

update Map[A,B] A, B Unit

204 CHAPTER 6. COLLECTIONS

6.8.2 Sets

Sets are unordered collecঞons that contain no duplicate elements. You can
think of them as sequences without an order, or maps with keys and no values.
Here is a type table of the most important methods:

Method We have We provide We get

+ Set[A] A Set[A]

- Set[A] A Set[A]

++ Set[A] Set[A] Set[A]

-- Set[A] Set[A] Set[A]

contains Set[A] A Boolean

apply Set[A] A Boolean

size Set[A] Int

map Set[A] A => B Set[B]

flatMap Set[A] A =>

Traversable[B]

Set[B]

and the extras for mutable Sets:

Method We have We provide We get

+= Set[A] A Set[A]

-= Set[A] A Set[A]

6.8.3 Exercises

6.8.3.1 Favorites

Copy and paste the following code into an editor:

val people = Set(

"Alice",

"Bob",

"Charlie",

6.8. MAPS AND SETS 205

"Derek",

"Edith",

"Fred")

val ages = Map(

"Alice" -> 20,

"Bob" -> 30,

"Charlie" -> 50,

"Derek" -> 40,

"Edith" -> 10,

"Fred" -> 60)

val favoriteColors = Map(

"Bob" -> "green",

"Derek" -> "magenta",

"Fred" -> "yellow")

val favoriteLolcats = Map(

"Alice" -> "Long Cat",

"Charlie" -> "Ceiling Cat",

"Edith" -> "Cloud Cat")

Use the code as test data for the following exercises:

Write a method favoriteColor that accepts a person’s name as a parameter
and returns their favorite colour.

See the soluঞon

Update favoriteColor to return a person’s favorite color or beige as a de-
fault.

See the soluঞon

Write a method printColors that prints everyone’s favorite color!

See the soluঞon

Write a method lookup that accepts a name and one of the maps and returns
the relevant value from the map. Ensure that the return type of the method
matches the value type of the map.

See the soluঞon

Calculate the color of the oldest person:

206 CHAPTER 6. COLLECTIONS

See the soluঞon

6.8.4 Do-It-Yourself Part 2

Now we have some pracঞce with maps and sets let’s see if we can implement
some useful library funcঞons for ourselves.

6.8.4.1 Union of Sets

Write a method that takes two sets and returns a set containing the union
of the elements. Use iteraঞon, like map or foldLeft, not the built-in union
method to do so!

See the soluঞon

6.8.4.2 Union of Maps

Now let’s write union for maps. Assume we have two Map[A, Int] and
add corresponding elements in the two maps. So the union of Map('a' ->

1, 'b' -> 2) and Map('a' -> 2, 'b' -> 4) should be Map('a' -> 3,

'b' -> 6).

See the soluঞon

6.8.4.3 Generic Union

There aremany things that can be added, such as strings (string concatenaঞon),
sets (union), and of course numbers. It would be nice if we could generalise our
unionmethod onmaps to handle anything for which a sensible add operaঞon
can be defined. How can we go about doing this?

See the soluঞon

6.9. RANGES 207

6.9 Ranges

So far we’ve seen lots of ways to iterate over sequences but not much in the
way of iteraঞng over numbers. In Java and other languages it is common to
write code like

for(i = 0; i < array.length; i++) {

doSomething(array[i])

}

We’ve seen that for comprehensions provide a succinct way of implemenঞng
these programs. But what about classics like this?

for(i = 99; i > 0; i--) {

System.out.println(i + "bottles of beer on the wall!")

// Full text omitted for the sake of brevity

}

Scala provides the Range class for these occasions. A Range represents a
sequence of integers from some starঞng value to less than the end value with
a non-zero step. We can construct a Range using the until method on Int.

1 until 10

// res0: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7,

8, 9)

By default the step size is 1, so trying to go from high to low gives us an empty
Range.

10 until 1

// res1: scala.collection.immutable.Range = Range()

We can recঞfy this by specifying a different step, using the by method on
Range.

208 CHAPTER 6. COLLECTIONS

10 until 1 by -1

// res2: scala.collection.immutable.Range = Range(10, 9, 8, 7, 6, 5,

4, 3, 2)

Now we can write the Scala equivalent of our Java program.

for(i <- 99 until 0 by -1) println(i + " bottles of beer on the wall!"

)

// 99 bottles of beer on the wall!

// 98 bottles of beer on the wall!

// 97 bottles of beer on the wall!

This gives us a hint of the power of ranges. Since they are sequences we
can combine them with other sequences in interesঞng ways. For example, to
create a range with a gap in the middle we can concatenate two ranges:

(1 until 10) ++ (20 until 30)

// res7: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3,

4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29)

Note that the result is a Vector not a Range but this doesn’t ma�er. As they
are both sequences we can use both them in a for comprehension without any
code change!

6.10 Generaঞng Random Data

In this secঞon we have an extended case study of generaঞng random data.
The ideas here have many applicaঞons. For example, in generaঞng data for
tesঞng, as used in property based tesࢼng, in probabilisࢼc programming, a new
area of machine learning, and, if you’re going through the extended case study,
in generaࢼve art.

6.10.1 RandomWords

We’ll start by generaঞng text. Imagine we wanted to generate (somewhat)
realisঞc text, perhaps to use as a placeholder to fill in parts of a website design.

6.10. GENERATING RANDOM DATA 209

If we took a large amount of real text we could analyse to work out for each
word what the most common words following it are. Such a model is known
as aMarkov chain.

To keep this example to a reasonable size we’re going to deal with a really
simplified version of the problem, where all sentences have the form subject-
verb-object. For example, “Noel wrote code”.

Write a program to generate all possible sentences given the following model:

• subjects are List("Noel", "The cat", "The dog");
• verbs are List("wrote", "chased", "slept on"); and
• objects are List("the book", "the ball", "the bed").

See the soluঞon

This model creates some clearly nonsensical sentences. We can do be�er by
making the choice of verb dependend on the subject, and the object depend
on the verb.

Let’s use the following model:

• The subjects are as before.
• For the verbs:
• If the subject is “Noel” the possible verbs are “wrote”, “chased”, and
“slept on”.

• If the subject is “The cat” the possible verbs are “meowed at”, “chased”,
and “slept on”.

• If the subject is “The dog” the possible verbs are “barked at”, “chased”,
and “slept on”.

• For the objects:
• If the verb is “wrote” the possible objects are “the book”, “the le�er”,
and “the code”.

• If the verb is “chased” the possible objects are “the ball”, “the dog”, and
“the cat”.

• If the verb is “slept on” the possible objects are “the bed”, “the mat”, and
“the train”.

210 CHAPTER 6. COLLECTIONS

• If the verb is “meowed at” the possible objects are “Noel”, “the door”,
“the food cupboard”.

• If the verb is “barked at” the possible objects are “the postman”, “the
car”, and “the cat”.

Implement this.

See the soluঞon

This model has all the features we need for our full random generaঞon model.
In parঞcular we have condiࢼonal distribuࢼons, meaning the choice of, say, verb
is dependent or condiঞonal on what has come before.

6.10.2 Probabiliঞes

We now have a model that we can imagine making arbitrarily complex to gen-
erate more and more realisঞc data, but we’re missing the element of probabil-
ity that would allow us to weight the data generaঞon towards more common
outcomes.

Let’s extend our model to work on List[(A, Double)], where A is the type
of data we are generaঞng and the Double is a probability. We’re sঞll enumer-
aঞng all possibiliঞes butwe’re now associaঞng a probability with each possible
outcome.

Start by defining a class Distribution that will wrap a List[(A, Double)].
(Why?)

See the soluঞon

We should create some convenience constructors for Distribution.
A useful one is uniform which will accept a List[A] and create a
Distribution[A] where each element has equal probability. Make it
so.

See the soluঞon

What are the other methods we must add to implement the models we’ve
seen so far? What are their signatures?

6.10. GENERATING RANDOM DATA 211

See the soluঞon

Now implement these methods. Start with map, which is simpler. We might
end upwith elements appearingmulঞple ঞmes in the list of events a[er calling
map. That’s absolutely ok.

See the soluঞon

Now implement flatMap. To do so you’ll need to combine the probability of
an event with the probability of the event it depends on. The correct way to
do so is to mulঞply the probabiliঞes together. This may lead to unnormalised
probabiliঞes—probabiliঞes that do not sum up to 1. You might find the follow-
ing two uঞliঞes useful, though you don’t need to normalise probabiliঞes or
ensure that elements are unique for the model to work.

final case class Distribution[A](events: List[(A, Double)]) {

def normalize: Distribution[A] = {

val totalWeight = (events map { case (a, p) => p }).sum

Distribution(events map { case (a,p) => a -> (p / totalWeight) })

}

def compact: Distribution[A] = {

val distinct = (events map { case (a, p) => a }).distinct

def prob(a: A): Double =

(events filter { case (x, p) => x == a } map { case (a, p) => p

}).sum

Distribution(distinct map { a => a -> prob(a) })

}

}

See the soluঞon

6.10.3 Examples

With Distribution we can now define some interesঞng model. We could
do some classic problems, such as working out the probability that a coin flip
gives three heads in a row.

212 CHAPTER 6. COLLECTIONS

sealed trait Coin

case object Heads extends Coin

case object Tails extends Coin

val fairCoin: Distribution[Coin] = Distribution.uniform(List(Heads,

Tails))

val threeFlips =

for {

c1 <- fairCoin

c2 <- fairCoin

c3 <- fairCoin

} yield (c1, c2, c3)

// threeFlips: Distribution[(Coin, Coin, Coin)] = Distribution(List(((

Heads,Heads,Heads),0.125), ((Heads,Heads,Tails),0.125), ((Heads,

Tails,Heads),0.125), ((Heads,Tails,Tails),0.125), ((Tails,Heads,

Heads),0.125), ((Tails,Heads,Tails),0.125), ((Tails,Tails,Heads)

,0.125), ((Tails,Tails,Tails),0.125)))

From this we can read of the probability of three heads being 0.125, as we’d
expect.

Let’s create a more complex model. Imagine the following situaঞon:

I put my food into the oven and a[er some ঞme it ready to eat and produces
delicious smell with probability 0.3 and otherwise it is sঞll raw and produces
no smell with probability 0.7. If there are delicious smells the cat comes to
harass me with probability 0.8, and otherwise it stays asleep. If there is no
smell the cat harasses me for the hell of it with probability 0.4 and otherwise
stays asleep.

Implement this model and answer the quesঞon: if the cat comes to harass me
what is the probability my food is producing delicious smells (and therefore is
ready to eat.)

I found it useful to add this constructor to the companion object of
Distribution:

6.10. GENERATING RANDOM DATA 213

def discrete[A](events: List[(A,Double)]): Distribution[A] =

Distribution(events).compact.normalize

See the soluঞon

6.10.4 Next Steps

The current library is limited to working with discrete events. If we wanted
to work with conঞnuous domains, such as coordinates in the plane, we would
need a different representaঞon as we clearly can’t represent all possible out-
comes. Also, we can easily run into issueswhenworkingwith complex discrete
models, as the number of events increases exponenঞally with each flatMap.

Instead of represenঞng all events we can sample from the distribuঞons of in-
terest and maintain a set of samples. Varying the size of the set allows us to
tradeoff accuracy with computaঞonal resources.

We could use the same style of implementaঞon with a sampling representa-
ঞon, but this would require us to fix the number of samples in advance. It’s
more useful to be able to repeatedly sample from the same model, so that the
user can ask for more samples if they decide they need higher accuracy. Do-
ing so requires that we separate defining the structure of the model from the
process of sampling, hence reifying the model. We’re not going to go further
into this implementaঞon here, but if you’re going through the case study you’ll
pick up the techniques needed to implement it.

214 CHAPTER 6. COLLECTIONS

Chapter 7

Type Classes

Type classes are a powerful feature of Scala that allow us to extend exisঞng
libraries with new funcঞonality, without using inheritance and without having
access to the original library source code. In this chapter we will learn how to
use and implement type classes, using a Scala feature called implicits.

In the secঞon on traits we compared object oriented and funcঞonal style in
terms of extensibility, using this table.

Add new method Add new data

OO Change exisঞng code Exisঞng code unchanged
FP Exisঞng code unchanged Change exisঞng code

Type classes give us a third implementaঞon technique which is more flexible
than either. A type class is like a trait, defining an interface. However, with
type classes we can:

• plug in different implementaঞons of an interface for a given class; and
• implement an interface without modifying exisঞng code.

This means we can add new methods or new data without changing any exist-
ing code.

215

216 CHAPTER 7. TYPE CLASSES

It’s difficult to understand these concepts without an example. We’ll start this
secঞon by exploring how we can use type classes. We’ll then turn to imple-
menঞng them ourselves. We’ll finish with a discussion of best pracঞces.

7.1 Type Class Instances

Type classes in Scala involve the interacঞon of a number of components. To
simplify the presentaঞon we are going to start by looking at using type classes
before we look at how to build them ourselves.

7.1.1 Ordering

A simple example of a type class is the Ordering trait. For a type A, an
Ordering[A] defines a comparison method compare that compares two in-
stances of A by some ordering. To construct an Ordering we can use the
convenience method fromLessThan defined on the companion object.

Imagine wewant to sort a List of Ints. There are many different ways to sort
such a list. For example, we could sort from highest to lowest, or we could sort
from lowest to highest. There is a method sorted on List that will sort a list,
but to use it we must pass in an Ordering to give the parঞcular ordering we
want.

Let’s define some Orderings and see them in acঞon.

import scala.math.Ordering

val minOrdering = Ordering.fromLessThan[Int](_ < _)

// minOrdering: scala.math.Ordering[Int] = scala.math.Ordering$$anon$9

@6b14fb5c

val maxOrdering = Ordering.fromLessThan[Int](_ > _)

// maxOrdering: scala.math.Ordering[Int] = scala.math.Ordering$$anon$9

@3924e0f4

List(3, 4, 2).sorted(minOrdering)

// res0: List[Int] = List(2, 3, 4)

http://www.scala-lang.org/api/current/#scala.math.Ordering

7.1. TYPE CLASS INSTANCES 217

List(3, 4, 2).sorted(maxOrdering)

// res1: List[Int] = List(4, 3, 2)

Herewe define two orderings: minOrdering, which sorts from lowest to high-
est, and maxOrdering, which sorts from highest to lowest. When we call
sorted we pass the Ordering we want to use. These implementaঞons of a
type class are called type class instances.

The type class pa�ern separates the implementaঞon of funcঞonality (the type
class instance, an Ordering[A] in our example) from the type the funcঞonal-
ity is provided for (the A in an Ordering[A]). This is the basic pa�ern for type
classes. Everything else we will see just provides extra convenience.

7.1.2 Implicit Values

It can be inconvenient to conঞnually pass the type class instance to a method
when we want to repeatedly use the same instance. Scala provides a conve-
nience, called an implicit value, that allows us to get the compiler to pass the
type class instance for us. Here’s an example of use:

implicit val ordering = Ordering.fromLessThan[Int](_ < _)

List(2, 4, 3).sorted

// res2: List[Int] = List(2, 3, 4)

List(1, 7 ,5).sorted

// res3: List[Int] = List(1, 5, 7)

Note we didn’t supply an ordering to sorted. Instead, the compiler provides
it for us.

We have to tell the compiler which values it is allowed pass to methods for
us. We do this by annotaঞng a value with implicit, as in the declaraঞon
implicit val ordering = The method must also indicate that it ac-
cepts implicit values. If you look at the documentaঞon for the sortedmethod
on List you see that the single parameter is declared implicit. We’ll talk

http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List

218 CHAPTER 7. TYPE CLASSES

more about implicit parameter lists in a bit. For now we just need to know
that we can get the compiler to supply implicit values to parameters that are
themselves marked implicit.

7.1.3 Declaring Implicit Values

We can tag any val, var, object or zero-argument def with the implicit
keyword, making it a potenঞal candidate for an implicit parameter.

implicit val exampleOne = ...

implicit var exampleTwo = ...

implicit object exampleThree = ...

implicit def exampleFour = ...

An implicit value must be declared within a surrounding object, class, or trait.

7.1.4 Implicit Value Ambiguity

What happens when mulঞple implicit values are in scope? Let’s ask the con-
sole.

implicit val minOrdering = Ordering.fromLessThan[Int](_ < _)

implicit val maxOrdering = Ordering.fromLessThan[Int](_ > _)

List(3,4,5).sorted

// <console>:17: error: ambiguous implicit values:

// both value ordering of type => scala.math.Ordering[Int]

// and value minOrdering of type => scala.math.Ordering[Int]

// match expected type scala.math.Ordering[Int]

// List(3,4,5).sorted

// ^

// <console>:12: error: ambiguous implicit values:

// both value ordering of type => scala.math.Ordering[Int]

// and value minOrdering of type => scala.math.Ordering[Int]

// match expected type scala.math.Ordering[Int]

// List(3,4,5).sorted

7.1. TYPE CLASS INSTANCES 219

// ^

The rule is simple: the compiler will signal an error if there is any ambiguity in
which implicit value should be used.

7.1.5 Take Home Points

In this secঞon we’ve seen the basics for using type classes. In Scala, a type
class is just a trait. To use a type class we:

• create implementaঞons of that trait, called type class instances; and
• typically we mark the type class instances as implicit values.

Marking values as implicit tells the compiler it can supply them as a parameter
to a method call if none is explicitly given. For the compiler to supply a value:

1. the parameter must be marked implicit in the method declaraঞon;
2. there must be an implicit value available of the same type as the param-
eter; and

3. there must be only one such implicit value available.

7.1.6 Exercises

7.1.6.1 More Orderings

Define an Ordering that orders Ints from lowest to highest by absolute value.
The following test cases should pass.

assert(List(-4, -1, 0, 2, 3).sorted(absOrdering) == List(0, -1, 2, 3,

-4))

assert(List(-4, -3, -2, -1).sorted(absOrdering) == List(-1, -2, -3,

-4))

See the soluঞon

Now make your ordering an implicit value, so the following test cases work.

220 CHAPTER 7. TYPE CLASSES

assert(List(-4, -1, 0, 2, 3).sorted == List(0, -1, 2, 3, -4))

assert(List(-4, -3, -2, -1).sorted == List(-1, -2, -3, -4))

See the soluঞon

7.1.6.2 Raঞonal Orderings

Scala doesn’t have a class to represent raঞonal numbers, but we can easily
implement one ourselves.

final case class Rational(numerator: Int, denominator: Int)

Implement an Ordering for Rational to order raঞonals from smallest to
largest. The following test case should pass.

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

See the soluঞon

7.2 Organising Type Class Instances

In secঞon we’ll learn about the places the compiler searches for type class
instances (implicit values), known as the implicit scope, and we’ll discuss how
to organise type class instances to make their use more convenient.

7.2.1 Implicit Scope

The compiler searches the implicit scope when it tries to find an implicit value
to supply as an implicit parameter. The implicit scope is composed of several
parts, and there are rules that prioriঞse some parts over others.

The first part of the implicit scope is the normal scope where other idenঞfiers
are found. This includes idenঞfiers declared in the local scope, within any en-
closing class, object, or trait, or imported from elsewhere. An eligible implicit

7.2. ORGANISING TYPE CLASS INSTANCES 221

value must be a single idenঞfier (i.e. a, not a.b). This is referred to as the local
scope.

The implicit scope also includes the companion objects of types involved in
the method call with the implicit parameter. Let’s look at sorted for example.
The signature for sorted, defined on List[A], is

def sorted[B >: A](implicit ord: math.Ordering[B]): List[A]

The compiler will look in the following places for Ordering instances:

• the companion object of Ordering; and
• the companion object of the type B (which is A or a supertype).

The pracঞcal upshot is we can define type class instances in the companion
object of our types (the type A in this example) and they will be found by the
compiler without the user having to import them explicitly.

In the previous secঞon we defined an Ordering for a Rational type we cre-
ated. Let’s see how we can use the companion object to make this Ordering
easier to use.

First let’s define the ordering in the local scope.

final case class Rational(numerator: Int, denominator: Int)

object Example {

def example() = {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted

==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

}

This works as we expect.

Now let’s shi[the type class instance out of the local scope and see that it
doesn’t compile.

222 CHAPTER 7. TYPE CLASSES

final case class Rational(numerator: Int, denominator: Int)

object Instance {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object Example {

def example =

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted

==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

// <console>:16: error: No implicit Ordering defined for Rational.

// assert(List(Rational(1, 2), Rational(3, 4), Rational(1,

3)).sorted ==

//

^

Here I get an error at compilaঞon ঞme

No implicit Ordering defined for Rational.

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

^

Finally let’s move the type class instance into the companion object of
Rational and see that the code compiles again.

final case class Rational(numerator: Int, denominator: Int)

object Rational {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

7.2. ORGANISING TYPE CLASS INSTANCES 223

object Example {

def example() =

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted

==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

This leads us to our first pa�ern for packaging type class instances.

Type Class Instance Packaging: Companion Objects

When defining a type class instance, if

1. there is a single instance for the type; and
2. you can edit the code for the type that you are defining the in-
stance for

then define the type class instance in the companion object of the type.

7.2.2 Implicit Priority

If we look in the companion object for Ordering we see some type class in-
stances are already defined. In parঞcular there is an instance for Int, yet we
could define our own instances for Ordering[Int] (which we did in the pre-
vious secঞon) and not have an issue with ambiguity.

To understand this we need to learn about the priority rules for selecঞng im-
plicits. An ambiguity error is only raised if there are mulঞple type class in-
stances with the same priority. Otherwise the highest priority implicit is se-
lected.

The full priority rules are rather complex, but that complexity has li�le impact
in most cases. The pracঞcal implicaঞon is that the local scope takes prece-
dence over instances found in companion objects. This means that implicits
that the programmer explicitly pulls into scope, by imporঞng or defining them
in the local scope, will be used in preference.

http://www.scala-lang.org/api/current/#scala.math.Ordering$
http://eed3si9n.com/implicit-parameter-precedence-again

224 CHAPTER 7. TYPE CLASSES

Let’s see this in pracঞce, by defining an Ordering for Rational within the
local scope.

final case class Rational(numerator: Int, denominator: Int)

object Rational {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object Example {

implicit val higherPriorityImplicit = Ordering.fromLessThan[Rational

]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) >

(y.numerator.toDouble / y.denominator.toDouble)

)

def example() =

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted

==

List(Rational(3, 4), Rational(1, 2), Rational(1, 3)))

}

Noঞce that higherPriorityImplicit defines a different ordering to the
one defined in the companion object for Rational. We’ve also changed the
expected ordering in example to match this new ordering. This code both
compiles and runs correctly, illustraঞng the effect of the priority rules.

Type Class Instance Packaging: Companion Objects Part 2

When defining a type class instance, if

1. there is a single good default instance for the type; and
2. you can edit the code for the type that you are defining the in-
stance for

7.2. ORGANISING TYPE CLASS INSTANCES 225

then define the type class instance in the companion object of the type. This
allows users to override the instance by defining one in the local scope
whilst sঞll providing sensible default behaviour.

7.2.3 Packaging Implicit Values Without Companion Objects

If there is no good default instance for a type class instance, or if there are sev-
eral good defaults, we should not place type class instances in the companion
object but instead require the user to explicitly import an instance into the
local scope.

In this case, one simple way to package instances is to place each in its own
object that the user can import into the local scope. For instance, we might
define orderings for Rational as follows:

final case class Rational(numerator: Int, denominator: Int)

object RationalLessThanOrdering {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object RationalGreaterThanOrdering {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) >

(y.numerator.toDouble / y.denominator.toDouble)

)

}

In use the user would import RationalLessThanOrdering._ or import
RationalGreaterThanOrdering._ as appropriate.

7.2.4 Take Home Points

The compiler looks for type class instances (implicit values) in two places:

226 CHAPTER 7. TYPE CLASSES

1. the local scope; and
2. the companion objects of types involved in the method call.

Implicits found in the local scope take precedence over those found in com-
panion objects.

When packaging type class instances, if there is a single instance or a single
good default we should put it in the companion object if possible. Otherwise,
one way to package implicits is to place each one in an object and require the
user to explicitly import them.

7.2.5 Exercises

7.2.5.1 Ordering Orders

Here is a case class to store orders of some arbitrary item.

final case class Order(units: Int, unitPrice: Double) {

val totalPrice: Double = units * unitPrice

}

We have a requirement to order Orders in three different ways:

1. by totalPrice;
2. by number of units; and
3. by unitPrice.

Implement and package implicits to provide these orderings, and jusঞfy your
packaging.

See the soluঞon

7.3 Creaঞng Type Classes

In the previous secঞons we saw how to create and use type class instances.
Now we’re going to explore creaঞng our own type classes.

7.3. CREATING TYPE CLASSES 227

7.3.1 Elements of Type Classes

There are four components of the type class pa�ern:

• the actual type class itself;
• the type class instances;
• interfaces using implicit parameters; and
• interfaces using enrichment and implicit parameters.

We have already seen type class instances and talked briefly about implicit pa-
rameters. Herewewill look at defining our own type class, and in the following
secঞon we will look at the two styles of interface.

7.3.2 Creaঞng a Type Class

Let’s start with an example—converঞng data to HTML. This is a fundamental
operaঞon in any web applicaঞon, and it would be great to be able to provide
a toHtml method across the board in our applicaঞon.

One implementaঞon strategy is to create a trait we extendwherever wewant
this funcঞonality:

trait HtmlWriteable {

def toHtml: String

}

final case class Person(name: String, email: String) extends

HtmlWriteable {

def toHtml = s"$name <$email>"

}

Person("John", "john@example.com").toHtml

// res1: String = John <john@example.com>

This soluঞon has a number of drawbacks. First, we are restricted to having
just one way of rendering a Person. If we want to list people on our company

228 CHAPTER 7. TYPE CLASSES

homepage, for example, it is unlikely we will want to list everybody’s email
addresses without obfuscaঞon. For logged in users, however, we probably
want the convenience of direct email links. Second, this pa�ern can only be
applied to classes that we have wri�en ourselves. If we want to render a
java.util.Date to HTML, for example, we will have to write some other
form of library funcঞon.

Polymorphism has failed us, so perhaps we should try pa�ern matching in-
stead? We could write something like

object HtmlWriter {

def write(in: Any): String =

in match {

case Person(name, email) => ???

case d: Date => ???

case _ => throw new Exception(s"Can't render ${in} to HTML")

}

}

This implementaঞon has its own issues. We have lost type safety because
there is no useful supertype that covers just the elements we want to render
and no more. We can’t have more than one implementaঞon of rendering for
a given type. We also have to modify this code whenever we want to render
a new type.

We can overcome all of these problems by moving our HTML rendering to an
adapter class:

trait HtmlWriter[A] {

def write(in: A): String

}

object PersonWriter extends HtmlWriter[Person] {

def write(person: Person) = s"${person.name} <${person.

email}>"

}

7.3. CREATING TYPE CLASSES 229

PersonWriter.write(Person("John", "john@example.com"))

// res3: String = John <john@example.com>

This is be�er. We can now define HtmlWriter funcঞonality for other types,
including types we have not wri�en ourselves:

import java.util.Date

object DateWriter extends HtmlWriter[Date] {

def write(in: Date) = s"${in.toString}"

}

DateWriter.write(new Date)

// res5: String = Mon Jul 06 10:52:14 UTC 2020

We can also write another HtmlWriter for wriঞng People on our homepage:

object ObfuscatedPersonWriter extends HtmlWriter[Person] {

def write(person: Person) =

s"${person.name} (${person.email.replaceAll("@", " at ")})</

span>"

}

ObfuscatedPersonWriter.write(Person("John", "john@example.com"))

// res6: String = John (john at example.com)

Much safer—it’ll take a spam bot more than a few microseconds to decypher
that!

Youmight recognise PersonWriter, DateWriter, and ObfuscatedPersonWriter
as following the type class instance pa�ern (though we haven’t made them
implicit values at this point). The HtmlWriter trait, which the instances
implement, is the type class itself.

230 CHAPTER 7. TYPE CLASSES

Type Class Pa�ern

A type class is a trait with at least one type variable. The type vari-
ables specify the concrete types the type class instances are defined
for. Methods in the trait usually use the type variables.

trait ExampleTypeClass[A] {

def doSomething(in: A): Foo

}

The next step is to introduce implicit parameters, so we can use type classes
with less boilerplate.

7.3.3 Take Home Points

We have seen the basic pa�ern for implemenঞng type classes.

• We declare some interface for the funcঞonality we want

trait HtmlWriter[A] {

def toHtml(in: A): String

}

• We write type class instances for each concrete class we want to use
and for each different situaঞon we want to use it in

object PersonWriter extends HtmlWriter[Person] {

def toHtml(person: Person) =

s"${person.name} (${person.email})"

}

object ObfuscatedPersonWriter extends HtmlWriter[Person] {

def toHtml(person: Person) =

7.4. IMPLICIT PARAMETER AND INTERFACES 231

s"${person.name} (${person.email.replaceAll("@", " at ")})"

}

• This allows us to implement the funcঞonality for any type, and to pro-
vide different implementaঞons for the same type.

7.3.4 Exercises

7.3.4.1 Equality

Scala provides two equality predicates: by value (==) and by reference (eq).
Nonetheless, we someঞmes need addiঞonal predicates. For instance, we
could compare people by just email address if we were validaঞng new user
accounts in some web applicaঞon.

Implement a trait Equal of some type A, with a method equal that compares
two values of type A and returns a Boolean. Equal is a type class.

See the soluঞon

Our Person class is

case class Person(name: String, email: String)

Implement instances of Equal that compare for equality by email address only,
and by name and email.

See the soluঞon

7.4 Implicit Parameter and Interfaces

We’ve seen the basics of the type class pa�ern. Now let’s look at how we can
make it easier to use. Recall our starঞng point is a trait HtmlWriter which
allows us to implement HTML rendering for classes without requiring access
to their source code, and allows us to render the same class in different ways.

232 CHAPTER 7. TYPE CLASSES

trait HtmlWriter[A] {

def write(in: A): String

}

object PersonWriter extends HtmlWriter[Person] {

def write(person: Person) = s"${person.name} <${person.

email}>"

}

This issuewith this code is thatwe needmanage a lot ofHtmlWriter instances
when we render any complex data. We have already seen that we can manage
this complexity using implicit values and have menঞoned implicit parameters
in passing. In this secঞon we go in depth on implicit parameters.

7.4.1 Implicit Parameter Lists

Here is an example of an implicit parameter list:

object HtmlUtil {

def htmlify[A](data: A)(implicit writer: HtmlWriter[A]): String = {

writer.write(data)

}

}

The htmlifymethod accepts two arguments: some data to convert to HTML
and a writer to do the conversion. The writer is an implicit parameter.

The implicit keyword applies to the whole parameter list, not just an in-
dividual parameter. This makes the parameter list opঞonal—when we call
HtmlUtil.htmlify we can either specify the list as normal

HtmlUtil.htmlify(Person("John", "john@example.com"))(PersonWriter)

// res1: String = John <john@example.com>

or we can omit the implicit parameters. If we omit the implicit parameters, the
compiler searches for implicit values of the correct type it can use to fill in the
missing arguments. We have already learned about implicit values, but let’s
see a quick example to refresh our memory. First we define an implicit value.

7.4. IMPLICIT PARAMETER AND INTERFACES 233

implicit object ApproximationWriter extends HtmlWriter[Int] {

def write(in: Int): String =

s"It's definitely less than ${((in / 10) + 1) * 10}"

}

When we use HtmlUtil we don’t have to specify the implicit parameter if an
implicit value can be found.

HtmlUtil.htmlify(2)

7.4.2 Interfaces Using Implicit Parameters

A complete use of the type class pa�ern requires an interface using implicit
parameters, alongwith implicit type class instances. We’ve seen two examples
already: the sortedmethod using Ordering, and the htmlifymethod above.
The best interface depends on the problem being solved, but there is a pa�ern
that occurs frequently enough that it is worth explaining here.

In many case the interface defined by the type class is the same interface we
want to use. This is the case for HtmlWriter – the only method of interest is
write. We could write something like

object HtmlWriter {

def write[A](in: A)(implicit writer: HtmlWriter[A]): String =

writer.write(in)

}

We can avoid this indirecঞon (which becomes more painful to write as our
interfaces become larger) with the following construcঞon:

object HtmlWriter {

def apply[A](implicit writer: HtmlWriter[A]): HtmlWriter[A] =

writer

}

In use it looks like

234 CHAPTER 7. TYPE CLASSES

HtmlWriter[Person].write(Person("Noel", "noel@example.org"))

The idea is to simply select a type class instance by type (done by the no-
argument apply method) and then directly call the methods defined on that
instance.

Type Class Interface Pa�ern

If the desired interface to a type class TypeClass is exactly themethods
defined on the type class trait, define an interface on the companion
object using a no-argument apply method like

object TypeClass {

def apply[A](implicit instance: TypeClass[A]): TypeClass[A] =

instance

}

7.4.3 Take Home Points

Implicit parameters make type classes more convenient to use. We can make
an enঞre parameter list with the implicit keyword to make it an implicit
parameter list.

def method[A](normalParam1: NormalType, ...)(implicit implicitParam1:

ImplicitType[A], ...)

If we call a method and do not explicitly supply its implicit parameter list, the
compiler will search for implicit values of the correct types to complete the
parameter list for us.

Using implicit parameters we can make more convenient interfaces using type
class instances. If the desired interface to a type class is exactly the methods
defined on the type class we can create a convenient interface using the pat-
tern

7.4. IMPLICIT PARAMETER AND INTERFACES 235

object TypeClass {

def apply[A](implicit instance: TypeClass[A]): TypeClass[A] =

instance

}

7.4.4 Exercises

7.4.4.1 Equality Again

In the previous secঞon we defined a trait Equal along with some implemen-
taঞons for Person.

case class Person(name: String, email: String)

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

Implement an object called Eq with an apply method. This method should
accept two explicit parameters of type A and an implicit Equal[A]. It should
perform the equality checking using the provided Equal. With appropriate
implicits in scope, the following code should work

Eq(Person("Noel", "noel@example.com"), Person("Noel", "noel@example.

com"))

See the soluঞon

Package up the different Equal implementaঞons as implicit values in their own
objects, and show you can control the implicit selecঞon by changing which
object is imported.

236 CHAPTER 7. TYPE CLASSES

See the soluঞon

Now implement an interface on the companion object for Equal using the
no-argument apply method pa�ern. The following code should work.

import NameAndEmailImplicit._

Equal[Person].equal(Person("Noel", "noel@example.com"), Person("Noel", "noel@example.com"))

Which interface style do you prefer?

See the soluঞon

7.5 Enriched Interfaces

A second type of type class interface, called type enrichment¹ allow us to create
interfaces that act as if they were methods defined on the classes of interest.
For example, suppose we have a method called numberOfVowels:

def numberOfVowels(str: String) =

str.filter(Seq('a', 'e', 'i', 'o', 'u').contains(_)).length

numberOfVowels("the quick brown fox")

// res0: Int = 5

This is amethod that we use all the ঞme. It would be great if numberOfVowels
was a built-inmethod of String sowe couldwrite "a string".numberOfVowels,
but of course we can’t change the source code for String. Scala has a feature
called implicit classes that allow us to add new funcঞonality to an exisঞng
class without ediঞng its source code. This is a similar concept to categories in
Objecঞve C or extension methods in C#, but the implementaঞon is different
in each case.

¹Type enrichment is someঞmes referred to as pimping in older literature. We will not use
that term.

7.5. ENRICHED INTERFACES 237

7.5.1 Implicit Classes

Let’s build up implicit classes piece by piece. We can wrap String in a class
that adds our numberOfVowels:

class ExtraStringMethods(str: String) {

val vowels = Seq('a', 'e', 'i', 'o', 'u')

def numberOfVowels =

str.toList.filter(vowels contains _).length

}

We can use this to wrap up our String and gain access to our new method:

new ExtraStringMethods("the quick brown fox").numberOfVowels

Wriঞng new ExtraStringMethods every ঞmewewant to usenumberOfVowels
is unwieldy. However, if we tag our class with the implicit keyword, we
give Scala the ability to insert the constructor call automaঞcally into our code:

implicit class ExtraStringMethods(str: String) { /* ... */ }

"the quick brown fox".numberOfVowels

// res2: Int = 5

When the compiler processes our call to numberOfVowels, it interprets it as
a type error because there is no such method in String. Rather than give
up, the compiler a�empts to fix the error by searching for an implicit class
that provides the method and can be constructed from a String. It finds
ExtraStringMethods. The compiler then inserts an invisible constructor call,
and our code type checks correctly.

Implicit classes follow the same scoping rules as implicit values. Like implicit
values, they must be defined within an enclosing object, class, or trait (except
when wriঞng Scala at the console).

There is one addiঞonal restricঞon for implicit classes: only a single implicit
class will be used to resolve a type error. The compiler will not look to con-
struct a chain of implicit classes to access the desired method.

238 CHAPTER 7. TYPE CLASSES

7.6 Combining Type Classes and Type Enrichment

Implicit classes can be used on their own but we most o[en combine them
with type classes to create a more natural style of interface. We keep the
type class (HtmlWriter) and adapters (PersonWriter, DateWriter and so
on) from our type class example, and add an implicit class with methods that
themselves take implicit parameters. For example:

implicit class HtmlOps[T](data: T) {

def toHtml(implicit writer: HtmlWriter[T]) =

writer.toHtml(data)

}

This allows us to invoke our type-class pa�ern on any type for which we have
an adapter as if it were a built-in feature of the class:

Person("John", "john@example.com").toHtml

// res3: String = John (john@example.com)

This gives us many benefits. We can extend exisঞng types to give them new
funcঞonality, use simple syntax to invoke the funcঞonality, and choose our
preferred implementaঞon by controlling which implicits we have in scope.

7.6.1 Take Home Points

Implicit classes are a Scala language feature that allows us to define extra func-
ঞonality on exisঞng data types without using convenঞonal inheritance. This
is a programming pa�ern called type enrichment.

The Scala compiler uses implicit classes to fix type errors in our code. When it
encounters us accessing a method or field that doesn’t exist, it looks through
the available implicits to find some code it can insert to fix the error.

The rules for implicit classes are the same as for implicit values, with the ad-
diঞonal restricঞon that only a single implicit class will be used to fix a type
error.

7.6. COMBINING TYPE CLASSES AND TYPE ENRICHMENT 239

7.6.2 Exercises

7.6.2.1 Drinking the Kool Aid

Use your newfound powers to add a method yeah to Int, which prints Oh
yeah! as many ঞmes as the Int on which it is called if the Int is posiঞve, and
is silent otherwise. Here’s an example of usage:

2.yeah()

3.yeah()

-1.yeah()

When you have wri�en your implicit class, package it in an IntImplicits

object.

See the soluঞon

7.6.2.2 Times

Extend your previous example to give Int an extra method called times that
accepts a funcঞon of type Int => Unit as an argument and executes it n
ঞmes. Example usage:

3.times(i => println(s"Look - it's the number $i!"))

For bonus points, re-implement yeah in terms of times.

See the soluঞon

7.6.3 Easy Equality

Recall our Equal type class from a previous secঞon.

240 CHAPTER 7. TYPE CLASSES

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

Implement an enrichment so we can use this type class via a triple equal (===)
method. For example, if the correct implicits are in scope the following should
work.

"abcd".===("ABCD") // Assumes case-insensitive equality implicit

See the soluঞon

7.7 Using Type Classes

We have seen how to define type classes. In this secঞon we’ll see some con-
veniences for using them: context bounds and the implicitly method.

7.7.1 Context Bounds

When we use type classes we o[en end up requiring implicit parameters that
we pass onward to a type class interface. For example, using our HtmlWriter
example we might want to define some kind of page template that accepts
content rendered by a writer.

def pageTemplate[A](body: A)(implicit writer: HtmlWriter[A]): String =

{

val renderedBody = body.toHtml

s"<html><head>...</head><body>${renderedBody}</body></html>"

}

Wedon’t explicitly use the implicit writer in our code, but we need it in scope
so the compiler can insert it for the toHtml enrichment.

Context bounds allow us to write this more compactly, with a notaঞon that is
reminiscent of a type bound.

7.7. USING TYPE CLASSES 241

def pageTemplate[A : HtmlWriter](body: A): String = {

val renderedBody = body.toHtml

s"<html><head>...</head><body>${renderedBody}</body></html>"

}

The context bound is the notaঞon [A : HtmlWriter] and it expands into
the equivalent implicit parameter list in the prior example.

Context Bound Syntax

A context bound is an annotaঞon on a generic type variable like so:

[A : Context]

It expands into a generic type parameter [A] along with an implicit pa-
rameter for a Context[A].

7.7.2 Implicitly

Context bounds give us a short-hand syntax for declaring implicit parameters,
but since we don’t have an explicit name for the parameter we cannot use it in
our methods. Normally we use context bounds when we don’t need explicit
access to the implicit parameter, but rather just implicitly pass it on to some
other method. However if we do need access for some reason we can use the
implicitly method.

case class Example(name: String)

implicit val implicitExample = Example("implicit")

implicitly[Example]

// res0: Example = Example(implicit)

242 CHAPTER 7. TYPE CLASSES

implicitly[Example] == implicitExample

// res1: Boolean = true

The implicitly method takes no parameters but has a generic type param-
eters. It returns the implicit matching the given type, assuming there is no
ambiguity.

7.8 Implicit Conversions

So far we have seen two programming pa�erns using implicits: type enrich-
ment, which we implement using implicit classes, and type classes, which we
implement using implicit values and parameter lists.

Scala has a third implicit mechanism called implicit conversions that we will
cover here for completeness. Implicit conversions can be seen as a more gen-
eral form of implicit classes, and can be used in a wider variety of contexts.

The Dangers of Implicit Conversions

As we shall see later in this secঞon, undisciplined use of implicit con-
versions can cause as many problems as it fixes for the beginning pro-
grammer. Scala even requires us to write a special import statement to
silence compiler warnings resulঞng from the use of implicit conversions:

import scala.language.implicitConversions

We recommend using implicit classes and implicit values/parameters
over implicit conversions wherever possible. By sঞcking to the type en-
richment and type class design pa�erns you should find very li�le cause
to use implicit conversions in your code.

You have been warned!

7.8. IMPLICIT CONVERSIONS 243

7.8.1 Implicit conversions

Implicit conversions are amore general formof implicit classes. We can tag any
single-argument method with the implicit keyword to allow the compiler to
implicitly use the method to perform automated conversions from one type
to another:

class B {

def bar = "This is the best method ever!"

}

class A

implicit def aToB(in: A): B = new B()

new A().bar

// res2: String = This is the best method ever!

Implicit classes are actually just syntacঞc sugar for the combinaঞon of a regular
class and an implicit conversion. With an implicit class we have to define a new
type as a target for the conversion; with an implicit method we can convert
from any type to any other type as long as an implicit is available in scope.

7.8.2 Designing with Implicit Conversions

The power of implicit conversions tends to cause problems for newer Scala de-
velopers. We can easily define very general type conversions that play strange
games with the semanঞcs of our programs:

implicit def intToBoolean(int: Int) = int == 0

if(1) "yes" else "no"

// res3: String = no

if(0) "yes" else "no"

// res4: String = yes

244 CHAPTER 7. TYPE CLASSES

This example is ridiculous, but it demonstrates the potenঞal problems implicits
can cause. intToBoolean could be defined in a library in a completely differ-
ent part of our codebase, so how would we debug the bizarre behaviour of
the if expressions above?

Here are some ঞps for designing using implicits that will prevent situaঞons like
the one above:

• Wherever possible, sঞck to the type enrichment and type class pro-
gramming pa�erns.

• Wherever possible, use implicit classes, values, and parameter lists over
implicit conversions.

• Package implicits clearly, and bring them into scope only where you
need them. We recommend using the packaging guidelines introduced
earlier this chapter.

• Avoid creaঞng implicit conversions that convert from one general type
to another general type—themore specific your types are, the less likely
the implicit is to be applied incorrectly.

7.8.3 Exercises

7.8.3.1 Implicit Class Conversion

Any implicit class can be reimplemented as a class paired with an implicit
method. Re-implement the IntOps class from the type enrichment secঞon
in this way. Verify that the class sঞll works the same way as it did before.

See the soluঞon

7.9 JSON Serialisaঞon

In this secঞon we have an extended example involving serializing Scala data
to JSON, which is one of the classic use cases for type classes. The typical

7.9. JSON SERIALISATION 245

process for converঞng data to JSON in Scala involves two steps. First we
convert our data types to an intermediate case class representaঞon, then we
serialize the intermediate representaঞon to a string.

Here is a suitable case class representaঞon of a subset of the JSON language.
We have a sealed trait JsValue that defines a stringify method, and
a set of subtypes for two of the main JSON data types—objects and strings:

sealed trait JsValue {

def stringify: String

}

final case class JsObject(values: Map[String, JsValue]) extends

JsValue {

def stringify = values

.map { case (name, value) => "\"" + name + "\":" + value.stringify

}

.mkString("{", ",", "}")

}

final case class JsString(value: String) extends JsValue {

def stringify = "\"" + value.replaceAll("\\|\"", "\\\\$1") + "\""

}

You should recognise this as the algebraic data type pa�ern.

We can construct JSON objects and serialize them as follows:

val obj = JsObject(Map("foo" -> JsString("a"), "bar" -> JsString("b"),

"baz" -> JsString("c")))

// obj: JsObject = JsObject(Map(foo -> JsString(a), bar -> JsString(b)

, baz -> JsString(c)))

obj.stringify

// res2: String = {"foo":"a","bar":"b","baz":"c"}

7.9.1 Convert X to JSON

Let’s create a type class for converঞng Scala data to JSON. Implement a
JsWriter trait containing a single abstract method write that converts a
value to a JsValue.

246 CHAPTER 7. TYPE CLASSES

See the soluঞon

Now let’s create the dispatch part of our type class. Write a JsUtil object
containing a single method toJson. The method should accept a value of an
arbitrary type A and convert it to JSON.

Tip: your method will have to accept an implicit JsWriter to do the actual
conversion.

See the soluঞon

Now, let’s revisit our data types from the web site visitors example in the
Sealed traits secঞon:

import java.util.Date

sealed trait Visitor {

def id: String

def createdAt: Date

def age: Long = new Date().getTime() - createdAt.getTime()

}

final case class Anonymous(

id: String,

createdAt: Date = new Date()

) extends Visitor

final case class User(

id: String,

email: String,

createdAt: Date = new Date()

) extends Visitor

Write JsWriter instances for Anonymous and User.

See the soluঞon

Given these two definiঞons we can implement a JsWriter for Visitor as
follows. This uses a new type of pa�ern – a: B – which matches any value of
type B and binds it to a variable a:

/traits/sealed-traits.html

7.9. JSON SERIALISATION 247

implicit object VisitorWriter extends JsWriter[Visitor] {

def write(value: Visitor) = value match {

case anon: Anonymous => JsUtil.toJson(anon)

case user: User => JsUtil.toJson(user)

}

}

Finally, verify that your code works by converঞng the following list of users to
JSON:

val visitors: Seq[Visitor] = Seq(Anonymous("001", new Date), User("003

", "dave@xample.com", new Date))

See the soluঞon

7.9.2 Preমer Conversion Syntax

Let’s improve our JSON syntax by combining type classes and type enrichment.
Convert JsUtil to an implicit class with a toJson method. Sample us-
age:

Anonymous("001", new Date).toJson

See the soluঞon

248 CHAPTER 7. TYPE CLASSES

Chapter 8

Conclusions

This completes Essenঞal Scala. To recap our journey, we have learned Scala
via the major pa�erns of usage:

• algebraic data types and structural recursion;
• sequencing computaঞons using map, flatMap, and fold; and
• type classes.

These are the pa�erns we use daily in our Scala coding, which we have found
work well across many Scala projects, and theymake up by the far themajority
of our Scala code. They will serve you well.

We have tried to emphasise that if you can model the problem correctly the
code follows in an almost mechanical way. Learning how to think in the Scala
way (or, more broadly, in a funcঞonal way) is by far the most important lesson
of this book.

We have introduced language features as they support the pa�erns. In the ap-
pendices youwill find addiঞonal material covering some inessenঞal funcঞonal-
ity we have skipped over in the main text. Scala has a few other features, such
as self types, that we have found so li�le use for in our years of programming
Scala that we have omi�ed them enঞrely in this introductory text.

249

250 CHAPTER 8. CONCLUSIONS

8.1 What Now?

The journey to mastering Scala has not finished with this book. You will bene-
fit greatly from acঞve parঞcipaঞon in the Scala community. We have setup an
online chat room for discussion of all Scala related ma�ers. Any and all Scala
related quesঞons are welcome there. There are many other forums, confer-
ences, and user groups where you can find an enthusiasঞc and welcoming
community of fellow programmers.

If you have enjoyed Essenঞal Scala we hope you’ll consider our followup book
Advanced Scala. As the name suggests, it covers more advanced concepts
with an emphasis on pa�erns for larger programs.

Finally, we would love hear your thoughts on Essenঞal Scala. Any
feedback—good or bad—helps to improve the book. We can be reached
at hello@underscore.io. Any improvements we make to Essenঞal Scala will of
course be made available to every reader as part of our policy of free lifeঞme
updates.

Thank you for reading Essenঞal Scala, and we hope you future coding in Scala
is producঞve and fun.

http://gitter.im/underscoreio/scala
http://underscore.io/training/courses/advanced-scala
mailto:hello@underscore.io

Appendix A

Pa�ern Matching

We have seen the duality between algebraic data types and pa�ern matching.
Armed with this informaঞon, we are in a good posiঞon to return to pa�ern
matching and see some of its more powerful features.

Aswe discussed earlier, pa�erns arewri�en in their ownDSL that only superfi-
cially resembles regular Scala code. Pa�erns serve as tests that match a specific
set of Scala values. The match expression compares a value to each pa�ern
in turn, finds the first pa�ern that matches, and executes the corresponding
block of Scala code.

Some pa�erns bind values to variables that can be used on the right hand side
of the corresponding => symbol, and some pa�erns contain other pa�erns, al-
lowing us to build complex tests that simultaneously examine many parts of
a value. Finally, we can create our own custom pa�erns, implemented in Scala
code, to match any cross-secঞon of values we see fit.

We have already seen case class pa�erns and certain types of sequence pat-
terns. Each of the remaining types of pa�ern is described below together with
an example of its use.

251

252 APPENDIX A. PATTERN MATCHING

A.1 Standard pa�erns

A.1.1 Literal pa�erns

Literal pa�erns match a parঞcular value. Any Scala literals work except func-
ঞon literals: primiঞve values, Strings, nulls, and ():

(1 + 1) match {

case 1 => "It's one!"

case 2 => "It's two!"

case 3 => "It's three!"

}

// res0: String = It's two!

Person("Dave", "Gurnell") match {

case Person("Noel", "Welsh") => "It's Noel!"

case Person("Dave", "Gurnell") => "It's Dave!"

}

// res1: String = It's Dave!

println("Hi!") match {

case () => "It's unit!"

}

// Hi!

// res2: String = It's unit!

A.1.2 Constant pa�erns

Idenঞfiers starঞng with an uppercase le�er are constants that match a single
predefined constant value:

val X = "Foo"

// X: String = Foo

val Y = "Bar"

// Y: String = Bar

val Z = "Baz"

// Z: String = Baz

A.1. STANDARD PATTERNS 253

"Bar" match {

case X => "It's foo!"

case Y => "It's bar!"

case Z => "It's baz!"

}

// res3: String = It's bar!

A.1.3 Alternaঞve pa�erns

Verঞcal bars can be used to specify alternaঞves:

"Bar" match {

case X | Y => "It's foo or bar!"

case Z => "It's baz!"

}

// res4: String = It's foo or bar!

A.1.4 Variable capture

Idenঞfiers starঞng with lowercase le�ers bind values to variables. The vari-
ables can be used in the code to the right of the =>:

Person("Dave", "Gurnell") match {

case Person(f, n) => f + " " + n

}

// res5: String = Dave Gurnell

The @ operator, wri�en x @ y, allows us to capture a value in a variable xwhile
also matching it against a pa�ern y. xmust be a variable pa�ern and y can be
any type of pa�ern. For example:

Person("Dave", "Gurnell") match {

case p @ Person(_, s) => s"The person $p has the surname $s"

}

// res6: String = The person Person(Dave,Gurnell) has the surname

Gurnell

254 APPENDIX A. PATTERN MATCHING

A.1.5 Wildcard pa�erns

The _ symbol is a pa�ern that matches any value and simply ignores it. This
is useful in two situaঞons: when nested inside other pa�erns, and when used
on its own to provide an “else” clause at the end of a match expression:

Person("Dave", "Gurnell") match {

case Person("Noel", _) => "It's Noel!"

case Person("Dave", _) => "It's Dave!"

}

// res7: String = It's Dave!

Person("Dave", "Gurnell") match {

case Person(name, _) => s"It's $name!"

}

// res8: String = It's Dave!

Person("John", "Doe") match {

case Person("Noel", _) => "It's Noel!"

case Person("Dave", _) => "It's Dave!"

case _ => "It's someone else!"

}

// res9: String = It's someone else!

A.1.6 Type pa�erns

A type pa�ern takes the form x: Ywhere Y is a type and x is awildcard pa�ern
or a variable pa�ern. The pa�ern matches any value of type Y and binds it to
x:

val shape: Shape = Rectangle(1, 2)

// shape: Shape = Rectangle(1.0,2.0)

shape match {

case c : Circle => s"It's a circle: $c!"

case r : Rectangle => s"It's a rectangle: $r!"

case s : Square => s"It's a square: $s!"

}

// res10: String = It's a rectangle: Rectangle(1.0,2.0)!

A.2. CUSTOM PATTERNS 255

A.1.7 Tuple pa�erns

Tuples of any arity can be matched with parenthesised expressions as follows:

(1, 2) match {

case (a, b) => a + b

}

// res11: Int = 3

A.1.8 Guard expressions

This isn’t so much a pa�ern as a feature of the overall match syntax. We can
add an extra condiঞon to any case clause by suffixing the pa�ern with the
keyword if and a regular Scala expression. For example:

123 match {

case a if a % 2 == 0 => "even"

case _ => "odd"

}

// res12: String = odd

To reiterate, the code between the if and => keywords is a regular Scala ex-
pression, not a pa�ern.

A.2 Custom Pa�erns

In the last secঞon we took an in-depth look at all of the types of pa�ern that
are embedded into the pa�ern matching language. However, in that list we
didn’t see some of the pa�erns that we’ve been using in the course so far—
case class and sequence pa�erns were nowhere to be seen!

There is a final aspect of pa�ern matching that we haven’t covered that truly
makes it a universal tool—we can define our own custom extractor pa�erns
using regular Scala code and use them along-side the built-in pa�erns in our
match expressions.

256 APPENDIX A. PATTERN MATCHING

A.2.1 Extractors

An extractor pa�ern looks like a funcঞon call of zero or more arguments:
foo(a, b, c), where each argument is itself an arbitrary pa�ern.

Extractor pa�erns are defined by creaঞng objects with a method called
unapply or unapplySeq. We’ll dive into the guts of these methods in a
minute. For now let’s look at some of the predefined extractor pa�erns from
the Scala library.

A.2.1.1 Case class extractors

The companion object of every case class is equipped with an extractor
that creates a pa�ern of the same arity as the constructor. This makes it easy
to capture fields in variables:

Person("Dave", "Gurnell") match {

case Person(f, l) => List(f, l)

}

// res0: List[String] = List(Dave, Gurnell)

A.2.1.2 Regular expressions

Scala’s regular expression objects are outfi�ed with a pa�ern that binds each
of the captured groups:

import scala.util.matching.Regex

val r = new Regex("""(\d+)\.(\d+)\.(\d+)\.(\d+)""")

// r: scala.util.matching.Regex = (\d+)\.(\d+)\.(\d+)\.(\d+)

"192.168.0.1" match {

case r(a, b, c, d) => List(a, b, c, d)

}

// res1: List[String] = List(192, 168, 0, 1)

A.2. CUSTOM PATTERNS 257

A.2.1.3 Lists and Sequences

Lists and sequences can be captured in several ways:

The List and Seq companion objects act as pa�erns that match fixed-length
sequences.

List(1, 2, 3) match {

case List(a, b, c) => a + b + c

}

// res2: Int = 6

• Nil matches the empty list:

Nil match {

case List(a) => "length 1"

case Nil => "length 0"

}

// res3: String = length 0

There is also a singleton object :: that matches the head and tail of a list.

List(1, 2, 3) match {

case ::(head, tail) => s"head $head tail $tail"

case Nil => "empty"

}

// res4: String = head 1 tail List(2, 3)

This perhaps makes more sense when you realise that binary extractor pat-
terns can also be wri�en infix.

List(1, 2, 3) match {

case head :: tail => s"head $head tail $tail"

case Nil => "empty"

}

// res5: String = head 1 tail List(2, 3)

Combined use of ::, Nil, and _ allow us to match the first elements of any
length of list.

258 APPENDIX A. PATTERN MATCHING

List(1, 2, 3) match {

case Nil => "length 0"

case a :: Nil => s"length 1 starting $a"

case a :: b :: Nil => s"length 2 starting $a $b"

case a :: b :: c :: _ => s"length 3+ starting $a $b $c"

}

// res6: String = length 3+ starting 1 2 3

A.2.1.4 Creaঞng custom fixed-length extractors

You can use any object as a fixed-length extractor pa�ern by giving it amethod
called unapply with a parঞcular type signature:

def unapply(value: A): Boolean // pattern with 0 parameters

def unapply(value: A): Option[B] // 1 parameter

def unapply(value: A): Option[(B1, B2)] // 2 parameters

// etc...

Each pa�ern matches values of type A and captures arguments of type B, B1,
and so on. Case class pa�erns and :: are examples of fixed-length extractors.

For example, the extractor below matches email addresses and splits them
into their user and domain parts:

object Email {

def unapply(str: String): Option[(String, String)] = {

val parts = str.split("@")

if (parts.length == 2) Some((parts(0), parts(1))) else None

}

}

"dave@underscore.io" match {

case Email(user, domain) => List(user, domain)

}

// res7: List[String] = List(dave, underscore.io)

"dave" match {

case Email(user, domain) => List(user, domain)

case _ => Nil

}

A.2. CUSTOM PATTERNS 259

// res8: List[String] = List()

This simpler pa�ern matches any string and uppercases it:

object Uppercase {

def unapply(str: String): Option[String] =

Some(str.toUpperCase)

}

Person("Dave", "Gurnell") match {

case Person(f, Uppercase(l)) => s"$f $l"

}

// res9: String = Dave GURNELL

A.2.1.5 Creaঞng custom variable-length extractors

We can also create extractors that match arbitrary numbers of arguments by
defining an unapplySeq method of the following form:

def unapplySeq(value: A): Option[Seq[B]]

Variable-length extractors match a value only if the pa�ern in the case clause
is the same length as the Seq returned by unapplySeq. Regex and List are
examples of variable-length extractors.

The extractor below splits a string into its component words:

object Words {

def unapplySeq(str: String) = Some(str.split(" ").toSeq)

}

"the quick brown fox" match {

case Words(a, b, c) => s"3 words: $a $b $c"

case Words(a, b, c, d) => s"4 words: $a $b $c $d"

}

// res10: String = 4 words: the quick brown fox

260 APPENDIX A. PATTERN MATCHING

A.2.1.6 Wildcard sequence pa�erns

There is one final type of pa�ern that can only be used with variable-length
extractors. The wildcard sequence pa�ern, wri�en _*, matches zero or more
arguments from a variable-length pa�ern and discards their values. For exam-
ple:

List(1, 2, 3, 4, 5) match {

case List(a, b, _*) => a + b

}

// res11: Int = 3

"the quick brown fox" match {

case Words(a, b, _*) => a + b

}

// res12: String = thequick

We can combine wildcard pa�erns with the @ operator to capture the remain-
ing elements in the sequence.

"the quick brown fox" match {

case Words(a, b, rest @ _*) => rest

}

// res13: Seq[String] = WrappedArray(brown, fox)

A.2.2 Exercises

A.2.2.1 Posiঞve Matches

Custom extractors allow us to abstract away complicated condiঞonals. In this
example wewill build a very simple extractor, which we probably wouldn’t use
in real code, but which is representaঞve of this idea.

Create an extractor Positive that matches any posiঞve integer. Some test
cases:

assert(

"No" ==

(0 match {

case Positive(_) => "Yes"

A.2. CUSTOM PATTERNS 261

case _ => "No"

})

)

assert(

"Yes" ==

(42 match {

case Positive(_) => "Yes"

case _ => "No"

})

)

See the soluঞon

A.2.2.2 Titlecase extractor

Extractors can also transform their input. In this exercise we’ll write an extrac-
tor that converts any string to ঞtlecase by uppercasing the first le�er of every
word. A test case:

assert(

"Sir Lord Doctor David Gurnell" ==

("sir lord doctor david gurnell" match {

case Titlecase(str) => str

})

)

Tips:

• Java Strings have the methods split(String), toUpperCase and
substring(Int, Int).

• The method split(String) returns a Java Array[String]. You can
convert this to a List[String] using array.toList so you can map
over it and manipulate each word.

• A List[String] can be converted back to a String with the code
list.mkString(" ").

262 APPENDIX A. PATTERN MATCHING

This extractor isn’t parঞcularly useful, and in general defining your own ex-
tractors is not common in Scala. However it can be a useful tool in certain
circumstances.

See the soluঞon

Appendix B

Collecঞons Redux

This opঞonal secঞon covers some more details of the collecঞons framework
that typically aren’t used in day-to-day programming. This includes the differ-
ent sequence implementaঞons available, details of collecঞons operaঞons on
arrays and strings, some of the core traits in the framework, and details of Java
interoperaঞon.

B.1 Sequence Implementaঞons

We’ve seen that the Scala collecঞons separate interface from implementaঞon.
This means we can work with all collecঞons in a generic manner. However dif-
ferent concrete implementaঞons have different performance characterisঞcs,
so we must be aware of the available implementaঞons so we can choose ap-
propriately. Here we look at the mostly frequently used implementaঞons of
Seq. For full details on all the available implementaঞon see the docs.

B.1.1 Performance Characterisঞcs

The collecঞons framework disঞnguishes at the type level two general classes
of sequences. Sequences implemenঞng IndexedSeq have efficient apply,

263

http://docs.scala-lang.org/overviews/collections/introduction.html

264 APPENDIX B. COLLECTIONS REDUX

length, and (if mutable) update operaঞons, while LinearSeqs have efficient
head and tail operaঞons. Neither have any addiঞonal operaঞons over Seq.

B.1.2 Immutable Implementaঞons

The main immutable Seq implementaঞons are List, and Stream, and Vector.

B.1.2.1 List

A List is a singly linked list. It has constant ঞme access to the first element
and remainder of the list (head, and tail) and is thus a LinearSeq. It also has
constant ঞme prepending to the front of the list, but linear ঞme appending to
the end. List is the default Seq implementaঞon.

B.1.2.2 Stream

A Stream is like a list except its elements are computed on demand, and thus
it can have infinite size. Like other collecঞons we can create streams by calling
the apply method on the companion object.

Stream(1, 2, 3)

// res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)

Note that only the first element is printed. The others will be computed when
we try to access them.

We can also use the #:: method to construct a stream from individual ele-
ments, starঞng from Stream.empty.

Stream.empty.#::(3).#::(2).#::(1)

// res1: scala.collection.immutable.Stream[Int] = Stream(1, ?)

We can also use the more natural operator syntax.

B.1. SEQUENCE IMPLEMENTATIONS 265

1 #:: 2 #:: 3 #:: Stream.empty

// res2: scala.collection.immutable.Stream[Int] = Stream(1, ?)

This method allows us to create a infinite stream. Here’s an infinite stream of
1s:

def streamOnes: Stream[Int] = 1 #:: streamOnes

streamOnes

// res3: Stream[Int] = Stream(1, ?)

Because elements are only evaluated as requested, calling streamOnes

doesn’t lead to infinite recursion. When we take the first five elements (and
convert them to a List, so they’ll all print out) we see we have what we want.

streamOnes.take(5).toList

// res4: List[Int] = List(1, 1, 1, 1, 1)

B.1.2.3 Vector

Vector is the final immutable sequence we’ll consider. Unlike Stream and
List it is an IndexedSeq, and thus offers fast random access and updates. It
is the default immutable IndexedSeq, which we can see if we create one.

scala.collection.immutable.IndexedSeq(1, 2, 3)

// res5: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3)

Vectors are a good choice if you want both random access and immutability.

B.1.3 Mutable Implementaঞons

The mutable collecঞons are probably more familiar. In addiঞon to linked lists
and arrays (whichwe discuss inmore detail later) there are buffers, which allow
for efficient construcঞon of certain data structures.

266 APPENDIX B. COLLECTIONS REDUX

B.1.3.1 Buffers

Buffers are used when you want to efficiently create a data structure an item
at a ঞme. An ArrayBuffer is an IndexedSeq which also has constant ঞme
appends. A ListBuffer is like a Listwith constant ঞme prepend and append
(though note it is mutable, unlike List).

Buffers’ add methods to support destrucঞve prepends and appends. For ex-
ample, the += is destrucঞve append.

val buffer = new scala.collection.mutable.ArrayBuffer[Int]()

// buffer: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()

buffer += 1

// res6: buffer.type = ArrayBuffer(1)

buffer

// res7: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1)

B.1.3.2 StringBuilder

A StringBuilder is essenঞally a buffer for building strings. It is mostly the
same as Java’s StringBuilder except that it implements standard Scala
collecঞons method where there is a conflict. So, for example, the reverse
method creates a new StringBuilder unlike in Java.

B.1.3.3 LinkedLists

Mutable singly LinkedLists and DoubleLinkedLists work for the most
part just like List. A DoubleLikeList maintains both a prev and next

pointer and so allows for efficient removal of an element.

B.2 Arrays and Strings

Arrays and strings in Scala correspond to Java’s arrays and strings.

B.2. ARRAYS AND STRINGS 267

"this is a string"

// res0: String = this is a string

Yet all the familiar collecঞon methods are available on them.

"is it true?".map(elt => true)

// res1: scala.collection.immutable.IndexedSeq[Boolean] = Vector(true,

true, true, true, true, true, true, true, true, true, true)

Array(1, 2, 3).map(_ * 2)

// res2: Array[Int] = Array(2, 4, 6)

This conversion is done automaঞcally using implicit conversions. There
are two conversions. The Wrapped conversions (WrappedArray and
WrappedString) wrap the original array or string in an object supporঞng the
Seq methods. Operaঞons on such a wrapped object return another wrapped
object.

val sequence = new scala.collection.immutable.WrappedString("foo")

// sequence: scala.collection.immutable.WrappedString = foo

sequence.reverse

// res3: scala.collection.immutable.WrappedString = oof

The Ops conversions (ArrayOps and StringOps) add methods that return an
object of the original type. Thus these objects are short-lived.

val sequence = new scala.collection.immutable.StringOps("foo")

// sequence: scala.collection.immutable.StringOps = foo

sequence.reverse

// res4: String = oof

The choice of conversion is based on the required type. If we use a string, say,
where a Seq is expected the string will be wrapped. If we just want to use a
Seq method on a string then an Op conversion will be used.

268 APPENDIX B. COLLECTIONS REDUX

val sequence: Seq[Char] = "foo"

// sequence: Seq[Char] = foo

sequence.getClass

// res5: Class[_ <: Seq[Char]] = class scala.collection.immutable.

WrappedString

B.2.1 Performance

Youmight be worried about the performance of implicit conversions. The Ops
conversions are normally opঞmised away. TheWrapped conversions can give
a small performance hit which may be an issue in parঞcularly performance
sensiঞve code.

B.3 Iterators and Views

Iterators and views are two parts of the collecঞon library that don’t find much
use outside of a few special cases.

B.3.1 Iterators

Scala’s iterators are like Java’s iterators. You can use them to walk through
the elements of a collecঞon, but only once. Iterators have hasNext and next
methods, with the obvious semanঞcs. Otherwise they behave like sequences,
though they don’t inherit from Seq.

Iterators don’t find a great deal of use in Scala. Two primary use cases are
operaঞng on collecঞons that are too large to fit in memory or in parঞcularly
high performance code.

B.3.2 Views

When performing a sequence of transformaঞons on a collecঞon, a number
of intermediate collecঞons will be constructed. For example, in the below

B.4. TRAVERSABLE AND ITERABLE 269

example two intermediate collecঞons will be created by the first and second
call to map.

Seq(1, 2, 3).map(_ * 2).map(_ + 4).map(_.toString)

// res0: Seq[String] = List(6, 8, 10)

It is as if we’d wri�en

val intermediate1 = Seq(1, 2, 3).map(_ * 2)

val intermediate2 = intermediate1.map(_ + 4)

val result = intermediate2.map(_.toString)

These intermediate collecঞons are not strictly necessary. We could instead do
the full sequence of transformaঞons on an element-by-element basis. Views
allows this. We create a view by calling the view method on any collecঞon.
Any traversals of a view are only applied when the force method is called.

val view = Seq(1, 2, 3).view.map(_ * 2).map(_ + 4).map(_.toString)

// view: scala.collection.SeqView[String,Seq[_]] = SeqViewMMM(...)

view.force

// res1: Seq[String] = List(6, 8, 10)

Note that when a view is forced the original type is retained.

For very large collecঞons of items with many stages of transformaঞons a view
can be worthwhile. For modest sizes views are usually slower than creaঞng
the intermediate data structures.

B.4 Traversable and Iterable

So far we’ve avoided discussing the finer details of the collecঞon class hierar-
chy. As we near the end of this secঞon it is ঞme to quickly go over some of
the intricacies.

270 APPENDIX B. COLLECTIONS REDUX

B.4.1 Traversable

The trait Traversable sits at the top of the collecঞon hierarchy and rep-
resents a collecঞon that allows traversal of its contents. The only abstract
operaঞon is foreach. Most of the collecঞon methods are implemented in
Traversable, though classes extending it may reimplement methods for per-
formance.

B.4.1.1 TraversableOnce

TraversableOnce represents a collecঞon that can be traversed one or more
ঞmes. It is primarily used to reduce code duplicaঞon between Iterators and
Traversable.

B.4.2 Iterable

Iterable is the next trait below Traversable. It has a single abstract
method iterator that should return an Iterator over the collecঞon’s
contents. The foreachmethod is implemented in terms of this. It adds a few
methods to Traversable that can only be efficiently implemented when an
iterator is available.

B.5 Java Interoperaঞon

The prefered way to convert between Scala and Java collecঞons is use
the JavaConverters implicit conversions. We use it by imporঞng
scala.collection.JavaConverters._ and then methods asJava

and asScala become available on many of the collecঞons.

import scala.collection.JavaConverters._

B.5. JAVA INTEROPERATION 271

Seq(1, 2, 3).asJava

// res0: java.util.List[Int] = [1, 2, 3]

Java does not disঞnguish mutable and immutable collecঞons at the
type level but the conversions do preserve this property by throwing
UnsupportOperationException as appropriate.

val javaCollection = Seq(1, 2, 3).asJava

// javaCollection: java.util.List[Int] = [1, 2, 3]

javaCollection.set(0, 5)

// java.lang.UnsupportedOperationException

// at java.util.AbstractList.set(AbstractList.java:115)

// ...

The conversions go the other way as well.

val list: java.util.List[Int] = new java.util.ArrayList[Int]()

// list: java.util.List[Int] = []

list.asScala

// res5: scala.collection.mutable.Buffer[Int] = Buffer()

Note that the Scala equivalent is amutable collecঞon. If wemutate an element
we see that the underlying Java collecঞon is also changed. This holds for all
conversions; they always share data and are not copied.

list.asScala += 5

// res6: scala.collection.mutable.Buffer[Int] = Buffer(5)

list

// res7: java.util.List[Int] = [5]

B.5.1 JavaConversions

There is another set of conversions in scala.collection.JavaConversions,
which perform conversions without needing the calls to asJava or asScala.
Many people find this confusing in large systems and thus it is not recom-
mended.

272 APPENDIX B. COLLECTIONS REDUX

B.6 Mutable Sequences

Most of the interfaces we’ve have covered so far do not have any
side-effects—like the copy method on a case class, they return a new
copy of the sequence. Someঞmes, however, we need mutable col-
lecঞons. Fortunately, Scala provides two parallel collecঞons hierar-
chies, one in the scala.collection.mutable package and one in the
scala.collection.immutable package.

The default Seq is defined to be scala.collection.immutable.Seq. If we
want a mutable sequence we can use scala.collection.mutable.Seq.

val mutableCollection = scala.collection.mutable.Seq(1, 2, 3)

// mutableCollection: scala.collection.mutable.Seq[Int] = ArrayBuffer

(1, 2, 3)

Note that the concrete implementaঞon class is now an ArrayBuffer and not
a List.

B.6.1 Destrucঞve update

In addiঞon to all the methods of an immutable sequence, a mutable sequence
can be updated using the update method. Note that update returns Unit,
so no value is printed in the REPL a[er this call. When we print the original
sequence we see it is changed:

mutableCollection.update(0, 5)

mutableCollection

// res1: scala.collection.mutable.Seq[Int] = ArrayBuffer(5, 2, 3)

A more idiomaঞc way of calling update is to use assignment operator syntax,
which is another special syntax built in to Scala, similar to infix operator syntax
and funcঞon applicaঞon syntax:

B.6. MUTABLE SEQUENCES 273

mutableCollection(1) = 7

mutableCollection

// res3: scala.collection.mutable.Seq[Int] = ArrayBuffer(5, 7, 3)

B.6.2 Immutable methods on mutable sequences

Methods defined on both mutable and immutable sequences will never per-
form destrucঞve updates. For example, :+ always returns a new copy of the
sequence without updaঞng the original:

val mutableCollection = scala.collection.mutable.Seq[Int](1, 2, 3)

// mutableCollection: scala.collection.mutable.Seq[Int] = ArrayBuffer

(1, 2, 3)

mutableCollection :+ 4

// res4: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3, 4)

mutableCollection

// res5: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3)

B.6.2.1 Using Mutable Collecঞons Safely

Scala programmers tend to favour immutable collecঞons and only
bring in mutable ones in specific circumstances. Using import

scala.collection.mutable._ at the top of a file tends to create a
whole series of naming collisions that we have to work around.

To work around this, I suggest imporঞng the mutable package itself
rather than its contents. We can then explicitly refer to any mutable
collecঞon using the package name as a prefix, leaving the unprefixed
names referring to the immutable versions:

274 APPENDIX B. COLLECTIONS REDUX

import scala.collection.mutable

mutable.Seq(1, 2, 3)

// res6: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2,

3)

Seq(1, 2, 3)

// res7: Seq[Int] = List(1, 2, 3)

B.6.3 In summary

Scala’s collecঞons library includesmutable sequences in thescala.collection.mutable
package. The main extra operaঞon is update:

Method We have We provide We get

update Seq[A] Int, A Unit

B.6.4 Exercises

B.6.4.1 Animals

Create a Seq containing the Strings "cat", "dog", and "penguin". Bind it
to the name animals.

See the soluঞon

Append the element "tyrannosaurus" to animals and prepend the element
"mouse".

See the soluঞon

What happens if you prepend the Int 2 to animals? Why? Try it out… were
you correct?

See the soluঞon

Now create a mutable sequence containing "cat", "dog", and "penguin"

and update an element to be an Int. What happens?

B.6. MUTABLE SEQUENCES 275

See the soluঞon

276 APPENDIX B. COLLECTIONS REDUX

Appendix C

Soluঞons to Exercises

C.1 Expressions, Types, and Values

C.1.1 Soluঞon to: Type and Value

Type is Int and value is 3.

Return to the exercise

C.1.2 Soluঞon to: Type and Value Part 2

Type is Int and value is 3.

Return to the exercise

C.1.3 Soluঞon to: Type and Value Part 3

Type is Int, but this one doesn’t evaluate to a value—it raises an excepঞon
instead, and a raised excepঞon is not a value. How can we tell this? We can’t
conঞnue compuঞng with the result of the expression. For example, we can’t
print it. Compare

277

278 APPENDIX C. SOLUTIONS TO EXERCISES

println("foo")

// foo

and

println("foo".toInt)

// java.lang.NumberFormatException: For input string: "foo"

// at java.lang.NumberFormatException.forInputString(

NumberFormatException.java:65)

// at java.lang.Integer.parseInt(Integer.java:580)

// at java.lang.Integer.parseInt(Integer.java:615)

// at scala.collection.immutable.StringLike$class.toInt(StringLike.

scala:272)

// at scala.collection.immutable.StringOps.toInt(StringOps.scala:29)

// ... 750 elided

In the la�er no prinঞng occurs indicaঞng the println is never evaluated.

Return to the exercise

C.1.4 Soluঞon to: Operator Style

"foo" take 1

// res15: String = f

Return to the exercise

C.1.5 Soluঞon to: Operator Style Part 2

1.+(2).+(3)

// res17: Int = 6

Return to the exercise

C.1.6 Soluঞon to: Subsঞtuঞon

The expressions have the same result type and return value. However, they
arrive at their results in different ways. The first computes its result through a
series of addiঞons, while the later is simply a literal.

C.1. EXPRESSIONS, TYPES, AND VALUES 279

As neither expression has any side-effects, they are interchangeable from a
user’s point of view. Anywhere you can write 1 + 2 + 3 you can also write
6, and vice versa, without changing themeaning of any program. This is known
as subsࢼtuࢼon and you may remember the principle from simplifying algebraic
formulae at school.

As programmers we must develop a mental model of how our code operates.
The subsࢼtuࢼonmodel of evaluaࢼon is a parঞcuarly simple model that says any-
where we see an expression we may subsঞtute its result. In the absence of
side-effects, the subsঞtuঞon model always works¹. If we know the types and
values of each component of an expression, we know the type and value of the
expression as a whole. In funcঞonal programmingwe aim to avoid side-effects
for this reason: it makes our programs easier to understand.

Return to the exercise

C.1.7 Soluঞon to: Literally Just Literals

42 is an Int. true is a Boolean. 123L is a Long. 42.0 is a Double.

This exercise just gives you some experience using the Scala console or Work-
sheet.

Return to the exercise

C.1.8 Soluঞon to: Quotes and Misquotes

The first is a literal Char and the second is a literal String.

Return to the exercise

¹What exactly is a side-effect? One workable definiঞon is anything that causes subsঞtuঞon
to yield an incorrect result. Does subsঞtuঞon always work, in the absence of side-effects? To
truly have a correct model of Scala we must define the order in which we apply subsঞtuঞons.
There are a number of possible orders. (For example, we perform subsঞtuঞon le[-to-right, or
right-to-le[? Do we subsঞtute as soon as possible or delay unঞl we need a value?) Most of
the ঞme order of subsঞtuঞon doesn’t ma�er, but there are cases where it does. Scala always
applies subsঞtuঞon from le[-to-right and at the earliest possible ঞme.

280 APPENDIX C. SOLUTIONS TO EXERCISES

C.1.9 Soluঞon to: An Aside on Side-Effects

The literal expression "Hello world!" evaluates to a String value. The ex-
pression println("Hello world!") evaluates to Unit and, as a side-effect,
prints "Hello world!" on the console.

This an important disঞncঞon between a program that evaluates to a value
and a program that prints a value as a side-effect. The former can be used in
a larger expression but the la�er cannot.

Return to the exercise

C.1.10 Soluঞon to: Learning By Mistakes

You should see an error message. Take the ঞme to read and get used to the
error messages in your development environment—you’ll see plenty more of
them soon!

Return to the exercise

C.1.11 Soluঞon to: Cat-o-maঞque

This is just a finger exercise to get you used to the syntax of defining objects.
You should have a soluঞon similar to the code below.

object Oswald {

val colour: String = "Black"

val food: String = "Milk"

}

object Henderson {

val colour: String = "Ginger"

val food: String = "Chips"

}

object Quentin {

val colour: String = "Tabby and white"

val food: String = "Curry"

}

C.1. EXPRESSIONS, TYPES, AND VALUES 281

Return to the exercise

C.1.12 Soluঞon to: Square Dance!

Here is the soluঞon. cube(x) calls square(x) and mulঞplies its value by x
one more ঞme. The return type of each method is inferred by the compiler as
Double.

object calc {

def square(x: Double) = x * x

def cube(x: Double) = x * square(x)

}

Return to the exercise

C.1.13 Soluঞon to: Precise Square Dance!

Like Java, Scala can’t generalize parঞcularly well across Ints and Doubles.
However, it will allow us to “overload” the square and cubemethods by defin-
ing them for each type of parameter.

object calc2 {

def square(value: Double) = value * value

def cube(value: Double) = value * square(value)

def square(value: Int) = value * value

def cube(value: Int) = value * square(value)

}

“Overloaded” methods are ones we have defined several ঞmes for different
argument types. Whenever we call an overloaded method type, Scala auto-
maঞcally determines which variant we need by looking at the type of the ar-
gument.

calc2.square(1.0) // calls the `Double` version of `square`

// res11: Double = 1.0

calc2.square(1) // calls the `Int` version `square`

282 APPENDIX C. SOLUTIONS TO EXERCISES

// res12: Int = 1

The Scala compiler is able to insert automaঞc conversions between numeric
types wherever you have a lower precision and require a higher precision. For
example, if youwrite calc.square(2), the compiler determines that the only
version of calc.square takes a Double and automaঞcally infers that you re-
ally mean calc.square(2.toDouble).

Conversions in the opposite direcঞon, from high precision to low precision,
are not handled automaঞcally because they can lead to rounding errors. For
example, the code below will not compile because x is an Int and its body
expression is a Double (try it and see)!

val x: Int = calc.square(2) // compile error

// <console>:13: error: type mismatch;

// found : Double

// required: Int

// val x: Int = calc.square(2) // compile error

// ^

You can manually use the toInt method of Double to work around this:

val x: Int = calc.square(2).toInt // toInt rounds down

// x: Int = 4

The Dangers of String Concatenaঞon

To maintain similar behaviour to Java, Scala also automaঞcally converts
any object to a String where required. This is to make it easy to write
things like println("a" + 1), which Scala automaঞcally rewrites as
println("a" + 1.toString).

The fact that string concatenaঞon and numeric addiঞon share the same
+ method can someঞmes cause unexpected bugs, so watch out!

Return to the exercise

C.1. EXPRESSIONS, TYPES, AND VALUES 283

C.1.14 Soluঞon to: Order of evaluaঞon

Here is the soluঞon:

argh.c + argh.b + argh.a

// b

// a

// c

// a

// a

// res13: String = 3c31

The full sequence of evaluaঞon is as follows:

- We calculate the main sum at the end of the program, which...

- Loads `argh`, which...

- Calculates all the fields in `argh`, which...

- Calculates `b`, which...

- Prints `"b"`

- Evaluates `a + 2`, which...

- Calls `a`, which...

- Prints `"a"`

- Returns `1`

- Returns `1 + 2`

- Stores the value `3` in `b`

- Calls `argh.c`, which...

- Prints `"c"`

- Evaluates `a`

- Prints `"a"`

- Returns `1` - Which we discard

- Evaluates `b + "c"`, which...

- Retrieves the value `3` from `b`

- Retrieves the value `"c"`

- Evaluates the `+`, determining that it actually refers to string

concatenation and converting `3` to `"3"`

- Returns the `String` `"3c"`

- Calls `argh.b`, which...

284 APPENDIX C. SOLUTIONS TO EXERCISES

- Retrieves the value `3` from `b`

- Evaluates the first `+`, determining that it actually refers to string

concatentation, and yielding `"3c3"`

- Calls `argh.a`, which...

- Prints `"a"`

- Returns `1`

- Evaluates the first `+`, determining that it actually refers to string

concatentation, and yielding `"3c31"`

Whew! That’s a lot for such a simple piece of code.

Return to the exercise

C.1.15 Soluঞon to: Greeঞngs, human

object person {

val firstName = "Dave"

val lastName = "Gurnell"

}

object alien {

def greet(p: person.type) =

"Greetings, " + p.firstName + " " + p.lastName

}

alien.greet(person)

// res15: String = Greetings, Dave Gurnell

Noঞce the type on the p parameter of greet: person.type. This is one of
the singleton types we were referring to earlier. In this case it is specific to the
object person, which prevents us using greet on any other object. This is
very different from a type such as Int that is shared by all Scala integers.

This imposes a significant limitaঞon on our ability to write programs in Scala.
We can only write methods that work with built-in types or single objects of
our own creaঞon. In order to build useful programs we need the ability to
define our own types and create mulঞple values of each. We can do this using
classes, which we will cover in the next secঞon.

Return to the exercise

C.1. EXPRESSIONS, TYPES, AND VALUES 285

C.1.16 Soluঞon to: The Value of Methods

First let’s deal with the equivalence between methods and expressions. As we
know, expressions are program fragments that produce values. A simple test
of whether something is an expression is to see if we can assign it to a field.

object calculator {

def square(x: Int) = x * x

}

val someField = calculator.square

// <console>:15: error: missing argument list for method square in

object calculator

// Unapplied methods are only converted to functions when a function

type is expected.

// You can make this conversion explicit by writing `square _` or `

square(_)` instead of `square`.

// val someField = calculator.square

// ^

Although we don’t understand this error message fully yet (we shall learn
about “parঞally applied funcঞons” later), it does show us that square is not
an expression. However, a call to square does yield a value:

val someField = calculator.square(2)

// someField: Int = 4

A method with no arguments looks like it behaves differently. However, this
is a trick of the syntax.

object clock {

def time = System.currentTimeMillis

}

val now = clock.time

// now: Long = 1594032605030

Although it looks like now is being assigned clock.time as a value, it is actually
being assigned the value returned by calling clock.time. We can demonstrate
this by calling the method again:

286 APPENDIX C. SOLUTIONS TO EXERCISES

val aBitLaterThanNow = clock.time

// aBitLaterThanNow: Long = 1594032605068

As we saw above, references to fields and calls to argumentless methods look
idenঞcal in Scala. This is by design, to allow us to swap the implementaঞon
of a field for a method (and vice versa) without affecঞng other code. It is a
programming language feature called the uniform access principle.

So, in summary, calls to methods are expressions butmethods themselves are not
expressions. In addiঞon to methods, Scala also has a concept called funcࢼons,
which are objects that can be invoked like methods. As we know objects are
values, so funcঞons are also values and can be treated as data. As you may
have guessed, funcঞons are a criঞcal part of funcࢼonal programming, which is
one of Scala’s major strengths. We will learn about funcঞons and funcঞonal
programming in a bit.

Return to the exercise

C.1.17 Soluঞon to: A Classic Rivalry

It’s a String with value "predator". Predators are clearly best:

if(1 > 2) "alien" else "predator"

// res6: String = predator

The type is determined by the upper bound of the types in the then and else
expressions. In this case both expressions are Strings so the result is also a
String.

The value is determined at runঞme. 2 is greater than 1 so the condiঞonal
evaluates to the value of the else expression.

Return to the exercise

C.1.18 Soluঞon to: A Less Well Known Rivalry

It’s a value of type Any with value 2001:

http://en.wikipedia.org/wiki/Uniform_access_principle

C.1. EXPRESSIONS, TYPES, AND VALUES 287

if(1 > 2) "alien" else 2001

// res8: Any = 2001

This is similar to the previous exercise—the difference is the type of the result.
We saw earlier that the type is the upper bound of the posiঞve and negaঞve
arms of the expression. "alien" and 2001 are completely different types
- their closest common ancestor is Any, which is the grand supertype of all
Scala types.

This is an important observaঞon: types are determined at compile ঞme, before
the program is run. The compiler doesn’t know which of 1 and 2 is greater
before running the program, so it can only make a best guess at the type of
the result of the condiঞonal. Any is as close as it can get in this program,
whereas in the previous exercise it can get all the way down to String.

We’ll learn more about Any in the following secঞons. Java programmers
shouldn’t confuse it with Object because it subsumes value types like Int
and Boolean as well.

Return to the exercise

C.1.19 Soluঞon to: An if Without an else

The result type and value are Any and () respecঞvely:

if(false) "hello"

// res10: Any = ()

All code being equal, condiঞonals without else expressions only evaluate to
a value half of the ঞme. Scala works around this by returning the Unit value
if the else branch should be evaluated. We would usually only use these
expressions for their side-effects.

Return to the exercise

288 APPENDIX C. SOLUTIONS TO EXERCISES

C.2 Objects and Classes

C.2.1 Soluঞon to: Cats, Again

This is a finger exercise to get you used to the syntax of defining classes.

class Cat(val colour: String, val food: String)

val oswald = new Cat("Black", "Milk")

val henderson = new Cat("Ginger", "Chips")

val quentin = new Cat("Tabby and white", "Curry")

Return to the exercise

C.2.2 Soluঞon to: Cats on the Prowl

object ChipShop {

def willServe(cat: Cat): Boolean =

if(cat.food == "Chips")

true

else

false

}

Return to the exercise

C.2.3 Soluঞon to: Directorial Debut

This exercise provides some hands on experience wriঞng Scala classes, fields
and methods. The model soluঞon is as follows:

class Director(

val firstName: String,

val lastName: String,

val yearOfBirth: Int) {

def name: String =

s"$firstName $lastName"

C.2. OBJECTS AND CLASSES 289

def copy(

firstName: String = this.firstName,

lastName: String = this.lastName,

yearOfBirth: Int = this.yearOfBirth): Director =

new Director(firstName, lastName, yearOfBirth)

}

class Film(

val name: String,

val yearOfRelease: Int,

val imdbRating: Double,

val director: Director) {

def directorsAge =

yearOfRelease - director.yearOfBirth

def isDirectedBy(director: Director) =

this.director == director

def copy(

name: String = this.name,

yearOfRelease: Int = this.yearOfRelease,

imdbRating: Double = this.imdbRating,

director: Director = this.director): Film =

new Film(name, yearOfRelease, imdbRating, director)

}

Return to the exercise

C.2.4 Soluঞon to: A Simple Counter

class Counter(val count: Int) {

def dec = new Counter(count - 1)

def inc = new Counter(count + 1)

}

Aside from pracঞcing with classes and objects, this exercise has a second
goal—to think about why inc and dec return a new Counter, rather than
updaঞng the same counter directly.

Because val fields are immutable, we need to come up with some other way
of propagaঞng the new value of count. Methods that return new Counter

290 APPENDIX C. SOLUTIONS TO EXERCISES

objects give us a way of returning new state without the side-effects of assign-
ment. They also permitmethod chaining, allowing us to write whole sequences
of updates in a single expression

The use-case new Counter(10).inc.dec.inc.inc.count actually creates
5 instances of Counter before returning its final Int value. You may be con-
cerned about the extra memory and CPU overhead for such a simple calcula-
ঞon, but don’t be. Modern execuঞon environments like the JVM render the
extra overhead of this style of programming negligible in all but the most per-
formance criঞcal code.

Return to the exercise

C.2.5 Soluঞon to: Counঞng Faster

The simplest soluঞon is this:

class Counter(val count: Int) {

def dec(amount: Int = 1) = new Counter(count - amount)

def inc(amount: Int = 1) = new Counter(count + amount)

}

However, this adds parentheses to inc and dec. If we omit the parameter we
now have to provide an empty pair of parentheses:

new Counter(10).inc

// <console>:14: error: missing argument list for method inc in class

Counter

// Unapplied methods are only converted to functions when a function

type is expected.

// You can make this conversion explicit by writing `inc _` or `inc(_)

` instead of `inc`.

// new Counter(10).inc

// ^

We can work around this using method overloading to recreate our original
parenthesis-freemethods. Note that overloadingmethods requires us to spec-
ify the return types:

C.2. OBJECTS AND CLASSES 291

class Counter(val count: Int) {

def dec: Counter = dec()

def inc: Counter = inc()

def dec(amount: Int = 1): Counter = new Counter(count - amount)

def inc(amount: Int = 1): Counter = new Counter(count + amount)

}

new Counter(10).inc.inc(10).count

// res25: Int = 21

Return to the exercise

C.2.6 Soluঞon to: Addiঞonal Counঞng

class Counter(val count: Int) {

def dec = new Counter(count - 1)

def inc = new Counter(count + 1)

def adjust(adder: Adder) =

new Counter(adder.add(count))

}

This is an interesঞng pa�ern that will becomemore powerful as we learn more
features of Scala. We are using Adders to capture computaࢼons and pass them
to Counter. Remember from our earlier discussion that methods are not ex-
pressions—they cannot be stored in fields or passed around as data. However,
Adders are both objects and computaࢼons.

Using objects as computaঞons is a common paradigm in object oriented pro-
gramming languages. Consider, for example, the classic ActionListener
from Java’s Swing:

public class MyActionListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {

// Do some computation

}

}

The disadvantage of objects like Adders and ActionListeners is that they
are limited to use in one parঞcular circumstance. Scala includes a much more

292 APPENDIX C. SOLUTIONS TO EXERCISES

general concept called funcࢼons that allow us to represent any kind of com-
putaঞon as an object. We will be introduced to some of the concepts behind
funcঞons in this chapter.

Return to the exercise

C.2.7 Soluঞon to: When is a Funcঞon not a Funcঞon?

The main thing we’re missing is types, which are the way we properly abstract
across values.

At themomentwe can define a class called Adder to capture the idea of adding
to a number, but that code isn’t properly portable across codebases—other
developers need to know about our specific class to use it.

We could define a library of common funcঞon types with names like Handler,
Callback, Adder, BinaryAdder, and so on, but this quickly becomes imprac-
ঞcal.

Later on we will see how Scala copes with this problem by defining a generic
set of funcঞon types that we can use in a wide variety of situaঞons.

Return to the exercise

C.2.8 Soluঞon to: Friendly Person Factory

Here is the code:

class Person(val firstName: String, val lastName: String) {

def name: String =

s"$firstName $lastName"

}

object Person {

def apply(name: String): Person = {

val parts = name.split(" ")

new Person(parts(0), parts(1))

}

}

And here it is in use:

C.2. OBJECTS AND CLASSES 293

Person.apply("John Doe").firstName // full method call

// res5: String = John

Person("John Doe").firstName // sugared apply syntax

// res6: String = John

Return to the exercise

C.2.9 Soluঞon to: Extended Body of Work

This exercise is inteded to provide more pracঞce wriঞng code. The model
soluঞon, including the class definiঞons from the previous secঞon, is now:

class Director(

val firstName: String,

val lastName: String,

val yearOfBirth: Int) {

def name: String =

s"$firstName $lastName"

def copy(

firstName: String = this.firstName,

lastName: String = this.lastName,

yearOfBirth: Int = this.yearOfBirth) =

new Director(firstName, lastName, yearOfBirth)

}

object Director {

def apply(firstName: String, lastName: String, yearOfBirth: Int):

Director =

new Director(firstName, lastName, yearOfBirth)

def older(director1: Director, director2: Director): Director =

if (director1.yearOfBirth < director2.yearOfBirth) director1 else

director2

}

class Film(

val name: String,

val yearOfRelease: Int,

294 APPENDIX C. SOLUTIONS TO EXERCISES

val imdbRating: Double,

val director: Director) {

def directorsAge =

director.yearOfBirth - yearOfRelease

def isDirectedBy(director: Director) =

this.director == director

def copy(

name: String = this.name,

yearOfRelease: Int = this.yearOfRelease,

imdbRating: Double = this.imdbRating,

director: Director = this.director) =

new Film(name, yearOfRelease, imdbRating, director)

}

object Film {

def apply(

name: String,

yearOfRelease: Int,

imdbRating: Double,

director: Director): Film =

new Film(name, yearOfRelease, imdbRating, director)

def newer(film1: Film, film2: Film): Film =

if (film1.yearOfRelease < film2.yearOfRelease) film1 else film2

def highestRating(film1: Film, film2: Film): Double = {

val rating1 = film1.imdbRating

val rating2 = film2.imdbRating

if (rating1 > rating2) rating1 else rating2

}

def oldestDirectorAtTheTime(film1: Film, film2: Film): Director =

if (film1.directorsAge > film2.directorsAge) film1.director else

film2.director

}

Return to the exercise

C.2. OBJECTS AND CLASSES 295

C.2.10 Soluঞon to: Type or Value?

Type!—this code is defining a value prestige of type Film.

Return to the exercise

C.2.11 Soluঞon to: Type or Value? Part 2

Type!—this is a reference to the constructor of Film. The constructor is part of
the class Film, which is a type.

Return to the exercise

C.2.12 Soluঞon to: Type or Value? Part 3

Value!—this is shorthand for:

Film.apply("Last Action Hero", 1993, mcTiernan)

apply is a method defined on the singleton object (or value) Film.

Return to the exercise

C.2.13 Soluঞon to: Type or Value? Part 4

Value!—newer is another method defined on the singleton object Film.

Return to the exercise

C.2.14 Soluঞon to: Type or Value? Part 5

Value!—This is tricky! You’d be forgiven for geমng this one wrong.

Film.type refers to the type of the singleton object Film, so in this case Film
is a reference to a value. However, the whole fragment of code is a type.

Return to the exercise

296 APPENDIX C. SOLUTIONS TO EXERCISES

C.2.15 Soluঞon to: Case Cats

Another simple finger exercise.

case class Cat(colour: String, food: String)

Return to the exercise

C.2.16 Soluঞon to: Roger Ebert Said it Best…

Case classes provide our copy methods and our apply methods and remove
the need to write val‘ before each constructor argument. The final codebase
looks like this:

case class Director(firstName: String, lastName: String, yearOfBirth:

Int) {

def name: String =

s"$firstName $lastName"

}

object Director {

def older(director1: Director, director2: Director): Director =

if (director1.yearOfBirth < director2.yearOfBirth) director1 else

director2

}

case class Film(

name: String,

yearOfRelease: Int,

imdbRating: Double,

director: Director) {

def directorsAge =

yearOfRelease - director.yearOfBirth

def isDirectedBy(director: Director) =

this.director == director

}

object Film {

def newer(film1: Film, film2: Film): Film =

C.2. OBJECTS AND CLASSES 297

if (film1.yearOfRelease < film2.yearOfRelease) film1 else film2

def highestRating(film1: Film, film2: Film): Double = {

val rating1 = film1.imdbRating

val rating2 = film2.imdbRating

if (rating1 > rating2) rating1 else rating2

}

def oldestDirectorAtTheTime(film1: Film, film2: Film): Director =

if (film1.directorsAge > film2.directorsAge) film1.director else

film2.director

}

Not only is this code significantly shorter, it also provides us with equals

methods, toStringmethods, and pa�ern matching funcঞonality that will set
us up for later exercises.

Return to the exercise

C.2.17 Soluঞon to: Case Class Counter

case class Counter(count: Int = 0) {

def dec = copy(count = count - 1)

def inc = copy(count = count + 1)

}

This is almost a trick exercise—there are very few differenceswith the previous
implementaঞon However, noঞce the extra funcঞonality we got for free:

Counter(0) // construct objects without `new`

// res16: Counter = Counter(0)

Counter().inc // printout shows the value of `count`

// res17: Counter = Counter(1)

Counter().inc.dec == Counter().dec.inc // semantic equality check

// res18: Boolean = true

Return to the exercise

298 APPENDIX C. SOLUTIONS TO EXERCISES

C.2.18 Soluঞon to: Applicaঞon, Applicaঞon, Applicaঞon

Here’s the code:

case class Person(firstName: String, lastName: String) {

def name = firstName + " " + lastName

}

object Person {

def apply(name: String): Person = {

val parts = name.split(" ")

apply(parts(0), parts(1))

}

}

Even thoughwe are defining a companion object for Person, Scala’s case class
code generator is sঞll working as expected—it adds the auto-generated com-
panion methods to the object we have defined, which is why we need to place
the class and companion in a single compilaঞon unit.

This means we end up with a companion object with an overloaded apply

method with two possible type signatures:

def apply(name: String): Person =

// etc...

def apply(firstName: String, lastName: String): Person =

// etc...

Return to the exercise

C.2.19 Soluঞon to: Feed the Cats

We can start by wriঞng the skeleton suggested by the problem text.

case class Cat(name: String, colour: String, food: String)

object ChipShop {

def willServe(cat: Cat): Boolean =

cat match {

case Cat(???, ???, ???) => ???

C.2. OBJECTS AND CLASSES 299

}

}

As the return type is Boolean we know we need at least two cases, one for
true and one for false. The text of the exercise tells us what they should be:
cats that prefer chips, and all other cats. We can implement this with a literal
pa�ern and an _ pa�ern.

object ChipShop {

def willServe(cat: Cat): Boolean =

cat match {

case Cat(_, _, "Chips") => true

case Cat(_, _, _) => false

}

}

Return to the exercise

C.2.20 Soluঞon to: Get Off My Lawn!

object Dad {

def rate(film: Film): Double =

film match {

case Film(_, _, _, Director("Clint", "Eastwood", _)) => 10.0

case Film(_, _, _, Director("John", "McTiernan", _)) => 7.0

case _ => 3.0

}

}

Pa�ern matching is becoming quite verbose in this case. Later on we’ll learn
howwe can use pa�ernmatching tomatch a parঞcular value, called a constant
pa�ern.

Return to the exercise

300 APPENDIX C. SOLUTIONS TO EXERCISES

C.3 Modelling Data with Traits

C.3.1 Soluঞon to: Cats, and More Cats

This is mostly a finger exercise to get you used to trait syntax but there are a
few interesঞng things in the soluঞon.

trait Feline {

def colour: String

def sound: String

}

case class Lion(colour: String, maneSize: Int) extends Feline {

val sound = "roar"

}

case class Tiger(colour: String) extends Feline {

val sound = "roar"

}

case class Panther(colour: String) extends Feline {

val sound = "roar"

}

case class Cat(colour: String, food: String) extends Feline {

val sound = "meow"

}

Noঞce that sound is not defined as a constructor argument. Since it is a con-
stant, it doesn’t make sense to give users a chance to modify it. There is a lot
of duplicaঞon in the definiঞon of sound. We could define a default value in
Feline like so

trait Feline {

def colour: String

def sound: String = "roar"

}

This is generally a bad pracঞce. If we define a default implementaঞon it should
be an implementaঞon that is suitable for all subtypes.

C.3. MODELLING DATAWITH TRAITS 301

Another alternaঞve to define an intermediate type, perhaps called BigCat

that defines sound as "roar". This is a be�er soluঞon.

trait BigCat extends Feline {

override val sound = "roar"

}

case class Tiger(...) extends BigCat

case class Lion(...) extends BigCat

case class Panther(...) extends BigCat

Return to the exercise

C.3.2 Soluঞon to: Shaping UpWith Traits

trait Shape {

def sides: Int

def perimeter: Double

def area: Double

}

case class Circle(radius: Double) extends Shape {

val sides = 1

val perimeter = 2 * math.Pi * radius

val area = math.Pi * radius * radius

}

case class Rectangle(

width: Double,

height: Double

) extends Shape {

val sides = 4

val perimeter = 2 * width + 2 * height

val area = width * height

}

case class Square(size: Double) extends Shape {

val sides = 4

val perimeter = 4 * size

val area = size * size

}

Return to the exercise

302 APPENDIX C. SOLUTIONS TO EXERCISES

C.3.3 Soluঞon to: Shaping Up 2 (Da Streets)

The new code looks like this:

// trait Shape ...

// case class Circle ...

sealed trait Rectangular extends Shape {

def width: Double

def height: Double

val sides = 4

override val perimeter = 2*width + 2*height

override val area = width*height

}

case class Square(size: Double) extends Rectangular {

val width = size

val height = size

}

case class Rectangle(

val width: Double,

val height: Double

) extends Rectangular

Ensure your trait is sealed so the compiler can check the exhausঞveness of
any code you write that handles objects of type Rectangular or Shape.

Return to the exercise

C.3.4 Soluঞon to: Prinঞng Shapes

object Draw {

def apply(shape: Shape): String = shape match {

case Rectangle(width, height) =>

s"A rectangle of width ${width}cm and height ${height}cm"

case Square(size) =>

s"A square of size ${size}cm"

case Circle(radius) =>

C.3. MODELLING DATAWITH TRAITS 303

s"A circle of radius ${radius}cm"

}

}

Return to the exercise

C.3.5 Soluঞon to: The Color and the Shape

One soluঞon to this exercise is presented below. Remember that a lot of the
implementaঞon details are unimportant—the crucial aspects of a correct solu-
ঞon are:

• There must be a sealed trait Color:

– The trait should contain three def methods for the RGB values.
– The trait should contains the isLight method, defined in terms
of the RGB values.

• There must be three objects represenঞng the predefined colours:

– Each object must extend Color.
– Each object should override the RGB values as vals.
– Marking the objects as final is opঞonal.
– Making the objects case objects is also opঞonal.

• There must be a class represenঞng custom colours:

– The class must extend Color.
– Marking the class final is opঞonal.
– Making the class a case class is opঞonal (although highly rec-
ommended).

• There should ideally be two methods in Draw:

– One method should accept a Color as a parameter and one a
Shape.

– The method names are unimportant.
– Each method should perform a match on the supplied value and
provide enough cases to cover all possible subtypes.

304 APPENDIX C. SOLUTIONS TO EXERCISES

• The whole codebase should compile and produce sensible values when
tested!

// Shape uses Color so we define Color first:

sealed trait Color {

// We decided to store RGB values as doubles between 0.0 and 1.0.

//

// It is always good practice to define abstract members as `defs`

// so we can implement them with `defs`, `vals` or `vars`.

def red: Double

def green: Double

def blue: Double

// We decided to define a "light" colour as one with

// an average RGB of more than 0.5:

def isLight = (red + green + blue) / 3.0 > 0.5

def isDark = !isLight

}

case object Red extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

val green = 0.0

val blue = 0.0

}

case object Yellow extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

val green = 1.0

val blue = 0.0

}

case object Pink extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

val green = 0.0

val blue = 1.0

}

C.3. MODELLING DATAWITH TRAITS 305

// The arguments to the case class here generate `val` declarations

// that implement the RGB methods from `Color`:

final case class CustomColor(

red: Double,

green: Double,

blue: Double) extends Color

// The code from the previous exercise comes across almost verbatim,

// except that we add a `color` field to `Shape` and its subtypes:

sealed trait Shape {

def sides: Int

def perimeter: Double

def area: Double

def color: Color

}

final case class Circle(radius: Double, color: Color) extends Shape {

val sides = 1

val perimeter = 2 * math.Pi * radius

val area = math.Pi * radius * radius

}

sealed trait Rectangular extends Shape {

def width: Double

def height: Double

val sides = 4

val perimeter = 2 * width + 2 * height

val area = width * height

}

final case class Square(size: Double, color: Color) extends

Rectangular {

val width = size

val height = size

}

final case class Rectangle(

width: Double,

height: Double,

color: Color

) extends Rectangular

306 APPENDIX C. SOLUTIONS TO EXERCISES

// We decided to overload the `Draw.apply` method for `Shape` and

// `Color` on the basis that we may want to reuse the `Color` code

// directly elsewhere:

object Draw {

def apply(shape: Shape): String = shape match {

case Circle(radius, color) =>

s"A ${Draw(color)} circle of radius ${radius}cm"

case Square(size, color) =>

s"A ${Draw(color)} square of size ${size}cm"

case Rectangle(width, height, color) =>

s"A ${Draw(color)} rectangle of width ${width}cm and height ${

height}cm"

}

def apply(color: Color): String = color match {

// We deal with each of the predefined Colors with special cases:

case Red => "red"

case Yellow => "yellow"

case Pink => "pink"

case color => if(color.isLight) "light" else "dark"

}

}

// Test code:

Draw(Circle(10, Pink))

// res29: String = A pink circle of radius 10.0cm

Draw(Rectangle(3, 4, CustomColor(0.4, 0.4, 0.6)))

// res30: String = A dark rectangle of width 3.0cm and height 4.0cm

Return to the exercise

C.3.6 Soluঞon to: A Short Division Exercise

Here’s the code:

C.3. MODELLING DATAWITH TRAITS 307

sealed trait DivisionResult

final case class Finite(value: Int) extends DivisionResult

case object Infinite extends DivisionResult

object divide {

def apply(num: Int, den: Int): DivisionResult =

if(den == 0) Infinite else Finite(num / den)

}

divide(1, 0) match {

case Finite(value) => s"It's finite: ${value}"

case Infinite => s"It's infinite"

}

// res34: String = It's infinite

The result of divide.apply is a DivisionResult, which is a sealed trait

with two subtypes. The subtype Finite is a case class encapsulঞng the
result, but the subtype Infinite can simply be an object. We’ve used a case
object for parity with Finite.

The implementaঞon of divide.apply is simple - we perform a test and return
a result. Note that we haven’t annotated the method with a result type—Scala
is capable of inferring the type DivisionResult as the least upper bound of
Infinite and Finite.

Finally, the match illustrates a case class pa�ern with the parentheses, and a
case object pa�ern without.

Return to the exercise

C.3.7 Soluঞon to: Stop on a Dime

This is a direct applicaঞon of the sum type pa�ern.

sealed trait TrafficLight

case object Red extends TrafficLight

case object Green extends TrafficLight

case object Yellow extends TrafficLight

As there are fields or methods on the three cases, and thus there is no need to
create than one instance of them, I used case objects instead of case classes.

308 APPENDIX C. SOLUTIONS TO EXERCISES

Return to the exercise

C.3.8 Soluঞon to: Calculator

sealed trait Calculation

final case class Success(result: Int) extends Calculation

final case class Failure(reason: String) extends Calculation

Return to the exercise

C.3.9 Soluঞon to: Water, Water, Everywhere

Crank the handle on the product and sum type pa�erns.

sealed trait Source

case object Well extends Source

case object Spring extends Source

case object Tap extends Source

final case class BottledWater(size: Int, source: Source, carbonated:

Boolean)

Return to the exercise

C.3.10 Soluঞon to: Traffic Lights

First with polymorphism:

sealed trait TrafficLight {

def next: TrafficLight

}

case object Red extends TrafficLight {

def next: TrafficLight =

Green

}

case object Green extends TrafficLight {

def next: TrafficLight =

Yellow

}

case object Yellow extends TrafficLight {

C.3. MODELLING DATAWITH TRAITS 309

def next: TrafficLight =

Red

}

Now with pa�ern matching:

sealed trait TrafficLight {

def next: TrafficLight =

this match {

case Red => Green

case Green => Yellow

case Yellow => Red

}

}

case object Red extends TrafficLight

case object Green extends TrafficLight

case object Yellow extends TrafficLight

In this case I think implemenঞng inside the class using pa�ern matching is
best. Next doesn’t depend on any external data and we probably only want
one implementaঞon of it. Pa�ern matching makes the structure of the state
machine clearer than polymorphism.

Ulঞmately there are no hard-and-fast rules, and we must consider our design
decisions in the context of the larger program we are wriঞng.

Return to the exercise

C.3.11 Soluঞon to: Calculaঞon

Start by implemenঞng the framework the exercise calls for:

object Calculator {

def +(calc: Calculation, operand: Int): Calculation = ???

def -(calc: Calculation, operand: Int): Calculation = ???

}

Now apply the structural recursion pa�ern:

310 APPENDIX C. SOLUTIONS TO EXERCISES

object Calculator {

def +(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => ???

case Failure(reason) => ???

}

def -(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => ???

case Failure(reason) => ???

}

}

To write the remaining bodies of the methods we can no longer rely on the
pa�erns. However, a bit of thought quickly leads us to the correct answer. We
know that + and - are binary operaঞons; we need two integers to use them.
We also know we need to return a Calculation. Looking at the Failure
cases, we don’t have two Ints available. The only result that makes sense to
return is Failure. On the Success side, we do have two Ints and thus we
should return Success. This gives us:

object Calculator {

def +(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => Success(result + operand)

case Failure(reason) => Failure(reason)

}

def -(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => Success(result - operand)

case Failure(reason) => Failure(reason)

}

}

Return to the exercise

C.3.12 Soluঞon to: Calculaঞon Part 2

The important points here are:

C.3. MODELLING DATAWITH TRAITS 311

1. We have the same general pa�ern as before, matching on the
Calculation first to implement our fail fast behavior.

2. A[er matching on our Calculationwe then check for division by zero.

def /(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) =>

operand match {

case 0 => Failure("Division by zero")

case _ => Success(result / operand)

}

case Failure(reason) => Failure(reason)

}

Return to the exercise

C.3.13 Soluঞon to: Email

I would implement the method in an EmailService object. There are a lot of
details to do with sending an email that have nothing to do with our Visitor
class. I would rather keep these details in a separate abstracঞon.

Return to the exercise

C.3.14 Soluঞon to: A List of Methods

sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

312 APPENDIX C. SOLUTIONS TO EXERCISES

C.3.15 Soluঞon to: A List of Methods Part 2

sealed trait IntList {

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.3.16 Soluঞon to: A List of Methods Part 3

sealed trait IntList {

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.3.17 Soluঞon to: The Forest of Trees

sealed trait Tree

final case class Node(l: Tree, r: Tree) extends Tree

final case class Leaf(elt: Int) extends Tree

Return to the exercise

C.3.18 Soluঞon to: The Forest of Trees Part 2

C.3. MODELLING DATAWITH TRAITS 313

object TreeOps {

def sum(tree: Tree): Int =

tree match {

case Leaf(elt) => elt

case Node(l, r) => sum(l) + sum(r)

}

def double(tree: Tree): Tree =

tree match {

case Leaf(elt) => Leaf(elt * 2)

case Node(l, r) => Node(double(l), double(r))

}

}

sealed trait Tree {

def sum: Int

def double: Tree

}

final case class Node(l: Tree, r: Tree) extends Tree {

def sum: Int =

l.sum + r.sum

def double: Tree =

Node(l.double, r.double)

}

final case class Leaf(elt: Int) extends Tree {

def sum: Int =

elt

def double: Tree =

Leaf(elt * 2)

}

Return to the exercise

C.3.19 Soluঞon to: A Calculator

This is a straigh�orward algebraic data type.

314 APPENDIX C. SOLUTIONS TO EXERCISES

sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Number(value: Double) extends Expression

Return to the exercise

C.3.20 Soluঞon to: A Calculator Part 2

I used pa�ern matching as it’s more compact and I feel this makes the code
easier to read.

sealed trait Expression {

def eval: Double =

this match {

case Addition(l, r) => l.eval + r.eval

case Subtraction(l, r) => l.eval - r.eval

case Number(v) => v

}

}

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

C.3.21 Soluঞon to: A Calculator Part 3

sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Division(left: Expression, right: Expression) extends

Expression

final case class SquareRoot(value: Expression) extends Expression

C.3. MODELLING DATAWITH TRAITS 315

final case class Number(value: Double) extends Expression

Return to the exercise

C.3.22 Soluঞon to: A Calculator Part 4

We did this in the previous secঞon.

sealed trait Calculation

final case class Success(result: Double) extends Calculation

final case class Failure(reason: String) extends Calculation

Return to the exercise

C.3.23 Soluঞon to: A Calculator Part 5

All this repeated pa�ern matching gets very tedious, doesn’t it! We’re going
to see how we can abstract this in the next secঞon.

sealed trait Expression {

def eval: Calculation =

this match {

case Addition(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) => Success(r1 + r2)

}

}

case Subtraction(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) => Success(r1 - r2)

}

}

316 APPENDIX C. SOLUTIONS TO EXERCISES

case Division(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) =>

if(r2 == 0)

Failure("Division by zero")

else

Success(r1 / r2)

}

}

case SquareRoot(v) =>

v.eval match {

case Success(r) =>

if(r < 0)

Failure("Square root of negative number")

else

Success(Math.sqrt(r))

case Failure(reason) => Failure(reason)

}

case Number(v) => Success(v)

}

}

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Division(left: Expression, right: Expression) extends

Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

C.3.24 Soluঞon to: JSON

There are many possible ways to model JSON. Here’s one, which is a fairly
direct translaঞon of the railroad diagrams in the JSON spec.

C.3. MODELLING DATAWITH TRAITS 317

Json ::= JsNumber value:Double

| JsString value:String

| JsBoolean value:Boolean

| JsNull

| JsSequence

| JsObject

JsSequence ::= SeqCell head:Json tail:JsSequence

| SeqEnd

JsObject ::= ObjectCell key:String value:Json tail:JsObject

| ObjectEnd

Return to the exercise

C.3.25 Soluঞon to: JSON Part 2

This should be a mechanical process. This is the point of algebraic data types—
we do the work in modelling the data, and the code follows directly from that
model.

sealed trait Json

final case class JsNumber(value: Double) extends Json

final case class JsString(value: String) extends Json

final case class JsBoolean(value: Boolean) extends Json

case object JsNull extends Json

sealed trait JsSequence extends Json

final case class SeqCell(head: Json, tail: JsSequence) extends

JsSequence

case object SeqEnd extends JsSequence

sealed trait JsObject extends Json

final case class ObjectCell(key: String, value: Json, tail: JsObject)

extends JsObject

case object ObjectEnd extends JsObject

Return to the exercise

C.3.26 Soluঞon to: JSON Part 3

This is an applicaঞon of structural recursion, as all transformaঞons on algebraic
data types are, with the wrinkle that we have to treat the sequence types

318 APPENDIX C. SOLUTIONS TO EXERCISES

specially. Here is my soluঞon.

object json {

sealed trait Json {

def print: String = {

def quote(s: String): String =

'"'.toString ++ s ++ '"'.toString

def seqToJson(seq: SeqCell): String =

seq match {

case SeqCell(h, t @ SeqCell(_, _)) =>

s"${h.print}, ${seqToJson(t)}"

case SeqCell(h, SeqEnd) => h.print

}

def objectToJson(obj: ObjectCell): String =

obj match {

case ObjectCell(k, v, t @ ObjectCell(_, _, _)) =>

s"${quote(k)}: ${v.print}, ${objectToJson(t)}"

case ObjectCell(k, v, ObjectEnd) =>

s"${quote(k)}: ${v.print}"

}

this match {

case JsNumber(v) => v.toString

case JsString(v) => quote(v)

case JsBoolean(v) => v.toString

case JsNull => "null"

case s @ SeqCell(_, _) => "[" ++ seqToJson(s) ++ "]"

case SeqEnd => "[]"

case o @ ObjectCell(_, _, _) => "{" ++ objectToJson(o) ++ "}"

case ObjectEnd => "{}"

}

}

}

final case class JsNumber(value: Double) extends Json

final case class JsString(value: String) extends Json

final case class JsBoolean(value: Boolean) extends Json

case object JsNull extends Json

sealed trait JsSequence extends Json

final case class SeqCell(head: Json, tail: JsSequence) extends

JsSequence

case object SeqEnd extends JsSequence

sealed trait JsObject extends Json

C.3. MODELLING DATAWITH TRAITS 319

final case class ObjectCell(key: String, value: Json, tail: JsObject

) extends JsObject

case object ObjectEnd extends JsObject

}

Return to the exercise

C.3.27 Soluঞon to: Music

My soluঞon models a very simplified version of Western music. My funda-
mental “atom” is the note, which consists of a pitch and a duraঞon.

Note ::= pitch:Pitch duration:Duration

I’m assuming I have a data for Pitch represenঞng tones on the standard mu-
sical scale from C0 (about 16Hz) to C8. Something like

Pitch ::= C0 | CSharp0 | D0 | DSharp0 | F0 | FSharp0 | ... | C8 | Rest

Note that I included Rest as a pitch, so I can model silence.

We already seem some limitaঞons. I’m not modelling notes that fall outside
the scale (microtones) or music systems that use other scales. Furthermore,
in most tuning systems flats and their enharmonic sharps (e.g. C-sharp and
D-flat) are not the same note, but I’m ignoring that disঞncঞon here.

We could break this representaঞon down further into a tone

Tone ::= C | CSharp | D | DSharp | F | FSharp | ... | B

and an octave

Octave ::= 0 | 1 | 2 | ... | 8

and then

320 APPENDIX C. SOLUTIONS TO EXERCISES

Pitch ::= tone:Tone octave:Octave

Duraঞons are a mess in standard musical notaঞon. There are a bunch of
named duraঞons (semitone, quaver, etc.) along with dots and ঞed notes to
represent other duraঞons. We can do be�er by simply saying our music has
an atomic unit of ঞme, which we’ll call a beat, and each duraঞon is zero or
more beats.

Duration ::= 0 | 1 | 2 | ...

In other words, Duration is a natural number. In Scala we might model this
with an Int, or create a type to represent the addiঞonal constraint we put
over Int.

Again, this representaঞon comes with limitaঞons. Namely we can’t represent
music that doesn’t fit cleanly into some division of ঞme—so called free ঞme
music.

Finally we should get to means of composiঞon of notes. There are two main
ways: we can play notes in sequence or at the same ঞme.

Phrase ::= Sequence | Parallek

Sequence ::= SeqCell phrase:Phrase tail:Sequence

| SeqEnd

Parallel ::= ParCell phrase:Phrase tail:Parallel

| ParEnd

This representaঞon allows us to arbitrarily nest parallel and sequenঞal units
of notes. We might prefer a normalised representaঞon, such as

Sequence ::= SeqCell note:Note tail:Sequence

| SeqEnd

Parallel ::= ParCell sequence:Sequence tail:Parallel

| ParEnd

There are many things missing from this model. Some of them include:

C.4. SEQUENCING COMPUTATIONS 321

• We don’t model musical dynamics in any way. Notes can be louder or
so[er, and volume can change while a note is being played. Notes do
not always have constant pitch, either. Pitch bends or slurs are exam-
ples of changing pitches in a single note

• We haven’t modelled different instruments at all.

• We haven’t modelled effects, like echo and distorঞon, that make up an
important part of modern music.

Return to the exercise

C.4 Sequencing Computaঞons

C.4.1 Soluঞon to: Generic List

This is an applicaঞon of the generic sum type pa�ern.

sealed trait LinkedList[A]

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.2 Soluঞon to: Working With Generic Types

This code is largely unchanged from the implementaঞon of length on
IntList.

sealed trait LinkedList[A] {

def length: Int =

this match {

case Pair(hd, tl) => 1 + tl.length

case End() => 0

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

322 APPENDIX C. SOLUTIONS TO EXERCISES

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.3 Soluঞon to: Working With Generic Types Part 2

This is another example of the standard structural recursion pa�ern. The im-
portant point is contains takes a parameter of type A.

sealed trait LinkedList[A] {

def contains(item: A): Boolean =

this match {

case Pair(hd, tl) =>

if(hd == item)

true

else

tl.contains(item)

case End() => false

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.4 Soluঞon to: Working With Generic Types Part 3

There are a few interesঞng things in this exercise. Possibly the easiest part is
the use of the generic type as the return type of the apply method.

Next up is the End case, which the hint suggested you through an Exception
for. Strictly speaking we should throw Java’s IndexOutOfBoundsException
in this instance, but we will shortly see a way to remove excepঞon handling
from our code altogether.

C.4. SEQUENCING COMPUTATIONS 323

Finally we get to the actual structural recursion, which is perhaps the trickiest
part. The key insight is that if the index is zero, we’re selecঞng the current
element, otherwise we subtract one from the index and recurse. We can re-
cursively define the integers in terms of addiঞon by one. For example, 3 = 2 +
1 = 1 + 1 + 1. Here we are performing structural recursion on the list and on
the integers.

sealed trait LinkedList[A] {

def apply(index: Int): A =

this match {

case Pair(hd, tl) =>

if(index == 0)

hd

else

tl(index - 1)

case End() =>

throw new Exception("Attempted to get element from an Empty

list")

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.5 Soluঞon to: Working With Generic Types Part 4

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

sealed trait LinkedList[A] {

def apply(index: Int): Result[A] =

this match {

case Pair(hd, tl) =>

if(index == 0)

Success(hd)

else

tl(index - 1)

324 APPENDIX C. SOLUTIONS TO EXERCISES

case End() =>

Failure("Index out of bounds")

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends

LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.6 Soluঞon to: A Be�er Abstracঞon

Your fold method should look like this:

sealed trait IntList {

def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

// other methods...

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.4.7 Soluঞon to: A Be�er Abstracঞon Part 2

sealed trait IntList {

def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

def length: Int =

fold(0, (_, tl) => 1 + tl)

def product: Int =

fold(1, (hd, tl) => hd * tl)

C.4. SEQUENCING COMPUTATIONS 325

def sum: Int =

fold(0, (hd, tl) => hd + tl)

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.4.8 Soluঞon to: A Be�er Abstracঞon Part 3

When using fold in polymorphic implementaঞons we have a lot of duplica-
ঞon; the polymorphic implementaঞons without fold were simpler to write.
The pa�ern matching implementaঞons benefi�ed from fold as we removed
the duplicaঞon in the pa�ern matching.

In general fold makes a good interface for users outside the class, but not
necessarily for use inside the class.

Return to the exercise

C.4.9 Soluঞon to: A Be�er Abstracঞon Part 4

The types tell us it won’t work. fold returns an Int and double returns an
IntList. However the general structure of double is captured by fold. This
is apparent if we look at them side-by-side:

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

326 APPENDIX C. SOLUTIONS TO EXERCISES

If we could generalise the types of fold from Int to some general type then
we could write double. And that, dear reader, is what we turn to next.

Return to the exercise

C.4.10 Soluঞon to: A Be�er Abstracঞon Part 5

We want to generalise the return type of fold. Our starঞng point is

def fold(end: Int, f: (Int, Int) => Int): Int

Replacing the return type and tracing it back we arrive at

def fold[A](end: A, f: (Int, A) => A): A

wherewe’ve used a generic type on themethod to capture the changing return
type. With this we can implement double. When we try to do so we’ll see
that type inference fails, so we have to give it a bit of help.

sealed trait IntList {

def fold[A](end: A, f: (Int, A) => A): A =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

def length: Int =

fold[Int](0, (_, tl) => 1 + tl)

def product: Int =

fold[Int](1, (hd, tl) => hd * tl)

def sum: Int =

fold[Int](0, (hd, tl) => hd + tl)

def double: IntList =

fold[IntList](End, (hd, tl) => Pair(hd * 2, tl))

}

case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.4. SEQUENCING COMPUTATIONS 327

C.4.11 Soluঞon to: Tree

This is another recursive data type just like list. Follow the pa�erns and you
should be ok.

sealed trait Tree[A] {

def fold[B](node: (B, B) => B, leaf: A => B): B

}

final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A

] {

def fold[B](node: (B, B) => B, leaf: A => B): B =

node(left.fold(node, leaf), right.fold(node, leaf))

}

final case class Leaf[A](value: A) extends Tree[A] {

def fold[B](node: (B, B) => B, leaf: A => B): B =

leaf(value)

}

Return to the exercise

C.4.12 Soluঞon to: Tree Part 2

Note it is necessary to instanঞate the generic type variable for fold. Type
inference fails in this case.

tree.fold[String]((a, b) => a + " " + b, str => str)

Return to the exercise

C.4.13 Soluঞon to: Pairs

If one type parameter is good, two type parameters are be�er:

case class Pair[A, B](one: A, two: B)

This is just the product type pa�ern we have seen before, but we introduce
generic types.

328 APPENDIX C. SOLUTIONS TO EXERCISES

Note that we don’t always need to specify the type parameters when we con-
struct Pairs. The compiler will a�empt to infer the types as usual wherever
it can:

val pair = Pair("hi", 2)

// pair: Pair[String,Int] = Pair(hi,2)

Return to the exercise

C.4.14 Soluঞon to: Generic Sum Type

The code is an adaptaঞon of our invariant generic sum type pa�ern, with an-
other type parameter:

sealed trait Sum[A, B]

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Scala’s standard library has the generic sum type Either for two cases, but it
does not have types for more cases.

Return to the exercise

C.4.15 Soluঞon to: Maybe that Was a Mistake

We can apply our invariant generic sum type pa�ern and get

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4. SEQUENCING COMPUTATIONS 329

C.4.16 Soluঞon to: Generics versus Traits

Ulঞmately the decision is up to us. Different teams will adopt different pro-
gramming styles. However, we look at the properঞes of each approach to
inform our choices:

Inheritance-based approaches—traits and classes—allow us to create perma-
nent data structures with specific types and names. We can name every field
and method and implement use-case-specific code in each class. Inheritance
is therefore be�er suited to modelling significant aspects of our programs that
are re-used in many areas of our codebase.

Generic data structures—Tuples, Options, Eithers, and so on—are ex-
tremely broad and general purpose. There are a wide range of predefined
classes in the Scala standard library that we can use to quickly model rela-
ঞonships between data in our code. These classes are therefore be�er suited
to quick, one-off pieces of data manipulaঞon where defining our own types
would introduce unnecessary verbosity to our codebase.

Return to the exercise

C.4.17 Soluঞon to: Folding Maybe

The code is very similar to the implementaঞon for LinkedList. I choose pat-
tern matching in the base trait for my soluঞon.

sealed trait Maybe[A] {

def fold[B](full: A => B, empty: B): B =

this match {

case Full(v) => full(v)

case Empty() => empty

}

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

330 APPENDIX C. SOLUTIONS TO EXERCISES

C.4.18 Soluঞon to: Folding Sum

sealed trait Sum[A, B] {

def fold[C](left: A => C, right: B => C): C =

this match {

case Left(a) => left(a)

case Right(b) => right(b)

}

}

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.19 Soluঞon to: Mapping Lists

These exercises just get you used to using map.

list.map(_ * 2)

list.map(_ + 1)

list.map(_ / 3)

Return to the exercise

C.4.20 Soluঞon to: Mapping Maybe

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

def map[B](fn: A => B): Maybe[B] =

this match {

case Full(v) => Full(fn(v))

case Empty() => Empty[B]()

}

}

C.4. SEQUENCING COMPUTATIONS 331

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.21 Soluঞon to: Mapping Maybe Part 2

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

def map[B](fn: A => B): Maybe[B] =

flatMap[B](v => Full(fn(v)))

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.22 Soluঞon to: Sequencing Computaঞons

list.flatMap(x => List(x, -x))

Return to the exercise

C.4.23 Soluঞon to: Sequencing Computaঞons Part 2

list.map(maybe => maybe.flatMap[Int] { x => if (x % 2 == 0) Full(x)

else Empty() })

Return to the exercise

C.4.24 Soluঞon to: Sum

332 APPENDIX C. SOLUTIONS TO EXERCISES

sealed trait Sum[A, B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

}

final case class Failure[A, B](value: A) extends Sum[A, B]

final case class Success[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.25 Soluঞon to: Sum Part 2

sealed trait Sum[A, B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

}

final case class Failure[A, B](value: A) extends Sum[A, B]

final case class Success[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.26 Soluঞon to: Sum Part 3

sealed trait Sum[A, B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

C.4. SEQUENCING COMPUTATIONS 333

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

def flatMap[C](f: B => Sum[A, C]) =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A, B](value: A) extends Sum[A, B]

final case class Success[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.27 Soluঞon to: Covariant Sum

sealed trait Sum[+A, +B]

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

C.4.28 Soluঞon to: Some sort of flatMap

sealed trait Sum[+A, +B] {

def flatMap[C](f: B => Sum[A, C]): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

334 APPENDIX C. SOLUTIONS TO EXERCISES

C.4.29 Soluঞon to: Covariance and Contravariance

The only funcঞon that will work is the the funcঞon of type Animal => Purr.
The Siamese => Purr funcঞon will not work because the Oswald is a not
a Siamese cat. The Animal => Sound funcঞon will not work because we
require the return type to be a CatSound.

Return to the exercise

C.4.30 Soluঞon to: Calculator Again

sealed trait Sum[+A, +B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

def flatMap[AA >: A, C](f: B => Sum[AA, C]): Sum[AA, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

C.4.31 Soluঞon to: Calculator Again Part 2

Here’s my soluঞon. I used a helper method lift2 to “li[” a funcঞon into the
result of two expressions. I hope you’ll agree the code is both more compact
and easier to read than our previous soluঞon!

C.4. SEQUENCING COMPUTATIONS 335

sealed trait Expression {

def eval: Sum[String, Double] =

this match {

case Addition(l, r) => lift2(l, r, (left, right) => Success(left

+ right))

case Subtraction(l, r) => lift2(l, r, (left, right) => Success(

left - right))

case Division(l, r) => lift2(l, r, (left, right) =>

if(right == 0)

Failure("Division by zero")

else

Success(left / right)

)

case SquareRoot(v) =>

v.eval flatMap { value =>

if(value < 0)

Failure("Square root of negative number")

else

Success(Math.sqrt(value))

}

case Number(v) => Success(v)

}

def lift2(l: Expression, r: Expression, f: (Double, Double) => Sum[

String, Double]) =

l.eval.flatMap { left =>

r.eval.flatMap { right =>

f(left, right)

}

}

}

final case class Addition(left: Expression, right: Expression) extends

Expression

final case class Subtraction(left: Expression, right: Expression)

extends Expression

final case class Division(left: Expression, right: Expression) extends

Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

336 APPENDIX C. SOLUTIONS TO EXERCISES

C.5 Collecঞons

C.5.1 Soluঞon to: Documentaঞon

The synonym for length is size.

The methods for retrieving the first element in a list are: - head —returns A,
throwing an excepঞon if the list is empty - headOption—returns Option[A],
returning None if the list is empty

The mkString method allows us to quickly display a Seq as a String:

Seq(1, 2, 3).mkString(",") // returns "1,2,3"

Seq(1, 2, 3).mkString("[", ", ", "]") // returns "[1, 2, 3]"

Options contain two methods, isDefined and isEmpty, that we can use as
a quick test:

Some(123).isDefined // returns true

Some(123).isEmpty // returns false

None.isDefined // returns false

None.isEmpty // returns true

Return to the exercise

C.5.2 Soluঞon to: Animals

val animals = Seq("cat", "dog", "penguin")

// animals: scala.collection.immutable.Seq[String] = List(cat, dog,

penguin)

Return to the exercise

C.5.3 Soluঞon to: Animals Part 2

C.5. COLLECTIONS 337

"mouse" +: animals :+ "tyrannosaurus"

// res48: scala.collection.immutable.Seq[String] = List(mouse, cat,

dog, penguin, tyrannosaurus)

Return to the exercise

C.5.4 Soluঞon to: Animals Part 3

The returned sequence has type Seq[Any]. It is perfectly valid to return a
supertype (in this case Seq[Any]) from a non-destrucঞve operaঞon.

2 +: animals

You might expect a type error here, but Scala is capable of determining the
least upper bound of String and Int and seমng the type of the returned
sequence accordingly.

In most real code appending an Int to a Seq[String] would be an error. In
pracঞce, the type annotaঞons we place on methods and fields protect against
this kind of type error, but be aware of this behaviour just in case.

Return to the exercise

C.5.5 Soluঞon to: Intranet Movie Database

We use `filter` because we are expecting more than one result:

def directorsWithBackCatalogOfSize(numberOfFilms: Int): Seq[Director]

=

directors.filter(_.films.length > numberOfFilms)

Return to the exercise

338 APPENDIX C. SOLUTIONS TO EXERCISES

C.5.6 Soluঞon to: Intranet Movie Database Part 2

We use find because we are expecঞng at most one result. This soluঞon will
return the first director found who matches the criteria of the search:

def directorBornBefore(year: Int): Option[Director] =

directors.find(_.yearOfBirth < year)

The Option type is discussed in more detail later this chapter.

Return to the exercise

C.5.7 Soluঞon to: Intranet Movie Database Part 3

This soluঞon performs each part of the query separately and uses filter and
contains to calculate the intersecঞon of the results:

def directorBornBeforeWithBackCatalogOfSize(year: Int, numberOfFilms:

Int): Seq[Director] = {

val byAge = directors.filter(_.yearOfBirth < year)

val byFilms = directors.filter(_.films.length > numberOfFilms)

byAge.filter(byFilms.contains)

}

Return to the exercise

C.5.8 Soluঞon to: Intranet Movie Database Part 4

Here is one soluঞon. Note that sorঞng by ascending age is the same as sorঞng
by descending year of birth:

def directorsSortedByAge(ascending: Boolean = true) =

if(ascending) {

directors.sortWith((a, b) => a.yearOfBirth < b.yearOfBirth)

} else {

directors.sortWith((a, b) => a.yearOfBirth > b.yearOfBirth)

}

Because Scala is a funcঞonal language, we can also factor our code as follows:

C.5. COLLECTIONS 339

def directorsSortedByAge(ascending: Boolean = true) = {

val comparator: (Director, Director) => Boolean =

if(ascending) {

(a, b) => a.yearOfBirth < b.yearOfBirth

} else {

(a, b) => a.yearOfBirth > b.yearOfBirth

}

directors.sortWith(comparator)

}

Here is a final refactoring that is slightly less efficient because it rechecks the
value of ascending mulঞple ঞmes.

def directorsSortedByAge(ascending: Boolean = true) =

directors.sortWith { (a, b) =>

if(ascending) {

a.yearOfBirth < b.yearOfBirth

} else {

a.yearOfBirth > b.yearOfBirth

}

}

Note the use of braces instead of parentheses on the call to sortWith in the
last example. We can use this syntax on any method call of one argument to
give it a control-structure-like look and feel.

Return to the exercise

C.5.9 Soluঞon to: Heroes of the Silver Screen

nolan.films.map(_.name)

Return to the exercise

C.5.10 Soluঞon to: Heroes of the Silver Screen Part 2

340 APPENDIX C. SOLUTIONS TO EXERCISES

directors.flatMap(director => director.films.map(film => film.name))

Return to the exercise

C.5.11 Soluঞon to: Heroes of the Silver Screen Part 3

There are a number of ways to do this. We can sort the list of films and then
retrieve the smallest element.

mcTiernan.films.sortWith { (a, b) =>

a.yearOfRelease < b.yearOfRelease

}.headOption

We can also do this by using a fold.

mcTiernan.films.foldLeft(Int.MaxValue) { (current, film) =>

math.min(current, film.yearOfRelease)

}

A quick aside:

There’s a far simpler soluঞon to this problem using a convenient method on
sequences called min. This method finds the smallest item in a list of naturally
comparable elements. We don’t even need to sort them:

mcTiernan.films.map(_.yearOfRelease).min

We didn’t introduce min in this secঞon because our focus is on working with
general-purpose methods like map and flatMap. However, you may come
across min in the documentaঞon for the Scala standard library, and you may
wonder how it is implemented.

Not all data types have a natural sort order. We might naturally wonder how
min would work on a list of values of an unsortable data type. A quick experi-
ment shows that the call doesn’t even compile:

C.5. COLLECTIONS 341

mcTiernan.films.min

// <console>:19: error: No implicit Ordering defined for Film.

// mcTiernan.films.min

// ^

The min method is a strange beast—it only compiles when it is called on a list
of sortable values. This is an example of something called the type class pa�ern.
We don’t know enough Scala to implement type classes yet—we’ll learn all
about how they work in Chapter [@sec:type-classes].

Return to the exercise

C.5.12 Soluঞon to: Heroes of the Silver Screen Part 4

directors.

flatMap(director => director.films).

sortWith((a, b) => a.imdbRating > b.imdbRating)

Return to the exercise

C.5.13 Soluঞon to: Heroes of the Silver Screen Part 5

We cache the list of films in a variable because we use it twice—once to calcu-
late the sum of the raঞngs and once to fetch the number of films:

val films = directors.flatMap(director => director.films)

films.foldLeft(0.0)((sum, film) => sum + film.imdbRating) / films.

length

Return to the exercise

C.5.14 Soluঞon to: Heroes of the Silver Screen Part 6

Println is used for its side-effects so we don’t need to accumulate a result—we
use println as a simple iterator:

342 APPENDIX C. SOLUTIONS TO EXERCISES

directors.foreach { director =>

director.films.foreach { film =>

println(s"Tonight! ${film.name} by ${director.firstName} ${

director.lastName}!")

}

}

Return to the exercise

C.5.15 Soluঞon to: Heroes of the Silver Screen Part 7

Here’s the soluঞon wri�en using sortWith:

directors.

flatMap(director => director.films).

sortWith((a, b) => a.yearOfRelease < b.yearOfRelease).

headOption

We have to be careful in this soluঞon to handle situaঞons where there are no
films. We can’t use the head method, or even the min method we saw in the
soluঞon to VintageMcTiernan, because these methods throw excepঞons if the
sequence is empty:

someBody.films.map(_.yearOfRelease).min

// java.lang.UnsupportedOperationException: empty.min

// at scala.collection.TraversableOnce$class.min(TraversableOnce.

scala:222)

// at scala.collection.AbstractTraversable.min(Traversable.scala

:104)

// ... 1022 elided

Return to the exercise

C.5.16 Soluঞon to: Do-It-Yourself

This is another fold. We have a Seq[Int], the minimum operaঞon is (Int,
Int) => Int, and we want an Int. The challenge is to find the zero value.

C.5. COLLECTIONS 343

What is the idenঞty for min so that min(x, identity) = x. It is posiঞve in-
finity, which in Scala we canwrite as Int.MaxValue (see, fixedwidth numbers
do have benefits).

Thus the soluঞon is:

def smallest(seq: Seq[Int]): Int =

seq.foldLeft(Int.MaxValue)(math.min)

Return to the exercise

C.5.17 Soluঞon to: Do-It-Yourself Part 2

Once again we follow the same pa�ern. The types are:

1. We have a Seq[Int]
2. We want a Seq[Int]
3. Construcঞng the operaঞon we want to use requires a bit more thought.
The hint is to use contains. We can keep a sequence of the unique
elements we’ve seen so far, and use contains to test if the sequence
contains the current element. If we have seen the element we don’t
add it, otherwise we do. In code

def insert(seq: Seq[Int], elt: Int): Seq[Int] = {

if(seq.contains(elt))

seq

else

elt +: seq

}

With these three pieces we can solve the problem. Looking at the type table
we see we want a fold. Once again we must find the idenঞty element. In this
case the empty sequence is what we want. Why so? Think about what the
answer should be if we try to find the unique elements of the empty sequence.

Thus the soluঞon is

344 APPENDIX C. SOLUTIONS TO EXERCISES

def insert(seq: Seq[Int], elt: Int): Seq[Int] = {

if(seq.contains(elt))

seq

else

elt +: seq

}

def unique(seq: Seq[Int]): Seq[Int] = {

seq.foldLeft(Seq.empty[Int]){ insert _ }

}

unique(Seq(1, 1, 2, 4, 3, 4))

Note how I created the empty sequence. I could havewri�en Seq[Int]() but
in both cases I need to supply a type (Int) to help the type inference along.

Return to the exercise

C.5.18 Soluঞon to: Do-It-Yourself Part 3

In this exercise, and the ones that follow, using the types are parঞcularly im-
portant. Start by wriঞng down the type of reverse.

def reverse[A, B](seq: Seq[A], f: A => B): Seq[B] = {

???

}

The hint says to use foldLeft, so let’s go ahead and fill in the body as far as
we can.

def reverse[A](seq: Seq[A]): Seq[A] = {

seq.foldLeft(???){ ??? }

}

We need to work out the funcঞon to provide to foldLeft and the zero or
idenঞty element. For the funcঞon, the type of foldLeft is required to be of
type (Seq[A], A) => Seq[A]. If we flip the types around the +: method
on Seq has the right types.

C.5. COLLECTIONS 345

For the zero element we know that it must have the same type as the return
type of reverse (because the result of the fold is the result of reverse). Thus
it’s a Seq[A]. Which sequence? There are a few ways to answer this:

• The only Seq[A] we can create in this method, before we know what
A is, is the empty sequence Seq.empty[A].

• The idenঞty element is one such that x +: zero = Seq(x). Again
this must be the empty sequence.

So we now we can fill in the answer.

def reverse[A](seq: Seq[A]): Seq[A] = {

seq.foldLeft(Seq.empty[A]){ (seq, elt) => elt +: seq }

}

Return to the exercise

C.5.19 Soluঞon to: Do-It-Yourself Part 4

Follow the same process as before: write out the type of the method we need
to create, and fill in what we know. We start with map and foldRight.

def map[A, B](seq: Seq[A], f: A => B): Seq[B] = {

seq.foldRight(???){ ??? }

}

As usual we need to fill in the zero element and the funcঞon. The zero el-
ement must have type Seq[B], and the funcঞon has type (A, Seq[B]) =>

Seq[B]). The zero element is straigh�orward: Seq.empty[B] is the only se-
quence we can construct of type Seq[B]. For the funcঞon, we clearly have
to convert that A to a B somehow. There is only one way to do that, which is
with the funcঞon supplied to map. We then need to add that B to our Seq[B],
for which we can use the +: method. This gives us our final result.

346 APPENDIX C. SOLUTIONS TO EXERCISES

def map[A, B](seq: Seq[A], f: A => B): Seq[B] = {

seq.foldRight(Seq.empty[B]){ (elt, seq) => f(elt) +: seq }

}

Return to the exercise

C.5.20 Soluঞon to: Do-It-Yourself Part 5

Once again, write out the skeleton and then fill in the details using the types.
We start with

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

seq.foreach { ??? }

}

Let’s look at what we have need to fill in. foreach returns Unit but we need
to return a B. foreach takes a funcঞon of type A => Unit but we only have a
(B, A) => B available. The A can come from foreach and by now we know
that the B is the intermediate result. We have the hint to use mutable state
and we know that we need to keep a B around and return it, so let’s fill that in.

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

var result: B = ???

seq.foreach { (elt: A) => ??? }

result

}

At this point we can just follow the types. result must be iniঞally assigned
to the value of zero as that is the only B we have. The body of the funcঞon
we pass to foreach must call f with result and elt. This returns a B which
we must store somewhere—the only place we have to store it is in result. So
the final answer becomes

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

var result = zero

seq.foreach { elt => result = f(result, elt) }

result

C.5. COLLECTIONS 347

}

Return to the exercise

C.5.21 Soluঞon to: Exercises

for {

film <- nolan.films

} yield film.name

Return to the exercise

C.5.22 Soluঞon to: Exercises Part 2

for {

director <- directors

film <- director.films

} yield film.name

Return to the exercise

C.5.23 Soluঞon to: Exercises Part 3

This one’s a li�le trickier. We have to calculate the complete list of films first
before sorঞng them with sortWith. Precedence rules require us to wrap the
whole for / yield expression in parentheses to achieve this in one expres-
sion:

(for {

director <- directors

film <- director.films

} yield film).sortWith((a, b) => a.imdbRating > b.imdbRating)

Many developers prefer to use a temporary variable to make this code ঞdier:

348 APPENDIX C. SOLUTIONS TO EXERCISES

val films = for {

director <- directors

film <- director.films

} yield film

films sortWith { (a, b) =>

a.imdbRating > b.imdbRating

}

Return to the exercise

C.5.24 Soluঞon to: Exercises Part 4

We can drop the yield keyword from the for expression to achieve foreach-
like semanঞcs:

for {

director <- directors

film <- director.films

} println(s"Tonight! ${film.name} by ${director.name}!")

Return to the exercise

C.5.25 Soluঞon to: Adding Things

We can reuse code from the text above for this:

def addOptions(opt1: Option[Int], opt2: Option[Int]) =

for {

a <- opt1

b <- opt2

} yield a + b

Return to the exercise

C.5. COLLECTIONS 349

C.5.26 Soluঞon to: Adding Things Part 2

The pa�ern is to use flatMap for all clauses except the innermost, which be-
comes a map:

def addOptions2(opt1: Option[Int], opt2: Option[Int]) =

opt1 flatMap { a =>

opt2 map { b =>

a + b

}

}

Return to the exercise

C.5.27 Soluঞon to: Adding All of the Things

For comprehensions can have as many clauses as we want so all we need to
do is add an extra line to the previous soluঞon:

def addOptions(opt1: Option[Int], opt2: Option[Int], opt3: Option[Int

]) =

for {

a <- opt1

b <- opt2

c <- opt3

} yield a + b + c

Return to the exercise

C.5.28 Soluঞon to: Adding All of the Things Part 2

Here we can start to see the simplicity of for comprehensions:

def addOptions2(opt1: Option[Int], opt2: Option[Int], opt3: Option[Int

]) =

opt1 flatMap { a =>

opt2 flatMap { b =>

opt3 map { c =>

a + b + c

350 APPENDIX C. SOLUTIONS TO EXERCISES

}

}

}

Return to the exercise

C.5.29 Soluঞon to: A(nother) Short Division Exercise

We saw this code in the Traits chapter when we wrote the DivisionResult
class. The implementaঞon is much simpler now we can use Option to do the
heavy li[ing:

def divide(numerator: Int, denominator: Int) =

if(denominator == 0) None else Some(numerator / denominator)

Return to the exercise

C.5.30 Soluঞon to: A(nother) Short Division Exercise Part 2

In this example the divide operaঞon returns an Option[Int] instead of an
Int. In order to process the result we need to move the calculaঞon from the
yield block to a for-clause:

def divideOptions(numerator: Option[Int], denominator: Option[Int]) =

for {

a <- numerator

b <- denominator

c <- divide(a, b)

} yield c

Return to the exercise

C.5.31 Soluঞon to: A Simple Calculator

The trick to this one is realising that each clause in the for comprehension can
contain an enঞre block of Scala code:

C.5. COLLECTIONS 351

def calculator(operand1: String, operator: String, operand2: String):

Unit = {

val result = for {

a <- readInt(operand1)

b <- readInt(operand2)

ans <- operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

} yield ans

result match {

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1

$operator $operand2")

}

}

Another approach involves factoring the calculaঞon part out into its own pri-
vate funcঞon:

def calculator(operand1: String, operator: String, operand2: String):

Unit = {

def calcInternal(a: Int, b: Int) =

operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

val result = for {

a <- readInt(operand1)

b <- readInt(operand2)

ans <- calcInternal(a, b)

} yield ans

result match {

352 APPENDIX C. SOLUTIONS TO EXERCISES

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1

$operator $operand2")

}

}

Return to the exercise

C.5.32 Soluঞon to: A Simple Calculator Part 2

This version of the code is much clearer if we factor out the calculaঞon part
into its own funcঞon. Without this it would be very hard to read:

def calculator(operand1: String, operator: String, operand2: String):

Unit = {

def calcInternal(a: Int, b: Int) =

operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

val result =

readInt(operand1) flatMap { a =>

readInt(operand2) flatMap { b =>

calcInternal(a, b) map { result =>

result

}

}

}

result match {

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1

$operator $operand2")

}

}

Return to the exercise

C.5. COLLECTIONS 353

C.5.33 Soluঞon to: Adding All the Things ++

for {

x <- opt1

y <- opt2

z <- opt3

} yield x + y + z

for {

x <- seq1

y <- seq2

z <- seq3

} yield x + y + z

for {

x <- try1

y <- try2

z <- try3

} yield x + y + z

How’s that for a cut-and-paste job?

Return to the exercise

C.5.34 Soluঞon to: Favorites

The person may or may not be a key in the favoriteColorsmap so the func-
ঞon should return an Option result:

def favoriteColor(person: String): Option[String] =

favoriteColors.get(person)

Return to the exercise

C.5.35 Soluঞon to: Favorites Part 2

Now we have a default value we can return a String instead of an
Option[String]:

354 APPENDIX C. SOLUTIONS TO EXERCISES

def favoriteColor(person: String): String =

favoriteColors.get(person).getOrElse("beige")

Return to the exercise

C.5.36 Soluঞon to: Favorites Part 3

We can write this one using foreach or a for comprehension:

def printColors() = for {

person <- people

} println(s"${person}'s favorite color is ${favoriteColor(person)}!")

or:

def printColors() = people foreach { person =>

println(s"${person}'s favorite color is ${favoriteColor(person)}!")

}

Return to the exercise

C.5.37 Soluঞon to: Favorites Part 4

Here we write a generic method using a type parameter:

def lookup[A](name: String, values: Map[String, A]) =

values get name

Return to the exercise

C.5.38 Soluঞon to: Favorites Part 5

First we find the oldest person, then we look up the answer:

C.5. COLLECTIONS 355

val oldest: Option[String] =

people.foldLeft(Option.empty[String]) { (older, person) =>

if(ages.getOrElse(person, 0) > older.flatMap(ages.get).getOrElse

(0)) {

Some(person)

} else {

older

}

}

val favorite: Option[String] =

for {

oldest <- oldest

color <- favoriteColors.get(oldest)

} yield color

Return to the exercise

C.5.39 Soluঞon to: Union of Sets

As always, start by wriঞng out the types and then follow the types to fill-in
the details.

def union[A](set1: Set[A], set2: Set[A]): Set[A] = {

???

}

We need to think of an algorithm for compuঞng the union. We can start with
one of the sets and add the elements from the other set to it. The result will
be the union. What types does this result in? Our result has type Set[A] and
we need to add every A from the two sets to our result, which is an operaঞon
with type (Set[A], A) => Set[A]. This means we need a fold. Since order
is not important any fold will do.

def union[A](set1: Set[A], set2: Set[A]): Set[A] = {

set1.foldLeft(set2){ (set, elt) => (set + elt) }

}

Return to the exercise

356 APPENDIX C. SOLUTIONS TO EXERCISES

C.5.40 Soluঞon to: Union of Maps

The soluঞon follows the same pa�ern as the union for sets, but here we have
to handle adding the values as well.

def union[A](map1: Map[A, Int], map2: Map[A, Int]): Map[A, Int] = {

map1.foldLeft(map2){ (map, elt) =>

val (key, value1) = elt

val value2 = map.get(key)

val total = value1 + value2.getOrElse(0)

map + (key -> total)

}

}

Return to the exercise

C.5.41 Soluঞon to: Generic Union

With the tools we’ve seen far, we could add another funcঞon parameter like
so:

def union[A, B](map1: Map[A, B], map2: Map[A, B], add: (B, B) => B):

Map[A, B] = {

map1.foldLeft(map2){ (map, elt) =>

val (k, v) = elt

val newV = map.get(k).map(v2 => add(v, v2)).getOrElse(v)

map + (k -> newV)

}

}

Later we’ll see a nicer way to do this using type classes.

Return to the exercise

C.5.42 Soluঞon to: RandomWords

The following code will compute all possible sentences. The equivalent with
explicit flatMap and map would also work.

C.5. COLLECTIONS 357

Note that flatMap has more power than we need for this example. We could
use the subject to alter howwe choose the verb, for example. We’ll use this
ability in the next exercise.

val subjects = List("Noel", "The cat", "The dog")

val verbs = List("wrote", "chased", "slept on")

val objects = List("the book", "the ball", "the bed")

def allSentences: List[(String, String, String)] =

for {

subject <- subjects

verb <- verbs

obj <- objects

} yield (subject, verb, obj)

Return to the exercise

C.5.43 Soluঞon to: RandomWords Part 2

We’re now using the full power of flatMap and map (via our for comprehen-
sion) to make decisions in our code that are dependent on what has happened
before.

def verbsFor(subject: String): List[String] =

subject match {

case "Noel" => List("wrote", "chased", "slept on")

case "The cat" => List("meowed at", "chased", "slept on")

case "The dog" => List("barked at", "chased", "slept on")

}

def objectsFor(verb: String): List[String] =

verb match {

case "wrote" => List("the book", "the letter", "the code")

case "chased" => List("the ball", "the dog", "the cat")

case "slept on" => List("the bed", "the mat", "the train")

case "meowed at" => List("Noel", "the door", "the food cupboard")

case "barked at" => List("the postman", "the car", "the cat")

}

def allSentencesConditional: List[(String, String, String)] =

for {

358 APPENDIX C. SOLUTIONS TO EXERCISES

subject <- subjects

verb <- verbsFor(subject)

obj <- objectsFor(verb)

} yield (subject, verb, obj)

Return to the exercise

C.5.44 Soluঞon to: Probabiliঞes

There are no subtypes involved here, so a simple final case class will do.
We wrap the List[(A, Double)] within a class so we can encapsulate ma-
nipulaঞng the probabiliঞes—external code can view the probabiliঞes but prob-
ably shouldn’t be directly working with them.

final case class Distribution[A](events: List[(A, Double)])

Return to the exercise

C.5.45 Soluঞon to: Probabiliঞes Part 2

The convenience constructor looks like this:

def uniform[A](atoms: List[A]): Distribution[A] = {

val p = 1.0 / atoms.length

Distribution(atoms.map(a => a -> p))

}

// uniform: [A](atoms: List[A])Distribution[A]

According to Scala convenঞon, convenience constructors should normally live
on the companion object.

Return to the exercise

C.5.46 Soluঞon to: Probabiliঞes Part 3

We need flatMap and map. The signatures follow the pa�erns that flatMap
and map always have:

C.5. COLLECTIONS 359

def flatMap[B](f: A => Distribution[B]): Distribution[B]

and

def map[B](f: A => B): Distribution[B]

Return to the exercise

C.5.47 Soluঞon to: Probabiliঞes Part 4

Implemenঞng map merely requires we follow the types.

final case class Distribution[A](events: List[(A, Double)]) {

def map[B](f: A => B): Distribution[B] =

Distribution(events map { case (a, p) => f(a) -> p })

}

Return to the exercise

C.5.48 Soluঞon to: Probabiliঞes Part 5

Once we know how to combine probabiliঞes we just have to follow the types.
I’ve decided to normalise the probabiliঞes a[er flatMap as it helps avoid nu-
meric underflow, which can occur in complex models. An alternaঞve is to use
log-probabiliঞes, replacing mulঞplicaঞon with addiঞon.

final case class Distribution[A](events: List[(A, Double)]) {

def map[B](f: A => B): Distribution[B] =

Distribution(events map { case (a, p) => f(a) -> p })

def flatMap[B](f: A => Distribution[B]): Distribution[B] =

Distribution(events flatMap { case (a, p1) =>

f(a).events map { case (b, p2) => b -> (p1 * p2) }

}).compact.normalize

def normalize: Distribution[A] = {

val totalWeight = (events map { case (a, p) => p }).sum

Distribution(events map { case (a,p) => a -> (p / totalWeight) })

}

360 APPENDIX C. SOLUTIONS TO EXERCISES

def compact: Distribution[A] = {

val distinct = (events map { case (a, p) => a }).distinct

def prob(a: A): Double =

(events filter { case (x, p) => x == a } map { case (a, p) => p

}).sum

Distribution(distinct map { a => a -> prob(a) })

}

}

object Distribution {

def uniform[A](atoms: List[A]): Distribution[A] = {

val p = 1.0 / atoms.length

Distribution(atoms.map(a => a -> p))

}

}

Return to the exercise

C.5.49 Soluঞon to: Examples

First I constructed the model

// We assume cooked food makes delicious smells with probability 1.0,

and raw

// food makes no smell with probability 0.0.

sealed trait Food

case object Raw extends Food

case object Cooked extends Food

val food: Distribution[Food] =

Distribution.discrete(List(Cooked -> 0.3, Raw -> 0.7))

sealed trait Cat

case object Asleep extends Cat

case object Harassing extends Cat

def cat(food: Food): Distribution[Cat] =

food match {

case Cooked => Distribution.discrete(List(Harassing -> 0.8, Asleep

-> 0.2))

C.5. COLLECTIONS 361

case Raw => Distribution.discrete(List(Harassing -> 0.4, Asleep ->

0.6))

}

val foodModel: Distribution[(Food, Cat)] =

for {

f <- food

c <- cat(f)

} yield (f, c)

From foodModel we could read off the probabiliঞes of interest, but it’s more
fun to write some code to do this for us. Here’s what I did.

// Probability the cat is harassing me

val pHarassing: Double =

foodModel.events.filter {

case ((_, Harassing), _) => true

case ((_, Asleep), _) => false

}.map { case (a, p) => p }.sum

// Probability the food is cooked given the cat is harassing me

val pCookedGivenHarassing: Option[Double] =

foodModel.events collectFirst[Double] {

case ((Cooked, Harassing), p) => p

} map (_ / pHarassing)

From this we can see the probability my food is cooked given the cat is ha-
rassing me is probably 0.46. I should probably check the oven even though
it’s more likely the food isn’t cooked because leaving my food in and it geমng
burned is a far worse outcome than checking my food while it is sঞll raw.

This example also shows us that to use this library for real we’d probably want
to define a lot of uঞlity funcঞons, such as filter, directly on distribuঞon. We
also need to keep probabiliঞes unnormalised a[er certain operaঞons, such as
filtering, so we can compute condiঞonal probabiliঞes correctly.

Return to the exercise

362 APPENDIX C. SOLUTIONS TO EXERCISES

C.6 Type Classes

C.6.1 Soluঞon to: More Orderings

val absOrdering = Ordering.fromLessThan[Int]{ (x, y) =>

Math.abs(x) < Math.abs(y)

}

Return to the exercise

C.6.2 Soluঞon to: More Orderings Part 2

Simply mark the value as implicit (and make sure it is in scope)

implicit val absOrdering = Ordering.fromLessThan[Int]{ (x, y) =>

Math.abs(x) < Math.abs(y)

}

Return to the exercise

C.6.3 Soluঞon to: Raঞonal Orderings

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

Return to the exercise

C.6.4 Soluঞon to: Ordering Orders

My implementaঞon is below. I decided that ordering by totalPrice is likely
to be the most common choice, and therefore should be the default. Thus I
placed it in the companion object for Order. The other two orderings I placed
in objects so the user could explicitly import them.

C.6. TYPE CLASSES 363

final case class Order(units: Int, unitPrice: Double) {

val totalPrice: Double = units * unitPrice

}

object Order {

implicit val lessThanOrdering = Ordering.fromLessThan[Order]{ (x, y)

=>

x.totalPrice < y.totalPrice

}

}

object OrderUnitPriceOrdering {

implicit val unitPriceOrdering = Ordering.fromLessThan[Order]{ (x, y

) =>

x.unitPrice < y.unitPrice

}

}

object OrderUnitsOrdering {

implicit val unitsOrdering = Ordering.fromLessThan[Order]{ (x, y) =>

x.units < y.units

}

}

Return to the exercise

C.6.5 Soluঞon to: Equality

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

Return to the exercise

C.6.6 Soluঞon to: Equality Part 2

object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

364 APPENDIX C. SOLUTIONS TO EXERCISES

object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

Return to the exercise

C.6.7 Soluঞon to: Equality Again

object Eq {

def apply[A](v1: A, v2: A)(implicit equal: Equal[A]): Boolean =

equal.equal(v1, v2)

}

Return to the exercise

C.6.8 Soluঞon to: Equality Again Part 2

object NameAndEmailImplicit {

implicit object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

}

object EmailImplicit {

implicit object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

}

object Examples {

def byNameAndEmail = {

import NameAndEmailImplicit._

Eq(Person("Noel", "noel@example.com"), Person("Noel", "noel@

example.com"))

}

C.6. TYPE CLASSES 365

def byEmail = {

import EmailImplicit._

Eq(Person("Noel", "noel@example.com"), Person("Dave", "noel@

example.com"))

}

}

Return to the exercise

C.6.9 Soluঞon to: Equality Again Part 3

The following code is what we’re looking for:

object Equal {

def apply[A](implicit instance: Equal[A]): Equal[A] =

instance

}

In this case the Eq interface is slightly easier to use, as it requires less typing.
For most complicated interfaces, with more than a single method, the com-
panion object pa�ern would be preferred. In the next secঞon we’ll see how
we can make interfaces that appear to be methods defined on the objects of
interest.

Return to the exercise

C.6.10 Soluঞon to: Drinking the Kool Aid

implicit class IntOps(n: Int) {

def yeah() = for{ _ <- 0 until n } println("Oh yeah!")

}

2.yeah()

// Oh yeah!

// Oh yeah!

The soluঞon uses a for comprehension and a range to iterate through the cor-
rect number of iteraঞons. Remember that the range 0 until n is the same
as 0 to n-1—it contains all numbers from 0 inclusive to n exclusive.

366 APPENDIX C. SOLUTIONS TO EXERCISES

The names IntImplicits and IntOps are quite vague—we would probably
name them something more specific in a producঞon codebase. However, for
this exercise they will suffice.

Return to the exercise

C.6.11 Soluঞon to: Times

object IntImplicits {

implicit class IntOps(n: Int) {

def yeah() =

times(_ => println("Oh yeah!"))

def times(func: Int => Unit) =

for(i <- 0 until n) func(i)

}

}

Return to the exercise

C.6.12 Soluঞon to: Easy Equality

We just need to define an implicit class, which I have here placed in the com-
panion object of Equal.

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

object Equal {

def apply[A](implicit instance: Equal[A]): Equal[A] =

instance

implicit class ToEqual[A](in: A) {

def ===(other: A)(implicit equal: Equal[A]): Boolean =

equal.equal(in, other)

}

}

Here is an example of use.

C.6. TYPE CLASSES 367

implicit val caseInsensitiveEquals = new Equal[String] {

def equal(s1: String, s2: String) =

s1.toLowerCase == s2.toLowerCase

}

import Equal._

"foo".===("FOO")

Return to the exercise

C.6.13 Soluঞon to: Implicit Class Conversion

Here is the soluঞon. The methods yeah and times are exactly as we
implemented them previously. The only differences are the removal of the
implicit keyword on the class and the addiঞon of the implicit def to
do the job of the implicit constructor:

object IntImplicits {

class IntOps(n: Int) {

def yeah() =

times(_ => println("Oh yeah!"))

def times(func: Int => Unit) =

for(i <- 0 until n) func(i)

}

implicit def intToIntOps(value: Int) =

new IntOps(value)

}

The code sঞll works the same way it did previously. The implicit conversion is
not available unঞl we bring it into scope:

5.yeah()

// <console>:18: error: value yeah is not a member of Int

// 5.yeah()

// ^

Once the conversion has been brought into scope, we can use yeah and times
as usual:

368 APPENDIX C. SOLUTIONS TO EXERCISES

import IntImplicits._

5.yeah()

// Oh yeah!

// Oh yeah!

// Oh yeah!

// Oh yeah!

// Oh yeah!

Return to the exercise

C.6.14 Soluঞon to: Convert X to JSON

The type class is generic in a type A. The write method converts a value of
type A to some kind of JsValue.

trait JsWriter[A] {

def write(value: A): JsValue

}

Return to the exercise

C.6.15 Soluঞon to: Convert X to JSON Part 2

object JsUtil {

def toJson[A](value: A)(implicit writer: JsWriter[A]) =

writer write value

}

Return to the exercise

C.6.16 Soluঞon to: Convert X to JSON Part 3

implicit object AnonymousWriter extends JsWriter[Anonymous] {

def write(value: Anonymous) = JsObject(Map(

"id" -> JsString(value.id),

"createdAt" -> JsString(value.createdAt.toString)

))

C.6. TYPE CLASSES 369

}

implicit object UserWriter extends JsWriter[User] {

def write(value: User) = JsObject(Map(

"id" -> JsString(value.id),

"email" -> JsString(value.email),

"createdAt" -> JsString(value.createdAt.toString)

))

}

Return to the exercise

C.6.17 Soluঞon to: Convert X to JSON Part 4

visitors.map(visitor => JsUtil.toJson(visitor))

Return to the exercise

C.6.18 Soluঞon to: Preমer Conversion Syntax

implicit class JsUtil[A](value: A) {

def toJson(implicit writer: JsWriter[A]) =

writer write value

}

In the previous exercise we only defined JsWriters for our main case classes.
With this convenient syntax, it makes sense for us to have an complete set of
JsWriters for all the serializable types in our codebase, including Strings
and Dates:

implicit object StringWriter extends JsWriter[String] {

def write(value: String) = JsString(value)

}

implicit object DateWriter extends JsWriter[Date] {

def write(value: Date) = JsString(value.toString)

}

With these definiঞonswe can simplify our exisঞng JsWriters for Anonymous,
User, and Visitor:

370 APPENDIX C. SOLUTIONS TO EXERCISES

implicit object AnonymousWriter extends JsWriter[Anonymous] {

def write(value: Anonymous) = JsObject(Map(

"id" -> value.id.toJson,

"createdAt" -> value.createdAt.toJson

))

}

implicit object UserWriter extends JsWriter[User] {

def write(value: User) = JsObject(Map(

"id" -> value.id.toJson,

"email" -> value.email.toJson,

"createdAt" -> value.createdAt.toJson

))

}

implicit object VisitorWriter extends JsWriter[Visitor] {

def write(value: Visitor) = value match {

case anon: Anonymous => anon.toJson

case user: User => user.toJson

}

}

Return to the exercise

C.7 Pa�ern Matching

C.7.1 Soluঞon to: Posiঞve Matches

To implement this extractor we define an unapply method on an object
Postiive:

object Positive {

def unapply(in: Int): Option[Int] =

if(in > 0)

Some(in)

else

None

}

Return to the exercise

C.8. COLLECTIONS REDUX 371

C.7.2 Soluঞon to: Titlecase extractor

The model soluঞon splits the string into a list of words and maps over the list,
manipulaঞng each word before re-combining the words into a string.

object Titlecase {

def unapply(str: String) =

Some(str.split(" ").toList.map {

case "" => ""

case word => word.substring(0, 1).toUpperCase + word.substring

(1)

}.mkString(" "))

}

Return to the exercise

C.8 Collecঞons Redux

C.8.1 Soluঞon to: Animals

val animals = Seq("cat", "dog", "penguin")

// animals: Seq[String] = List(cat, dog, penguin)

Return to the exercise

C.8.2 Soluঞon to: Animals Part 2

"mouse" +: animals :+ "tyrannosaurus"

// res8: Seq[String] = List(mouse, cat, dog, penguin, tyrannosaurus)

Return to the exercise

C.8.3 Soluঞon to: Animals Part 3

The returned sequence has type Seq[Any]. It is perfectly valid to return a
supertype (in this case Seq[Any]) from a non-destrucঞve operaঞon.

372 APPENDIX C. SOLUTIONS TO EXERCISES

2 +: animals

You might expect a type error here, but Scala is capable of determining the
least upper bound of String and Int and seমng the type of the returned
sequence accordingly.

In most real code appending an Int to a Seq[String] would be an error. In
pracঞce, the type annotaঞons we place on methods and fields protect against
this kind of type error, but be aware of this behaviour just in case.

Return to the exercise

C.8.4 Soluঞon to: Animals Part 4

If we try to mutate a sequence we do get a type error:

val mutable = scala.collection.mutable.Seq("cat", "dog", "penguin")

// mutable: scala.collection.mutable.Seq[String] = ArrayBuffer(cat,

dog, penguin)

mutable(0) = 2

// <console>:9: error: type mismatch;

// found : Int(2)

// required: String

// mutable(0) = 2

// ^

Return to the exercise

	Foreword
	Conventions Used in This Book
	Thanks

	Getting Started
	Setting up the Scala Console
	Setting up Scala IDE

	Expressions, Types, and Values
	Your First Program
	Interacting with Objects
	Literal Objects
	Object Literals
	Writing Methods
	Compound Expressions
	Conclusion

	Objects and Classes
	Classes
	Objects as Functions
	Companion Objects
	Case Classes
	Pattern Matching
	Conclusions

	Modelling Data with Traits
	Traits
	This or That and Nothing Else: Sealed Traits
	Modelling Data with Traits
	The Sum Type Pattern
	Working With Data
	Recursive Data
	Extended Examples
	Conclusions

	Sequencing Computations
	Generics
	Functions
	Generic Folds for Generic Data
	Modelling Data with Generic Types
	Sequencing Computation
	Variance
	Conclusions

	Collections
	Sequences
	Working with Sequences
	For Comprehensions
	Options
	Options as Flow Control
	Monads
	For Comprehensions Redux
	Maps and Sets
	Ranges
	Generating Random Data

	Type Classes
	Type Class Instances
	Organising Type Class Instances
	Creating Type Classes
	Implicit Parameter and Interfaces
	Enriched Interfaces
	Combining Type Classes and Type Enrichment
	Using Type Classes
	Implicit Conversions
	JSON Serialisation

	Conclusions
	What Now?

	Pattern Matching
	Standard patterns
	Custom Patterns

	Collections Redux
	Sequence Implementations
	Arrays and Strings
	Iterators and Views
	Traversable and Iterable
	Java Interoperation
	Mutable Sequences

	Solutions to Exercises
	Expressions, Types, and Values
	Objects and Classes
	Modelling Data with Traits
	Sequencing Computations
	Collections
	Type Classes
	Pattern Matching
	Collections Redux

